跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/27 04:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴聖玉
研究生(外文):DAI, SHENG-YU
論文名稱:探討生物素與轉錄因子FOXM1對於人類大腸直腸癌細胞的糖解與脂質合成之影響
論文名稱(外文):Effect of Biotin and FOXM1 on Glycolysis and Lipogenesis in Human Colorectal Cancer Cells
指導教授:李明芬李明芬引用關係
指導教授(外文):LEE, MING-FEN
口試委員:黃俊瑩鄭宏祺
口試委員(外文):HUANG, CHUN-YINCHENG, HUNG-CHI
口試日期:2022-07-19
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:營養學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:92
中文關鍵詞:人類大腸直腸癌生物素代謝重整轉錄因子FOXM1
外文關鍵詞:human colorectal cancerbiotinmetabolic reprogrammingFOXM1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄
摘要 I
第一節 中文摘要 I
第二節 英文摘要 II
圖目錄 V
縮寫表 VII
第一章 文獻回顧 1
第一節 大腸直腸癌(Colorectal cancer) 1
第二節 生物素(Biotin) 5
第三節 代謝重整(Metabolic reprogramming) 9
第四節 FOXM1 (Forkhead box M1) 11
第二章 研究動機 13
第三章 材料與方法 14
第一節 實驗架構 14
第二節 實驗方法 15
一、 細胞培養(Cell culture) 15
二、 化合物與試劑(Chemicals and reagent) 17
三、 蛋白質萃取(Protein extraction) 18
四、 蛋白質定量(Protein assay) 19
五、 西方墨點法(Western blotting) 20
六、 小分子干擾核糖核酸(Small interfering RNA; siRNA) 26
七、 質體轉染(Plasmid transfection) 26
八、 細胞存活率試驗(MTT assay) 27
九、 螢光免疫染色(Immunocytochemistry; ICC) 28
十、 質體製備(Plasmid preparation) 29
十一、 RNA萃取(RNA extraction) 30
十二、 反轉錄聚合酶連鎖反應(RT-PCR) 31
十三、 即時定量聚合酶連鎖反應(qRT-PCR) 32
十四、 統計分析 33
第四章 結果 34
第一節 生物素對於大腸直腸癌細胞生長之影響 34
第二節 生物素對於FOXM1 RNA與蛋白質層次之影響 36
第三節 生物素調節大腸直腸癌細胞之糖解代謝 41
第四節 生物素調節大腸直腸癌細胞之膽固醇生合成 43
第五節 生物素調節大腸直腸癌細胞之脂肪酸生合成 48
第六節 蛋白酶體抑制劑(MG132)對於生物素影響層次之探討 53
第七節 利用RNA干擾(siRNA)抑制FOXM1表現 56
第八節 抑制FOXM1對大腸直腸癌細胞膽固醇生合成之影響 59
第九節 抑制FOXM1對大腸直腸癌細胞中脂肪酸生合成之影響 64
第十節 轉染FOXM1b cDNA增加FOXM1表現 70
第十一節 過度表現FOXM1對大腸直腸癌細胞中脂肪酸生合成之影響 73
第五章 討論 76
第六章 結論 81
第七章 文獻出處 82
Afrăsânie, V. A., Marinca, M. V., Alexa-Stratulat, T., Gafton, B., Păduraru, M., Adavidoaiei, A. M., Miron, L., & Rusu, C. (2019). KRAS, NRAS, BRAF, HER2 and microsatellite instability in metastatic colorectal cancer - practical implications for the clinician. Radiol Oncol, 53(3), 265-274. https://doi.org/10.2478/raon-2019-0033
Barger, C. J., Branick, C., Chee, L., & Karpf, A. R. (2019). Pan-Cancer Analyses Reveal Genomic Features of FOXM1 Overexpression in Cancer. Cancers (Basel), 11(2). https://doi.org/10.3390/cancers11020251
Beloribi-Djefaflia, S., Vasseur, S., & Guillaumond, F. (2016). Lipid metabolic reprogramming in cancer cells. Oncogenesis, 5(1), e189. https://doi.org/10.1038/oncsis.2015.49
Bian, J., Dannappel, M., Wan, C., & Firestein, R. (2020). Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells, 9(9). https://doi.org/10.3390/cells9092125
Biswas, S. K. (2015). Metabolic Reprogramming of Immune Cells in Cancer Progression. Immunity, 43(3), 435-449. https://doi.org/10.1016/j.immuni.2015.09.001
Borboni, P., Magnaterra, R., Rabini, R. A., Staffolani, R., Porzio, O., Sesti, G., Fusco, A., Mazzanti, L., Lauro, R., & Marlier, L. N. (1996). Effect of biotin on glucokinase activity, mRNA expression and insulin release in cultured beta-cells. Acta Diabetol, 33(2), 154-158. https://doi.org/10.1007/bf00569427
Boutin, A. T., Liao, W. T., Wang, M., Hwang, S. S., Karpinets, T. V., Cheung, H., Chu, G. C., Jiang, S., Hu, J., Chang, K., Vilar, E., Song, X., Zhang, J., Kopetz, S., Futreal, A., Wang, Y. A., Kwong, L. N., & DePinho, R. A. (2017). Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. Genes Dev, 31(4), 370-382. https://doi.org/10.1101/gad.293449.116
Cairns, R. A., Harris, I. S., & Mak, T. W. (2011). Regulation of cancer cell metabolism. Nat Rev Cancer, 11(2), 85-95. https://doi.org/10.1038/nrc2981
Carethers, J. M., & Jung, B. H. (2015). Genetics and Genetic Biomarkers in Sporadic Colorectal Cancer. Gastroenterology, 149(5), 1177-1190.e1173. https://doi.org/10.1053/j.gastro.2015.06.047
Cercek, A., Braghiroli, M. I., Chou, J. F., Hechtman, J. F., Kemeny, N., Saltz, L., Capanu, M., & Yaeger, R. (2017). Clinical Features and Outcomes of Patients with Colorectal Cancers Harboring NRAS Mutations. Clin Cancer Res, 23(16), 4753-4760. https://doi.org/10.1158/1078-0432.Ccr-17-0400
Chapman-Smith, A., & Cronan, J. E., Jr. (1999). The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity. Trends Biochem Sci, 24(9), 359-363. https://doi.org/10.1016/s0968-0004(99)01438-3
Chu, X. Y., Zhu, Z. M., Chen, L. B., Wang, J. H., Su, Q. S., Yang, J. R., Lin, Y., Xue, L. J., Liu, X. B., & Mo, X. B. (2012). FOXM1 expression correlates with tumor invasion and a poor prognosis of colorectal cancer. Acta Histochem, 114(8), 755-762. https://doi.org/10.1016/j.acthis.2012.01.002
Comprehensive molecular characterization of human colon and rectal cancer. (2012). Nature, 487(7407), 330-337. https://doi.org/10.1038/nature11252
Cui, J., Shi, M., Xie, D., Wei, D., Jia, Z., Zheng, S., Gao, Y., Huang, S., & Xie, K. (2014). FOXM1 promotes the warburg effect and pancreatic cancer progression via transactivation of LDHA expression. Clin Cancer Res, 20(10), 2595-2606. https://doi.org/10.1158/1078-0432.Ccr-13-2407
Dakshinamurti, K., & Chauhan, J. (1989). Biotin. Vitam Horm, 45, 337-384. https://doi.org/10.1016/s0083-6729(08)60398-2
Dekker, E., Tanis, P. J., Vleugels, J. L. A., Kasi, P. M., & Wallace, M. B. (2019). Colorectal cancer. Lancet, 394(10207), 1467-1480. https://doi.org/10.1016/s0140-6736(19)32319-0
Dienstmann, R., Connor, K., & Byrne, A. T. (2020). Precision Therapy in RAS Mutant Colorectal Cancer. Gastroenterology, 158(4), 806-811. https://doi.org/10.1053/j.gastro.2019.12.051
Donehower, L. A., Soussi, T., Korkut, A., Liu, Y., Schultz, A., Cardenas, M., Li, X., Babur, O., Hsu, T. K., Lichtarge, O., Weinstein, J. N., Akbani, R., & Wheeler, D. A. (2019). Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas. Cell Rep, 28(5), 1370-1384.e1375. https://doi.org/10.1016/j.celrep.2019.07.001
Duffy, M. J., Synnott, N. C., & Crown, J. (2017). Mutant p53 as a target for cancer treatment. Eur J Cancer, 83, 258-265. https://doi.org/10.1016/j.ejca.2017.06.023
Eberlé, D., Hegarty, B., Bossard, P., Ferré, P., & Foufelle, F. (2004). SREBP transcription factors: master regulators of lipid homeostasis. Biochimie, 86(11), 839-848. https://doi.org/10.1016/j.biochi.2004.09.018
Fearon, E. R., & Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell, 61(5), 759-767. https://doi.org/10.1016/0092-8674(90)90186-i
Fernandez-Mejia, C. (2005). Pharmacological effects of biotin. J Nutr Biochem, 16(7), 424-427. https://doi.org/10.1016/j.jnutbio.2005.03.018
Fernández, L. P., Ramos-Ruiz, R., Herranz, J., Martín-Hernández, R., Vargas, T., Mendiola, M., Guerra, L., Reglero, G., Feliu, J., & Ramírez de Molina, A. (2018). The transcriptional and mutational landscapes of lipid metabolism-related genes in colon cancer. Oncotarget, 9(5), 5919-5930. https://doi.org/10.18632/oncotarget.23592
Francipane, M. G., & Lagasse, E. (2014). mTOR pathway in colorectal cancer: an update. Oncotarget, 5(1), 49-66. https://doi.org/10.18632/oncotarget.1548
Freed-Pastor, W. A., Mizuno, H., Zhao, X., Langerød, A., Moon, S. H., Rodriguez-Barrueco, R., Barsotti, A., Chicas, A., Li, W., Polotskaia, A., Bissell, M. J., Osborne, T. F., Tian, B., Lowe, S. W., Silva, J. M., Børresen-Dale, A. L., Levine, A. J., Bargonetti, J., & Prives, C. (2012). Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell, 148(1-2), 244-258. https://doi.org/10.1016/j.cell.2011.12.017
Gartel, A. L. (2017). FOXM1 in Cancer: Interactions and Vulnerabilities. Cancer Res, 77(12), 3135-3139. https://doi.org/10.1158/0008-5472.Can-16-3566
Gialmanidis, I. P., Bravou, V., Amanetopoulou, S. G., Varakis, J., Kourea, H., & Papadaki, H. (2009). Overexpression of hedgehog pathway molecules and FOXM1 in non-small cell lung carcinomas. Lung Cancer, 66(1), 64-74. https://doi.org/10.1016/j.lungcan.2009.01.007
Green, N. M. (1990). Avidin and streptavidin. Methods Enzymol, 184, 51-67. https://doi.org/10.1016/0076-6879(90)84259-j
Groden, J., Thliveris, A., Samowitz, W., Carlson, M., Gelbert, L., Albertsen, H., Joslyn, G., Stevens, J., Spirio, L., Robertson, M., & et al. (1991). Identification and characterization of the familial adenomatous polyposis coli gene. Cell, 66(3), 589-600. https://doi.org/10.1016/0092-8674(81)90021-0
Haigis, K. M. (2017). KRAS Alleles: The Devil Is in the Detail. Trends Cancer, 3(10), 686-697. https://doi.org/10.1016/j.trecan.2017.08.006
Halasi, M., & Gartel, A. L. (2013). FOX(M1) news--it is cancer. Mol Cancer Ther, 12(3), 245-254. https://doi.org/10.1158/1535-7163.Mct-12-0712
Harada, S., & Morlote, D. (2020). Molecular Pathology of Colorectal Cancer. Adv Anat Pathol, 27(1), 20-26. https://doi.org/10.1097/pap.0000000000000247
Huang, D., Sun, W., Zhou, Y., Li, P., Chen, F., Chen, H., Xia, D., Xu, E., Lai, M., Wu, Y., & Zhang, H. (2018). Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev, 37(1), 173-187. https://doi.org/10.1007/s10555-017-9726-5
Jeong, W. J., Ro, E. J., & Choi, K. Y. (2018). Interaction between Wnt/β-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of β-catenin and RAS by targeting the Wnt/β-catenin pathway. NPJ Precis Oncol, 2(1), 5. https://doi.org/10.1038/s41698-018-0049-y
Jungert, A., Ellinger, S., Watzl, B., & Richter, M. (2022). Revised D-A-CH reference values for the intake of biotin. Eur J Nutr, 61(4), 1779-1787. https://doi.org/10.1007/s00394-021-02756-0
Koundouros, N., & Poulogiannis, G. (2020). Reprogramming of fatty acid metabolism in cancer. Br J Cancer, 122(1), 4-22. https://doi.org/10.1038/s41416-019-0650-z
Kretschmer, C., Sterner-Kock, A., Siedentopf, F., Schoenegg, W., Schlag, P. M., & Kemmner, W. (2011). Identification of early molecular markers for breast cancer. Mol Cancer, 10(1), 15. https://doi.org/10.1186/1476-4598-10-15
Kruiswijk, F., Hasenfuss, S. C., Sivapatham, R., Baar, M. P., Putavet, D., Naipal, K. A., van den Broek, N. J., Kruit, W., van der Spek, P. J., van Gent, D. C., Brenkman, A. B., Campisi, J., Burgering, B. M., Hoeijmakers, J. H., & de Keizer, P. L. (2016). Targeted inhibition of metastatic melanoma through interference with Pin1-FOXM1 signaling. Oncogene, 35(17), 2166-2177. https://doi.org/10.1038/onc.2015.282
Kuroishi, T. (2015). Regulation of immunological and inflammatory functions by biotin. Can J Physiol Pharmacol, 93(12), 1091-1096. https://doi.org/10.1139/cjpp-2014-0460
León-Del-Río, A. (2019). Biotin in metabolism, gene expression, and human disease. J Inherit Metab Dis, 42(4), 647-654. https://doi.org/10.1002/jimd.12073
Leung, T. W., Lin, S. S., Tsang, A. C., Tong, C. S., Ching, J. C., Leung, W. Y., Gimlich, R., Wong, G. G., & Yao, K. M. (2001). Over-expression of FoxM1 stimulates cyclin B1 expression. FEBS Lett, 507(1), 59-66. https://doi.org/10.1016/s0014-5793(01)02915-5
Li, J., Ma, X., Chakravarti, D., Shalapour, S., & DePinho, R. A. (2021). Genetic and biological hallmarks of colorectal cancer. Genes Dev, 35(11-12), 787-820. https://doi.org/10.1101/gad.348226.120
Li, X. L., Zhou, J., Chen, Z. R., & Chng, W. J. (2015). P53 mutations in colorectal cancer - molecular pathogenesis and pharmacological reactivation. World J Gastroenterol, 21(1), 84-93. https://doi.org/10.3748/wjg.v21.i1.84
Li, Z., Chen, Y., Wang, D., Wang, G., He, L., & Suo, J. (2012). Detection of KRAS mutations and their associations with clinicopathological features and survival in Chinese colorectal cancer patients. J Int Med Res, 40(4), 1589-1598. https://doi.org/10.1177/147323001204000439
Li, Z., & Zhang, H. (2016). Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci, 73(2), 377-392. https://doi.org/10.1007/s00018-015-2070-4
Li, Z. N., Zhao, L., Yu, L. F., & Wei, M. J. (2020). BRAF and KRAS mutations in metastatic colorectal cancer: future perspectives for personalized therapy. Gastroenterol Rep (Oxf), 8(3), 192-205. https://doi.org/10.1093/gastro/goaa022
Liao, G. B., Li, X. Z., Zeng, S., Liu, C., Yang, S. M., Yang, L., Hu, C. J., & Bai, J. Y. (2018). Regulation of the master regulator FOXM1 in cancer. Cell Commun Signal, 16(1), 57. https://doi.org/10.1186/s12964-018-0266-6
Liao, W., Overman, M. J., Boutin, A. T., Shang, X., Zhao, D., Dey, P., Li, J., Wang, G., Lan, Z., Li, J., Tang, M., Jiang, S., Ma, X., Chen, P., Katkhuda, R., Korphaisarn, K., Chakravarti, D., Chang, A., Spring, D. J., Chang, Q., Zhang, J., Maru D.M., Maeda, D.Y., Zebala, J.A., Kopetz, S., Wang, Y.A & DePinho, R. A. (2019). KRAS-IRF2 Axis Drives Immune Suppression and Immune Therapy Resistance in Colorectal Cancer. Cancer Cell, 35(4), 559-572.e557. https://doi.org/10.1016/j.ccell.2019.02.008
Liebl, M. C., & Hofmann, T. G. (2021). The Role of p53 Signaling in Colorectal Cancer. Cancers (Basel), 13(9). https://doi.org/10.3390/cancers13092125
Lipner, S. R., & Scher, R. K. (2018). Biotin for the treatment of nail disease: what is the evidence? J Dermatolog Treat, 29(4), 411-414. https://doi.org/10.1080/09546634.2017.1395799
Lowe, S. W., & Lin, A. W. (2000). Apoptosis in cancer. Carcinogenesis, 21(3), 485-495. https://doi.org/10.1093/carcin/21.3.485
Maiti, S., & Paira, P. (2018). Biotin conjugated organic molecules and proteins for cancer therapy: A review. Eur J Med Chem, 145, 206-223. https://doi.org/10.1016/j.ejmech.2018.01.001
Martinez-Outschoorn, U., Sotgia, F., & Lisanti, M. P. (2014). Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function. Semin Oncol, 41(2), 195-216. https://doi.org/10.1053/j.seminoncol.2014.03.002
Matsushita, Y., Nakagawa, H., & Koike, K. (2021). Lipid Metabolism in Oncology: Why It Matters, How to Research, and How to Treat. Cancers (Basel), 13(3). https://doi.org/10.3390/cancers13030474
McMahon, R. J. (2002). Biotin in metabolism and molecular biology. Annu Rev Nutr, 22, 221-239. https://doi.org/10.1146/annurev.nutr.22.121101.112819
Mock, D. M. (2017). Biotin: From Nutrition to Therapeutics. J Nutr, 147(8), 1487-1492. https://doi.org/10.3945/jn.116.238956
Mock, D. M., Mock, N. I., Stewart, C. W., LaBorde, J. B., & Hansen, D. K. (2003). Marginal biotin deficiency is teratogenic in ICR mice. J Nutr, 133(8), 2519-2525. https://doi.org/10.1093/jn/133.8.2519
National Research Council Subcommittee on the Tenth Edition of the Recommended Dietary, A. (1989). The National Academies Collection: Reports funded by National Institutes of Health. In Recommended Dietary Allowances: 10th Edition. National Academies Press (US)
Copyright © 1989 by the National Academy of Sciences. https://doi.org/10.17226/1349
Nenkov, M., Ma, Y., Gaßler, N., & Chen, Y. (2021). Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy. Int J Mol Sci, 22(12). https://doi.org/10.3390/ijms22126262
Nguyen, L. H., Goel, A., & Chung, D. C. (2020). Pathways of Colorectal Carcinogenesis. Gastroenterology, 158(2), 291-302. https://doi.org/10.1053/j.gastro.2019.08.059
Notarnicola, M., Tutino, V., Calvani, M., Lorusso, D., Guerra, V., & Caruso, M. G. (2012). Serum levels of fatty acid synthase in colorectal cancer patients are associated with tumor stage. J Gastrointest Cancer, 43(3), 508-511. https://doi.org/10.1007/s12029-011-9300-2
Ogura, S., Yoshida, Y., Kurahashi, T., Egawa, M., Furuta, K., Kiso, S., Kamada, Y., Hikita, H., Eguchi, H., Ogita, H., Doki, Y., Mori, M., Tatsumi, T., & Takehara, T. (2018). Targeting the mevalonate pathway is a novel therapeutic approach to inhibit oncogenic FoxM1 transcription factor in human hepatocellular carcinoma. Oncotarget, 9(30), 21022-21035. https://doi.org/10.18632/oncotarget.24781
Pacheco-Alvarez, D., Solórzano-Vargas, R. S., Gravel, R. A., Cervantes-Roldán, R., Velázquez, A., & León-Del-Río, A. (2004). Paradoxical regulation of biotin utilization in brain and liver and implications for inherited multiple carboxylase deficiency. J Biol Chem, 279(50), 52312-52318. https://doi.org/10.1074/jbc.M407056200
Pino, M. S., & Chung, D. C. (2010). The chromosomal instability pathway in colon cancer. Gastroenterology, 138(6), 2059-2072. https://doi.org/10.1053/j.gastro.2009.12.065
Rashtak, S., Rego, R., Sweetser, S. R., & Sinicrope, F. A. (2017). Sessile Serrated Polyps and Colon Cancer Prevention. Cancer Prev Res (Phila), 10(5), 270-278. https://doi.org/10.1158/1940-6207.Capr-16-0264
Romero-Navarro, G., Cabrera-Valladares, G., German, M. S., Matschinsky, F. M., Velazquez, A., Wang, J., & Fernandez-Mejia, C. (1999). Biotin regulation of pancreatic glucokinase and insulin in primary cultured rat islets and in biotin-deficient rats. Endocrinology, 140(10), 4595-4600. https://doi.org/10.1210/endo.140.10.7084
Ros, J., Baraibar, I., Sardo, E., Mulet, N., Salvà, F., Argilés, G., Martini, G., Ciardiello, D., Cuadra, J. L., Tabernero, J., & Élez, E. (2021). BRAF, MEK and EGFR inhibition as treatment strategies in BRAF V600E metastatic colorectal cancer. Ther Adv Med Oncol, 13, 1758835921992974. https://doi.org/10.1177/1758835921992974
Russo, A., Bazan, V., Iacopetta, B., Kerr, D., Soussi, T., & Gebbia, N. (2005). The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment. J Clin Oncol, 23(30), 7518-7528. https://doi.org/10.1200/jco.2005.00.471
Said, H. M. (2002). Biotin: the forgotten vitamin. Am J Clin Nutr, 75(2), 179-180. https://doi.org/10.1093/ajcn/75.2.179
Said, H. M. (2012). Biotin: biochemical, physiological and clinical aspects. Subcell Biochem, 56, 1-19. https://doi.org/10.1007/978-94-007-2199-9_1
Sanz-Garcia, E., Argiles, G., Elez, E., & Tabernero, J. (2017). BRAF mutant colorectal cancer: prognosis, treatment, and new perspectives. Ann Oncol, 28(11), 2648-2657. https://doi.org/10.1093/annonc/mdx401
Shalapour, S., & Karin, M. (2020). Cruel to Be Kind: Epithelial, Microbial, and Immune Cell Interactions in Gastrointestinal Cancers. Annu Rev Immunol, 38, 649-671. https://doi.org/10.1146/annurev-immunol-082019-081656
Shang, R., Pu, M., Li, Y., & Wang, D. (2017). FOXM1 regulates glycolysis in hepatocellular carcinoma by transactivating glucose transporter 1 expression. Oncol Rep, 37(4), 2261-2269. https://doi.org/10.3892/or.2017.5472
Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. CA Cancer J Clin, 70(1), 7-30. https://doi.org/10.3322/caac.21590
Simon, K. (2016). Colorectal cancer development and advances in screening. Clin Interv Aging, 11, 967-976. https://doi.org/10.2147/cia.S109285
Simons, C. C., Hughes, L. A., Smits, K. M., Khalid-de Bakker, C. A., de Bruïne, A. P., Carvalho, B., Meijer, G. A., Schouten, L. J., van den Brandt, P. A., Weijenberg, M. P., & van Engeland, M. (2013). A novel classification of colorectal tumors based on microsatellite instability, the CpG island methylator phenotype and chromosomal instability: implications for prognosis. Ann Oncol, 24(8), 2048-2056. https://doi.org/10.1093/annonc/mdt076
Snover, D. C. (2011). Update on the serrated pathway to colorectal carcinoma. Hum Pathol, 42(1), 1-10. https://doi.org/10.1016/j.humpath.2010.06.002
Solórzano-Vargas, R. S., Pacheco-Alvarez, D., & León-Del-Río, A. (2002). Holocarboxylase synthetase is an obligate participant in biotin-mediated regulation of its own expression and of biotin-dependent carboxylases mRNA levels in human cells. Proc Natl Acad Sci U S A, 99(8), 5325-5330. https://doi.org/10.1073/pnas.082097699
Souglakos, J., Philips, J., Wang, R., Marwah, S., Silver, M., Tzardi, M., Silver, J., Ogino, S., Hooshmand, S., Kwak, E., Freed, E., Meyerhardt, J. A., Saridaki, Z., Georgoulias, V., Finkelstein, D., Fuchs, C. S., Kulke, M. H., & Shivdasani, R. A. (2009). Prognostic and predictive value of common mutations for treatment response and survival in patients with metastatic colorectal cancer. Br J Cancer, 101(3), 465-472. https://doi.org/10.1038/sj.bjc.6605164
Stratton, S. L., Bogusiewicz, A., Mock, M. M., Mock, N. I., Wells, A. M., & Mock, D. M. (2006). Lymphocyte propionyl-CoA carboxylase and its activation by biotin are sensitive indicators of marginal biotin deficiency in humans. Am J Clin Nutr, 84(2), 384-388. https://doi.org/10.1093/ajcn/84.1.384
Su, X., Yang, Y., Yang, Q., Pang, B., Sun, S., Wang, Y., Qiao, Q., Guo, C., Liu, H., & Pang, Q. (2021). NOX4-derived ROS-induced overexpression of FOXM1 regulates aerobic glycolysis in glioblastoma. BMC Cancer, 21(1), 1181. https://doi.org/10.1186/s12885-021-08933-y
Sun, H., Teng, M., Liu, J., Jin, D., Wu, J., Yan, D., Fan, J., Qin, X., Tang, H., & Peng, Z. (2011). FOXM1 expression predicts the prognosis in hepatocellular carcinoma patients after orthotopic liver transplantation combined with the Milan criteria. Cancer Lett, 306(2), 214-222. https://doi.org/10.1016/j.canlet.2011.03.009
Swierczynski, J., Hebanowska, A., & Sledzinski, T. (2014). Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World J Gastroenterol, 20(9), 2279-2303. https://doi.org/10.3748/wjg.v20.i9.2279
Teh, M. T., Wong, S. T., Neill, G. W., Ghali, L. R., Philpott, M. P., & Quinn, A. G. (2002). FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res, 62(16), 4773-4780.
Thanikachalam, K., & Khan, G. (2019). Colorectal Cancer and Nutrition. Nutrients, 11(1). https://doi.org/10.3390/nu11010164
Vargas, T., Moreno-Rubio, J., Herranz, J., Cejas, P., Molina, S., González-Vallinas, M., Mendiola, M., Burgos, E., Aguayo, C., Custodio, A. B., Machado, I., Ramos, D., Gironella, M., Espinosa-Salinas, I., Ramos, R., Martín-Hernández, R., Risueño, A., De Las Rivas, J., Yaya, R., Fernández-Martos, C., Aparicio, J., Maurel, J., Feliu, J. & Reglero, G., . . . Ramírez de Molina, A. (2015). ColoLipidGene: signature of lipid metabolism-related genes to predict prognosis in stage-II colon cancer patients. Oncotarget, 6(9), 7348-7363. https://doi.org/10.18632/oncotarget.3130
Vesely, D. L., Wormser, H. C., & Abramson, H. N. (1984). Biotin analogs activate guanylate cyclase. Mol Cell Biochem, 60(2), 109-114. https://doi.org/10.1007/bf00222480
Wan, P. T., Garnett, M. J., Roe, S. M., Lee, S., Niculescu-Duvaz, D., Good, V. M., Jones, C. M., Marshall, C. J., Springer, C. J., Barford, D., & Marais, R. (2004). Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell, 116(6), 855-867. https://doi.org/10.1016/s0092-8674(04)00215-6
Wang, I. C., Ustiyan, V., Zhang, Y., Cai, Y., Kalin, T. V., & Kalinichenko, V. V. (2014). Foxm1 transcription factor is required for the initiation of lung tumorigenesis by oncogenic Kras(G12D.). Oncogene, 33(46), 5391-5396. https://doi.org/10.1038/onc.2013.475
Wang, L., Yu, Z., Ren, S., Song, J., Wang, J., & Du, G. (2018). Metabolic reprogramming in colon cancer reversed by DHTS through regulating PTEN/AKT/HIF1α mediated signal pathway. Biochim Biophys Acta Gen Subj, 1862(10), 2281-2292. https://doi.org/10.1016/j.bbagen.2018.07.017
Wang, Y., Yun, Y., Wu, B., Wen, L., Wen, M., Yang, H., Zhao, L., Liu, W., Huang, S., Wen, N., & Li, Y. (2016). FOXM1 promotes reprogramming of glucose metabolism in epithelial ovarian cancer cells via activation of GLUT1 and HK2 transcription. Oncotarget, 7(30), 47985-47997. https://doi.org/10.18632/oncotarget.10103
Warburg, O. (1956). On the origin of cancer cells. Science, 123(3191), 309-314. https://doi.org/10.1126/science.123.3191.309
Ward, P. S., & Thompson, C. B. (2012). Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell, 21(3), 297-308. https://doi.org/10.1016/j.ccr.2012.02.014
Watanabe, T. (1996). Morphological and biochemical effects of excessive amounts of biotin on embryonic development in mice. Experientia, 52(2), 149-154. https://doi.org/10.1007/bf01923361
Wong, C. C., Xu, J., Bian, X., Wu, J. L., Kang, W., Qian, Y., Li, W., Chen, H., Gou, H., Liu, D., Yat Luk, S. T., Zhou, Q., Ji, F., Chan, L. S., Shirasawa, S., Sung, J. J., & Yu, J. (2020). In Colorectal Cancer Cells With Mutant KRAS, SLC25A22-Mediated Glutaminolysis Reduces DNA Demethylation to Increase WNT Signaling, Stemness, and Drug Resistance. Gastroenterology, 159(6), 2163-2180.e2166. https://doi.org/10.1053/j.gastro.2020.08.016
Xue, L., Qi, H., Zhang, H., Ding, L., Huang, Q., Zhao, D., Wu, B. J., & Li, X. (2020). Targeting SREBP-2-Regulated Mevalonate Metabolism for Cancer Therapy. Front Oncol, 10, 1510. https://doi.org/10.3389/fonc.2020.01510
Yang, K., Jiang, B., Lu, Y., Shu, Q., Zhai, P., Zhi, Q., & Li, Q. (2019). FOXM1 promotes the growth and metastasis of colorectal cancer via activation of β-catenin signaling pathway. Cancer Manag Res, 11, 3779-3790. https://doi.org/10.2147/cmar.S185438
Yang, X., Zhong, J., Zhang, Q., Feng, L., Zheng, Z., Zhang, J., & Lu, S. (2021). Advances and Insights of APC-Asef Inhibitors for Metastatic Colorectal Cancer Therapy. Front Mol Biosci, 8, 662579. https://doi.org/10.3389/fmolb.2021.662579
Zempleni, J., Wijeratne, S. S., & Hassan, Y. I. (2009). Biotin. Biofactors, 35(1), 36-46. https://doi.org/10.1002/biof.8
Zhang, L., & Shay, J. W. (2017). Multiple Roles of APC and its Therapeutic Implications in Colorectal Cancer. J Natl Cancer Inst, 109(8). https://doi.org/10.1093/jnci/djw332
Zhang, N., Wei, P., Gong, A., Chiu, W. T., Lee, H. T., Colman, H., Huang, H., Xue, J., Liu, M., Wang, Y., Sawaya, R., Xie, K., Yung, W. K., Medema, R. H., He, X., & Huang, S. (2011). FoxM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell, 20(4), 427-442. https://doi.org/10.1016/j.ccr.2011.08.016
Zhang, X., Huang, C., Yuan, Y., Jin, S., Zhao, J., Zhang, W., Liang, H., Chen, X., & Zhang, B. (2022). FOXM1-mediated activation of phospholipase D1 promotes lipid droplet accumulation and reduces ROS to support paclitaxel resistance in metastatic cancer cells. Free Radic Biol Med, 179, 213-228. https://doi.org/10.1016/j.freeradbiomed.2021.11.024
Zhu, G., Pei, L., Xia, H., Tang, Q., & Bi, F. (2021). Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol Cancer, 20(1), 143. https://doi.org/10.1186/s12943-021-01441-4

電子全文 電子全文(網際網路公開日期:20270823)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top