跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/22 23:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:PARTHASARATHI BARIK
研究生(外文):PARTHASARATHI BARIK
論文名稱:評估共伴侶 CHIP蛋白活性對脂肪幹細胞分泌 IGF1 和 IGF1R 穩定性的作用及其對老年高血壓大鼠的心臟保護作用
論文名稱(外文):Evaluating the role of co-chaperone CHIP activity on secretion of IGF1 and IGF1R stability in adipose-derived stem cells (ADSCs) and their cardioprotective effects in aging-hypertensive rats
指導教授:劉哲育劉哲育引用關係
學位類別:博士
校院名稱:中國醫藥大學
系所名稱:生物醫學研究所博士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:121
中文關鍵詞:老化心血管疾病高血压脂肪干细共同伴侣CHIPIGF1R
外文關鍵詞:Agingcardiovascular diseaseshypertensionadipose-derived stem cellsco-chaperone CHIPIGF1R
相關次數:
  • 被引用被引用:0
  • 點閱點閱:50
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
衰老相關的心血管疾病 (CVD) 主要透過幹細胞的下降來調控。背後的機制尚未得到充分研究。然而,一些研究證明胰島素生長因子-1 (IGF1) 的訊息信號透過內分泌途徑對心臟保護作用受到幹細胞治療的調節。在這項研究中,我們揭示了 Hsp70 相互作用蛋白 (CHIP) 的羧基末端在參與脂肪幹細胞 (rADSC) 中生長因子分泌和受體穩定中的作用。我們在 rADSCs 中過度表達共伴侶 CHIP蛋白,以了解體外和體內研究中的結果。重要的是,透過西方墨點法和細胞因子陣列分析,CHIP 過表達的幹細胞觸發了胰島素生長因子-1 和胰島素樣生長因子結合蛋白 3 (IGFBP3) 的分泌。接著,我們揭示了在 rADSCs 中訊息轉導和轉錄激活因子 3 (STAT3) 核定位調控了這種機制。此外,共伴侶 CHIP蛋白還透過其在 rADSC 中的四肽重複 (TPR) 結構域參與受體 IGF1Rβ 的穩定化。 CHIP 過表達的幹細胞處理衰老-SHR 大鼠模型後,能透過增加射出分率EF (%)、短縮分率 FS (%) 和心率來增強心臟功能。結合上述結果表示,CHIP 過表達的幹細胞在老化-高血壓大鼠中能透過增強心臟功能來減輕心臟肥大。
Aging-associated cardiovascular diseases (CVD) are mostly regulated through the decline of stem cell dynamics. The whole mechanism behind is not fully investigated. However, several studies prove insulin-like growth factor-1(IGF1) signaling through endocrine pathways on cardioprotection are regulated by stem cell therapy. In this study, we revealed that the role of carboxyl-terminus of Hsp70 interacting protein (CHIP) co-chaperone in the involvement for growth factor secretion and receptor stabilization in adipose-derived stem cells (rADSCs). Here, we overexpressed co-chaperone CHIP in rADSCs to know the similar consequences in both in vitro and in vivo studies. Importantly, CHIP-overexpressed stem cells triggered the IGF1 and insulin-like growth factor binding protein-3 (IGFBP3) secretion by western blot and cytokine array analysis. Next, we revealed that the signal transducer and activator of transcription 3 (STAT3) nuclear localization regulated this mechanism. Furthermore, this CHIP was also involved in receptor IGF1Rβ stabilization by its tetracopeptide repeat (TPR) domain in rADSCs. After the treatment of CHIP-overexpressed stem cells into aging-SHR rat model enhanced the cardiac function by augmentation of ejection fraction EF (%), fractional shortening FS (%) and heart rate. Taken together, our overall results reveal that CHIP-overexpressed stem cells mitigate cardiac hypertrophy by accelerating cardiac function in aging-hypertension conditions.
Index
PART I
Abbreviation 8
Abstract 9-10
Introduction 11-13
Materials and methods 14-18
Results 19-23
1. Effects of co-chaperone CHIP overexpression on IGF1 secretion in adipose-derived stem cells……………………………………………………………………………………………….19
2. Effect of co-chaperone CHIPOE with IGF1Rβ region colocalization 19
3. Effects of CHIP-TPR domain and IGF1Rβ region interaction 20
4. Effect of transcriptional factor Stat3 knockdown on IGF1 expression in rADSCs 21
5. Effects of CHIPOE stem cells on hypertrophy of H9c2 cells 21
6. Administration of CHIP-overexpressing ADSCs regulates cardiac function in the aging-SHR model 22
7. Effects of CHIPOE ADSCs on cardiac function in aging-SHR model. 23
8. Graphical representation of CHIP chaperone-mediated cardioprotective effects...................25
Discussion 24-26
References 27-29
Figures 30-39
Tables…………………………………………………………………...40-42

Index
PART II
Abbreviation 44
Abstract 45
Introduction 46-47
Materials and methods 48-53
Results 54-58
1. miR-764-5p is downregulated in short-term hypoxia(6h) condition and upregulated in normoxia condition 54
2. Beneficial effects of hypoxia (6h) in comparison to other time periods in rADSCs 54
3. Effects of miR-764-5p in insulin-like growth factor-1(IGF1R) and STUB1 expression 55
4. Effects of HIF1α knockdown in miR-764-5p expression 56
5. Effects of miR-764-5p on apoptosis and ROS generation 57
6. Effects of antagomir-treated MSCs(rADSCs) on cardiac function 57
7. Graphical representation of miR-764-5p effect on IGF1R and CHIP downregulation and upregulation in short-term hypoxia condition 59
Discussion 59-60
References 61-63
Figures 64-76
Tables…………………………………………………………………...77-79

Index
PART III
Abbreviation 81
Abstract 82
Introduction 83-84
Materials and methods 85-88
Results 89-90
1. Effects on ADSCs treated with Radix Angelicae Sinesis (Danggui) 89
2. Quantitative analysis of Danggui by HPLC and LC-MS analysis 89
3. Effects of danggui preconditioned in Ang II challenged H9c2 cells 89
4. Effects of Danggui-treated stem cells on heart function in the late-stage SHR model 90
5. Effects of combination treatment on apoptosis in the heart tissue of late-stage SHR model 90
6. Graphical representation of combinatorial effects of TCM and ADSCs on cardiac function……. 91
Discussion 91-92
References 93-95
Figures 96-101

Index
PART IV
Abbreviation 103
Abstract 104
Introduction 105-106
Materials and methods 107-108
Results 109-111
1. Cytoprotective effects of ligustilide-treated rADSCs isolated exosome 109
2. Effects of exosome on adipogenic lineage and mitochondrial ROS generation in H9c2 cells…………………………………………………………………………………………...109
3. Confirmation of exosome and enhancement of exosomal IGF1R on ligustilide-treated rADSCs……………………………………………………………………………………….110
4. Cardioprotective effects of ligustilide-treated rADSCs in aging-SHR model 110
5.Graphical representation of exosome mediated cardioprotective effects on aging-SHR model. ……………………………………………………………………………………………..112
Discussion 112-113
References 114-115
Figures 116-120
References
1Nadarajah, R., Patel, P. A. & Tayebjee, M. H. Is hypertensive left ventricular hypertrophy a cause of sustained ventricular arrhythmias in humans? J Hum Hypertens 35, 492-498, doi:10.1038/s41371-021-00503-w (2021).
2Fernandes, T., Soci, U. P. & Oliveira, E. M. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants. Braz J Med Biol Res 44, 836-847, doi:10.1590/s0100-879x2011007500112 (2011).
3de Silva, R. et al. Incidence of renal dysfunction over 6 months in patients with chronic heart failure due to left ventricular systolic dysfunction: contributing factors and relationship to prognosis. Eur Heart J 27, 569-581, doi:10.1093/eurheartj/ehi696 (2006).
4Nystoriak, M. A. & Bhatnagar, A. Cardiovascular Effects and Benefits of Exercise. Front Cardiovasc Med 5, 135, doi:10.3389/fcvm.2018.00135 (2018).
5Qian, M., Fang, X. & Wang, X. Autophagy and inflammation. Clin Transl Med 6, 24, doi:10.1186/s40169-017-0154-5 (2017).
6Schirone, L. et al. A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. Oxid Med Cell Longev 2017, 3920195, doi:10.1155/2017/3920195 (2017).
7Gulati, A. et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 309, 896-908, doi:10.1001/jama.2013.1363 (2013).
8Boudina, S. & Abel, E. D. Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord 11, 31-39, doi:10.1007/s11154-010-9131-7 (2010).
9Pan, C. T. et al. Hemodynamic and Non-Hemodynamic Components of Cardiac Remodeling in Primary Aldosteronism. Front Endocrinol (Lausanne) 12, 646097, doi:10.3389/fendo.2021.646097 (2021).
10Mazzolai, L. et al. Increased cardiac angiotensin II levels induce right and left ventricular hypertrophy in normotensive mice. Hypertension 35, 985-991, doi:10.1161/01.hyp.35.4.985 (2000).
11Piratello, A. C. et al. Renin angiotensin system and cardiac hypertrophy after sinoaortic denervation in rats. Clinics (Sao Paulo) 65, 1345-1350, doi:10.1590/s1807-59322010001200019 (2010).
12Labbadia, J. & Morimoto, R. I. The biology of proteostasis in aging and disease. Annu Rev Biochem 84, 435-464, doi:10.1146/annurev-biochem-060614-033955 (2015).
13Min, J. N. et al. CHIP deficiency decreases longevity, with accelerated aging phenotypes accompanied by altered protein quality control. Mol Cell Biol 28, 4018-4025, doi:10.1128/MCB.00296-08 (2008).
14Atella, V. et al. Trends in age-related disease burden and healthcare utilization. Aging Cell 18, e12861, doi:10.1111/acel.12861 (2019).
15Demissie, S. et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell 5, 325-330, doi:10.1111/j.1474-9726.2006.00224.x (2006).
16Santos, C. X., Tanaka, L. Y., Wosniak, J. & Laurindo, F. R. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11, 2409-2427, doi:10.1089/ARS.2009.2625 (2009).
17Zhou, N., Ma, B., Stoll, S., Hays, T. T. & Qiu, H. The valosin-containing protein is a novel repressor of cardiomyocyte hypertrophy induced by pressure overload. Aging Cell 16, 1168-1179, doi:10.1111/acel.12653 (2017).
18Miana, V. V. & Gonzalez, E. A. P. Adipose tissue stem cells in regenerative medicine. Ecancermedicalscience 12, 822, doi:10.3332/ecancer.2018.822 (2018).
19Ntege, E. H., Sunami, H. & Shimizu, Y. Advances in regenerative therapy: A review of the literature and future directions. Regen Ther 14, 136-153, doi:10.1016/j.reth.2020.01.004 (2020).
20Mazini, L., Rochette, L., Amine, M. & Malka, G. Regenerative Capacity of Adipose Derived Stem Cells (ADSCs), Comparison with Mesenchymal Stem Cells (MSCs). Int J Mol Sci 20, doi:10.3390/ijms20102523 (2019).
21Paul, I. & Ghosh, M. K. The E3 ligase CHIP: insights into its structure and regulation. Biomed Res Int 2014, 918183, doi:10.1155/2014/918183 (2014).
22Graham, J. B., Canniff, N. P. & Hebert, D. N. TPR-containing proteins control protein organization and homeostasis for the endoplasmic reticulum. Crit Rev Biochem Mol Biol 54, 103-118, doi:10.1080/10409238.2019.1590305 (2019).
23Baker, H. A. & Bernardini, J. P. It''s not just a phase; ubiquitination in cytosolic protein quality control. Biochem Soc Trans 49, 365-377, doi:10.1042/BST20200694 (2021).
24Gao, Y. et al. Heat shock protein 70 together with its co-chaperone CHIP inhibits TNF-alpha induced apoptosis by promoting proteasomal degradation of apoptosis signal-regulating kinase1. Apoptosis 15, 822-833, doi:10.1007/s10495-010-0495-7 (2010).
25Chen, T. S. et al. Antioxidant Sirt1/Akt axis expression in resveratrol pretreated adipose-derived stem cells increases regenerative capability in a rat model with cardiomyopathy induced by diabetes mellitus. J Cell Physiol 236, 4290-4302, doi:10.1002/jcp.30057 (2021).
26Liu, S. P. et al. Tetramethylpyrazine reverses high-glucose induced hypoxic effects by negatively regulating HIF-1alpha induced BNIP3 expression to ameliorate H9c2 cardiomyoblast apoptosis. Nutr Metab (Lond) 17, 12, doi:10.1186/s12986-020-0432-x (2020).
27Huang, C. Y. et al. Doxorubicin attenuates CHIP-guarded HSF1 nuclear translocation and protein stability to trigger IGF-IIR-dependent cardiomyocyte death. Cell Death Dis 7, e2455, doi:10.1038/cddis.2016.356 (2016).
28Hsu, H. H. et al. FOXC1 Regulation of miR-31-5p Confers Oxaliplatin Resistance by Targeting LATS2 in Colorectal Cancer. Cancers (Basel) 11, doi:10.3390/cancers11101576 (2019).
29Kannathasan, T. et al. Chemoresistance-Associated Silencing of miR-4454 Promotes Colorectal Cancer Aggression through the GNL3L and NF-kappaB Pathway. Cancers (Basel) 12, doi:10.3390/cancers12051231 (2020).
30Noormohammadi, A. et al. Mechanisms of protein homeostasis (proteostasis) maintain stem cell identity in mammalian pluripotent stem cells. Cell Mol Life Sci 75, 275-290, doi:10.1007/s00018-017-2602-1 (2018).
31Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211-225, doi:10.1016/s0092-8674(00)00114-8 (2000).
32Guzeloglu-Kayisli, O., Kayisli, U. A. & Taylor, H. S. The role of growth factors and cytokines during implantation: endocrine and paracrine interactions. Semin Reprod Med 27, 62-79, doi:10.1055/s-0028-1108011 (2009).
33Kopp, Y. et al. CHIP as a membrane-shuttling proteostasis sensor. Elife 6, doi:10.7554/eLife.29388 (2017).
34Huang, Y. T. et al. ROS- and HIF1alpha-dependent IGFBP3 upregulation blocks IGF1 survival signaling and thereby mediates high-glucose-induced cardiomyocyte apoptosis. J Cell Physiol 234, 13557-13570, doi:10.1002/jcp.28034 (2019).
35Edkins, A. L. CHIP: a co-chaperone for degradation by the proteasome. Subcell Biochem 78, 219-242, doi:10.1007/978-3-319-11731-7_11 (2015).
36Narayan, V. et al. Protein-Protein Interactions Modulate the Docking-Dependent E3-Ubiquitin Ligase Activity of Carboxy-Terminus of Hsc70-Interacting Protein (CHIP). Mol Cell Proteomics 14, 2973-2987, doi:10.1074/mcp.M115.051169 (2015).
37Barik, P. et al. Cardioprotective effects of transplanted adipose-derived stem cells under Ang II stress with Danggui administration augments cardiac function through upregulation of insulin-like growth factor 1 receptor in late-stage hypertension rats. Environ Toxicol 36, 1466-1475, doi:10.1002/tox.23145 (2021).
38Gubert, F. et al. Mesenchymal Stem Cells Therapies on Fibrotic Heart Diseases. Int J Mol Sci 22, doi:10.3390/ijms22147447 (2021).
39Poynter, J. A. et al. Intracoronary mesenchymal stem cells promote postischemic myocardial functional recovery, decrease inflammation, and reduce apoptosis via a signal transducer and activator of transcription 3 mechanism. J Am Coll Surg 213, 253-260, doi:10.1016/j.jamcollsurg.2011.04.005 (2011).
40Andraos, R. et al. Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent. Cancer Discov 2, 512-523, doi:10.1158/2159-8290.CD-11-0324 (2012).


References
1Jokinen, E. Obesity and cardiovascular disease. Minerva Pediatr 67, 25-32 (2015).
2Liu, Y., Chen, X. & Zhang, H. G. Editorial: Cardiac Hypertrophy: From Compensation to Decompensation and Pharmacological Interventions. Front Pharmacol 12, 665936, doi:10.3389/fphar.2021.665936 (2021).
3Tosato, M., Zamboni, V., Ferrini, A. & Cesari, M. The aging process and potential interventions to extend life expectancy. Clin Interv Aging 2, 401-412 (2007).
4Shields, H. J., Traa, A. & Van Raamsdonk, J. M. Beneficial and Detrimental Effects of Reactive Oxygen Species on Lifespan: A Comprehensive Review of Comparative and Experimental Studies. Front Cell Dev Biol 9, 628157, doi:10.3389/fcell.2021.628157 (2021).
5Franceschi, C. et al. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front Med (Lausanne) 5, 61, doi:10.3389/fmed.2018.00061 (2018).
6Park, S. & Jung, S. C. New Sources, Differentiation, and Therapeutic Uses of Mesenchymal Stem Cells. Int J Mol Sci 22, doi:10.3390/ijms22105288 (2021).
7Secunda, R. et al. Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study. Cytotechnology 67, 793-807, doi:10.1007/s10616-014-9718-z (2015).
8Chacko, S. M. et al. Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. Am J Physiol Cell Physiol 299, C1562-1570, doi:10.1152/ajpcell.00221.2010 (2010).
9Tsipis, C. P., Sun, X., Xu, K. & Lamanna, J. C. Hypoxia-induced angiogenesis and capillary density determination. Methods Mol Biol 1135, 69-80, doi:10.1007/978-1-4939-0320-7_6 (2014).
10Critchley, S. E., Eswaramoorthy, R. & Kelly, D. J. Low-oxygen conditions promote synergistic increases in chondrogenesis during co-culture of human osteoarthritic stem cells and chondrocytes. J Tissue Eng Regen Med 12, 1074-1084, doi:10.1002/term.2608 (2018).
11Baranov, P. Y., Tucker, B. A. & Young, M. J. Low-oxygen culture conditions extend the multipotent properties of human retinal progenitor cells. Tissue Eng Part A 20, 1465-1475, doi:10.1089/ten.TEA.2013.0361 (2014).
12Frazier, T. P., McLachlan, J. B., Gimble, J. M., Tucker, H. A. & Rowan, B. G. Human adipose-derived stromal/stem cells induce functional CD4+CD25+FoxP3+CD127- regulatory T cells under low oxygen culture conditions. Stem Cells Dev 23, 968-977, doi:10.1089/scd.2013.0152 (2014).
13Fink, T. et al. Induction of adipocyte-like phenotype in human mesenchymal stem cells by hypoxia. Stem Cells 22, 1346-1355, doi:10.1634/stemcells.2004-0038 (2004).
14Mohyeldin, A., Garzon-Muvdi, T. & Quinones-Hinojosa, A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7, 150-161, doi:10.1016/j.stem.2010.07.007 (2010).
15Pattappa, G. et al. Continuous and uninterrupted oxygen tension influences the colony formation and oxidative metabolism of human mesenchymal stem cells. Tissue Eng Part C Methods 19, 68-79, doi:10.1089/ten.TEC.2011.0734 (2013).
16Dengler, V. L., Galbraith, M. & Espinosa, J. M. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 49, 1-15, doi:10.3109/10409238.2013.838205 (2014).
17Liu, X. et al. Regulation of microRNAs by epigenetics and their interplay involved in cancer. J Exp Clin Cancer Res 32, 96, doi:10.1186/1756-9966-32-96 (2013).
18O''Brien, J., Hayder, H., Zayed, Y. & Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne) 9, 402, doi:10.3389/fendo.2018.00402 (2018).
19Guo, J. et al. miR-764-5p promotes osteoblast differentiation through inhibition of CHIP/STUB1 expression. J Bone Miner Res 27, 1607-1618, doi:10.1002/jbmr.1597 (2012).
20Kalmar, B. & Greensmith, L. Cellular Chaperones As Therapeutic Targets in ALS to Restore Protein Homeostasis and Improve Cellular Function. Front Mol Neurosci 10, 251, doi:10.3389/fnmol.2017.00251 (2017).
21Chen, P. C., Kuo, Y. C., Chuong, C. M. & Huang, Y. H. Niche Modulation of IGF-1R Signaling: Its Role in Stem Cell Pluripotency, Cancer Reprogramming, and Therapeutic Applications. Front Cell Dev Biol 8, 625943, doi:10.3389/fcell.2020.625943 (2020).
22Teng, C. F., Jeng, L. B. & Shyu, W. C. Role of Insulin-like Growth Factor 1 Receptor Signaling in Stem Cell Stemness and Therapeutic Efficacy. Cell Transplant 27, 1313-1319, doi:10.1177/0963689718779777 (2018).
23Chen, T. S. et al. Antioxidant Sirt1/Akt axis expression in resveratrol pretreated adipose-derived stem cells increases regenerative capability in a rat model with cardiomyopathy induced by diabetes mellitus. J Cell Physiol 236, 4290-4302, doi:10.1002/jcp.30057 (2021).
24Hsu, H. H. et al. FOXC1 Regulation of miR-31-5p Confers Oxaliplatin Resistance by Targeting LATS2 in Colorectal Cancer. Cancers (Basel) 11, doi:10.3390/cancers11101576 (2019).
25Daddam, J. R., Dowlathabad, M. R., Panthangi, S. & Jasti, P. Molecular docking and P-glycoprotein inhibitory activity of flavonoids. Interdiscip Sci 6, 167-175, doi:10.1007/s12539-012-0197-7 (2014).
26Liu, S. P. et al. Tetramethylpyrazine reverses high-glucose induced hypoxic effects by negatively regulating HIF-1alpha induced BNIP3 expression to ameliorate H9c2 cardiomyoblast apoptosis. Nutr Metab (Lond) 17, 12, doi:10.1186/s12986-020-0432-x (2020).
27Fotia, C., Massa, A., Boriani, F., Baldini, N. & Granchi, D. Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells. Cytotechnology 67, 1073-1084, doi:10.1007/s10616-014-9731-2 (2015).
28Seo, Y., Shin, T. H. & Kim, H. S. Current Strategies to Enhance Adipose Stem Cell Function: An Update. Int J Mol Sci 20, doi:10.3390/ijms20153827 (2019).
29Mazini, L., Rochette, L., Amine, M. & Malka, G. Regenerative Capacity of Adipose Derived Stem Cells (ADSCs), Comparison with Mesenchymal Stem Cells (MSCs). Int J Mol Sci 20, doi:10.3390/ijms20102523 (2019).
30Vincent, A. M. & Feldman, E. L. Control of cell survival by IGF signaling pathways. Growth Horm IGF Res 12, 193-197, doi:10.1016/s1096-6374(02)00017-5 (2002).
31Huang, C. Y. et al. Doxorubicin attenuates CHIP-guarded HSF1 nuclear translocation and protein stability to trigger IGF-IIR-dependent cardiomyocyte death. Cell Death Dis 7, e2455, doi:10.1038/cddis.2016.356 (2016).
32Tawo, R. et al. The Ubiquitin Ligase CHIP Integrates Proteostasis and Aging by Regulation of Insulin Receptor Turnover. Cell 169, 470-482 e413, doi:10.1016/j.cell.2017.04.003 (2017).
33Razban, V. et al. HIF-1alpha Overexpression Induces Angiogenesis in Mesenchymal Stem Cells. Biores Open Access 1, 174-183, doi:10.1089/biores.2012.9905 (2012).
34Rodrigues, M., Griffith, L. G. & Wells, A. Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem Cell Res Ther 1, 32, doi:10.1186/scrt32 (2010).
35Edkins, A. L. CHIP: a co-chaperone for degradation by the proteasome. Subcell Biochem 78, 219-242, doi:10.1007/978-3-319-11731-7_11 (2015).
36Zhang, S., Hu, Z. W., Mao, C. Y., Shi, C. H. & Xu, Y. M. CHIP as a therapeutic target for neurological diseases. Cell Death Dis 11, 727, doi:10.1038/s41419-020-02953-5 (2020).
37Martins-Marques, T., Ribeiro-Rodrigues, T., Pereira, P., Codogno, P. & Girao, H. Autophagy and ubiquitination in cardiovascular diseases. DNA Cell Biol 34, 243-251, doi:10.1089/dna.2014.2765 (2015).
38Hubbi, M. E. & Semenza, G. L. Regulation of cell proliferation by hypoxia-inducible factors. Am J Physiol Cell Physiol 309, C775-782, doi:10.1152/ajpcell.00279.2015 (2015).
39Antebi, B. et al. Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells. Stem Cell Res Ther 9, 265, doi:10.1186/s13287-018-1007-x (2018).
40Zhang, T. et al. Physiological oxygen tension modulates soluble growth factor profile after crosstalk between chondrocytes and osteoblasts. Cell Prolif 49, 122-133, doi:10.1111/cpr.12239 (2016).
41Chen, T. S. et al. Green tea epigallocatechin gallate enhances cardiac function restoration through survival signaling expression in diabetes mellitus rats with autologous adipose tissue-derived stem cells. J Appl Physiol (1985) 123, 1081-1091, doi:10.1152/japplphysiol.00471.2016 (2017).

References

1Huang, C. Y. et al. Inhibition of HSF2 SUMOylation via MEL18 upregulates IGF-IIR and leads to hypertension-induced cardiac hypertrophy. Int J Cardiol 257, 283-290, doi:10.1016/j.ijcard.2017.10.102 (2018).
2Huang, C. Y. et al. p53-mediated miR-18 repression activates HSF2 for IGF-IIR-dependent myocyte hypertrophy in hypertension-induced heart failure. Cell Death Dis 8, e2990, doi:10.1038/cddis.2017.320 (2017).
3Goldspink, D. F., Burniston, J. G. & Tan, L. B. Cardiomyocyte death and the ageing and failing heart. Exp Physiol 88, 447-458, doi:10.1113/eph8802549 (2003).
4Consegal, M., Valls-Lacalle, L. & Rodriguez-Sinovas, A. Angiotensin II-induced cardiomyocyte hypertrophy: A complex response dependent on intertwined pathways. Rev Port Cardiol (Engl Ed) 40, 201-203, doi:10.1016/j.repc.2020.12.009 (2021).
5Fontana, L., Vinciguerra, M. & Longo, V. D. Growth factors, nutrient signaling, and cardiovascular aging. Circ Res 110, 1139-1150, doi:10.1161/CIRCRESAHA.111.246470 (2012).
6Shahani, P. & Datta, I. Mesenchymal stromal cell therapy for coronavirus disease 2019: which? when? and how much? Cytotherapy, doi:10.1016/j.jcyt.2021.04.004 (2021).
7Paul, D., Samuel, S. M. & Maulik, N. Mesenchymal stem cell: present challenges and prospective cellular cardiomyoplasty approaches for myocardial regeneration. Antioxid Redox Signal 11, 1841-1855, doi:10.1089/ARS.2009.2455 (2009).
8Eigenschink, M., Dearing, L., Dablander, T. E., Maier, J. & Sitte, H. H. A critical examination of the main premises of Traditional Chinese Medicine. Wien Klin Wochenschr 132, 260-273, doi:10.1007/s00508-020-01625-w (2020).
9Du, J. R. et al. Ligustilide reduces phenylephrine induced-aortic tension in vitro but has no effect on systolic pressure in spontaneously hypertensive rats. Am J Chin Med 35, 487-496, doi:10.1142/S0192415X07005004 (2007).
10Yi, L., Liang, Y., Wu, H. & Yuan, D. The analysis of Radix Angelicae Sinensis (Danggui). J Chromatogr A 1216, 1991-2001, doi:10.1016/j.chroma.2008.07.033 (2009).
11Parekkadan, B. & Milwid, J. M. Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 12, 87-117, doi:10.1146/annurev-bioeng-070909-105309 (2010).
12Huang, C. Y. et al. Protective effect of Danggui (Radix Angelicae Sinensis) on angiotensin II-induced apoptosis in H9c2 cardiomyoblast cells. BMC Complement Altern Med 14, 358, doi:10.1186/1472-6882-14-358 (2014).
13Chen, T. S. et al. Antioxidant Sirt1/Akt axis expression in resveratrol pretreated adipose-derived stem cells increases regenerative capability in a rat model with cardiomyopathy induced by diabetes mellitus. J Cell Physiol 236, 4290-4302, doi:10.1002/jcp.30057 (2021).
14Liu, S. P. et al. Tetramethylpyrazine reverses high-glucose induced hypoxic effects by negatively regulating HIF-1alpha induced BNIP3 expression to ameliorate H9c2 cardiomyoblast apoptosis. Nutr Metab (Lond) 17, 12, doi:10.1186/s12986-020-0432-x (2020).
15Lay, I. S. et al. Exercise training restores IGFIR survival signaling in d-galactose induced-aging rats to suppress cardiac apoptosis. J Adv Res 28, 35-41, doi:10.1016/j.jare.2020.06.015 (2021).
16Zhang, Y. et al. Radix Astragali and Radix Angelicae Sinensis in the Treatment of Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-analysis. Front Pharmacol 11, 415, doi:10.3389/fphar.2020.00415 (2020).
17Feng, C. C. et al. Tumorous imaginal disc 1 (TID1) inhibits isoproterenol-induced cardiac hypertrophy and apoptosis by regulating c-terminus of hsc70-interacting protein (CHIP) mediated degradation of Galphas. Int J Med Sci 15, 1537-1546, doi:10.7150/ijms.24296 (2018).
18Huang, Y. et al. Progress in Traditional Chinese Medicine for the Treatment of Migraine. Am J Chin Med 48, 1731-1748, doi:10.1142/S0192415X2050086X (2020).
19Zablocki, D. & Sadoshima, J. Angiotensin II and oxidative stress in the failing heart. Antioxid Redox Signal 19, 1095-1109, doi:10.1089/ars.2012.4588 (2013).
20Cencioni, C., Capogrossi, M. C. & Napolitano, M. The SDF-1/CXCR4 axis in stem cell preconditioning. Cardiovasc Res 94, 400-407, doi:10.1093/cvr/cvs132 (2012).
21Reeg, S. & Grune, T. Protein Oxidation in Aging: Does It Play a Role in Aging Progression? Antioxid Redox Signal 23, 239-255, doi:10.1089/ars.2014.6062 (2015).
22Padilla Colon, C. J. et al. Muscle and Bone Mass Loss in the Elderly Population: Advances in diagnosis and treatment. J Biomed (Syd) 3, 40-49, doi:10.7150/jbm.23390 (2018).
23Fajemiroye, J. O. et al. Aging-Induced Biological Changes and Cardiovascular Diseases. Biomed Res Int 2018, 7156435, doi:10.1155/2018/7156435 (2018).
24Kamat, A. et al. Reduced expression of epidermal growth factor receptors in rat liver during aging. J Gerontol A Biol Sci Med Sci 63, 683-692, doi:10.1093/gerona/63.7.683 (2008).
25Strait, J. B. & Lakatta, E. G. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin 8, 143-164, doi:10.1016/j.hfc.2011.08.011 (2012).
26Yeo, G. E. C., Ng, M. H., Nordin, F. B. & Law, J. X. Potential of Mesenchymal Stem Cells in the Rejuvenation of the Aging Immune System. Int J Mol Sci 22, doi:10.3390/ijms22115749 (2021).
27Wu, Y. C. & Hsieh, C. L. Pharmacological effects of Radix Angelica Sinensis (Danggui) on cerebral infarction. Chin Med 6, 32, doi:10.1186/1749-8546-6-32 (2011).
28Pang, H. Q. et al. [Comparatively evaluating effect contribution of promoting blood circulation of herb pairs containing Angelicae Sinensis Radix on Xin-Sheng-Hua granule by withdrawal analysis]. Zhongguo Zhong Yao Za Zhi 41, 4006-4014, doi:10.4268/cjcmm20162120 (2016).
29Yang, M. et al. An herbal decoction of Radix astragali and Radix angelicae sinensis promotes hematopoiesis and thrombopoiesis. J Ethnopharmacol 124, 87-97, doi:10.1016/j.jep.2009.04.007 (2009).
30Zhang, L. et al. Z-ligustilide extracted from Radix Angelica Sinensis decreased platelet aggregation induced by ADP ex vivo and arterio-venous shunt thrombosis in vivo in rats. Yakugaku Zasshi 129, 855-859, doi:10.1248/yakushi.129.855 (2009).
31Yang, B., Ma, G. & Liu, Y. Z-Ligustilide Ameliorates Diabetic Rat Retinal Dysfunction Through Anti-Apoptosis and an Antioxidation Pathway. Med Sci Monit 26, e925087, doi:10.12659/MSM.925087 (2020).
32Pan, Y. et al. Synergistic Effect of Ferulic Acid and Z-Ligustilide, Major Components of A. sinensis, on Regulating Cold-Sensing Protein TRPM8 and TPRA1 In Vitro. Evid Based Complement Alternat Med 2016, 3160247, doi:10.1155/2016/3160247 (2016).
33Zhu, D. & Cheng, K. Cardiac Cell Therapy for Heart Repair: Should the Cells Be Left Out? Cells 10, doi:10.3390/cells10030641 (2021).

References

1Committee Opinion No. 650 Summary: Physical Activity and Exercise During Pregnancy and the Postpartum Period. Obstet Gynecol 126, 1326-1327, doi:10.1097/AOG.0000000000001209 (2015).
2Maron, B. J., Rowin, E. J. & Maron, M. S. Is Regression of Left Ventricular Hypertrophy Really a Good Thing for Patients With Hypertrophic Cardiomyopathy?: The Emerging Mavacamten Story. Am J Cardiol 147, 145-146, doi:10.1016/j.amjcard.2021.01.034 (2021).
3Kurrelmeyer, K. et al. Cardiac remodeling as a consequence and cause of progressive heart failure. Clin Cardiol 21, I14-19, doi:10.1002/clc.4960211304 (1998).
4Taylor, D. A. Hypertensive Crisis: A Review of Pathophysiology and Treatment. Crit Care Nurs Clin North Am 27, 439-447, doi:10.1016/j.cnc.2015.08.003 (2015).
5MacNee, W., Rabinovich, R. A. & Choudhury, G. Ageing and the border between health and disease. Eur Respir J 44, 1332-1352, doi:10.1183/09031936.00134014 (2014).
6Sharma, S. & Aldred, M. A. DNA Damage and Repair in Pulmonary Arterial Hypertension. Genes (Basel) 11, doi:10.3390/genes11101224 (2020).
7Cai, Y., Li, J., Jia, C., He, Y. & Deng, C. Therapeutic applications of adipose cell-free derivatives: a review. Stem Cell Res Ther 11, 312, doi:10.1186/s13287-020-01831-3 (2020).
8Mazini, L., Ezzoubi, M. & Malka, G. Overview of current adipose-derived stem cell (ADSCs) processing involved in therapeutic advancements: flow chart and regulation updates before and after COVID-19. Stem Cell Res Ther 12, 1, doi:10.1186/s13287-020-02006-w (2021).
9Simpson, R. J., Lim, J. W., Moritz, R. L. & Mathivanan, S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 6, 267-283, doi:10.1586/epr.09.17 (2009).
10Lai, R. C. & Lim, S. K. Membrane lipids define small extracellular vesicle subtypes secreted by mesenchymal stromal cells. J Lipid Res 60, 318-322, doi:10.1194/jlr.R087411 (2019).
11Turturici, G., Tinnirello, R., Sconzo, G. & Geraci, F. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Physiol 306, C621-633, doi:10.1152/ajpcell.00228.2013 (2014).
12Fu, S. et al. Extracellular vesicles in cardiovascular diseases. Cell Death Discov 6, 68, doi:10.1038/s41420-020-00305-y (2020).
13Tsai, B. C.-K. et al. Functional potato bioactive peptide intensifies Nrf2-dependent antioxidant defense against renal damage in hypertensive rats. Food Research International 129, 108862 (2020).
14Jasemi, S. V., Khazaei, H., Aneva, I. Y., Farzaei, M. H. & Echeverria, J. Medicinal Plants and Phytochemicals for the Treatment of Pulmonary Hypertension. Front Pharmacol 11, 145, doi:10.3389/fphar.2020.00145 (2020).
15Josko, J. & Mazurek, M. Transcription factors having impact on vascular endothelial growth factor (VEGF) gene expression in angiogenesis. Med Sci Monit 10, RA89-98 (2004).
16He, M., Crow, J., Roth, M., Zeng, Y. & Godwin, A. K. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip 14, 3773-3780, doi:10.1039/c4lc00662c (2014).
17Joyner, M. J. & Casey, D. P. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev 95, 549-601, doi:10.1152/physrev.00035.2013 (2015).
18Kaushik, S. & Cuervo, A. M. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19, 365-381, doi:10.1038/s41580-018-0001-6 (2018).
19Yanez-Mo, M. et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4, 27066, doi:10.3402/jev.v4.27066 (2015).
20Maas, S. L. N., Breakefield, X. O. & Weaver, A. M. Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends Cell Biol 27, 172-188, doi:10.1016/j.tcb.2016.11.003 (2017).
21Liu, Y. & Holmes, C. Tissue Regeneration Capacity of Extracellular Vesicles Isolated From Bone Marrow-Derived and Adipose-Derived Mesenchymal Stromal/Stem Cells. Front Cell Dev Biol 9, 648098, doi:10.3389/fcell.2021.648098 (2021).
22Ozturk, S., Elcin, A. E., Koca, A. & Elcin, Y. M. Therapeutic Applications of Stem Cells and Extracellular Vesicles in Emergency Care: Futuristic Perspectives. Stem Cell Rev Rep 17, 390-410, doi:10.1007/s12015-020-10029-2 (2021).
23Patil, M. et al. The Art of Intercellular Wireless Communications: Exosomes in Heart Disease and Therapy. Front Cell Dev Biol 7, 315, doi:10.3389/fcell.2019.00315 (2019).
24Glick, D., Barth, S. & Macleod, K. F. Autophagy: cellular and molecular mechanisms. J Pathol 221, 3-12, doi:10.1002/path.2697 (2010).
25Das, G., Shravage, B. V. & Baehrecke, E. H. Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb Perspect Biol 4, doi:10.1101/cshperspect.a008813 (2012).
26Conn, C. S. & Qian, S. B. mTOR signaling in protein homeostasis: less is more? Cell Cycle 10, 1940-1947, doi:10.4161/cc.10.12.15858 (2011).
27Saez, I. & Vilchez, D. The Mechanistic Links Between Proteasome Activity, Aging and Age-related Diseases. Curr Genomics 15, 38-51, doi:10.2174/138920291501140306113344 (2014).
28Papadopoli, D. et al. mTOR as a central regulator of lifespan and aging. F1000Res 8, doi:10.12688/f1000research.17196.1 (2019).
29Zablocki, D. & Sadoshima, J. Angiotensin II and oxidative stress in the failing heart. Antioxid Redox Signal 19, 1095-1109, doi:10.1089/ars.2012.4588 (2013).
30Zhou, Y. et al. Combined topical and systemic administration with human adipose-derived mesenchymal stem cells (hADSC) and hADSC-derived exosomes markedly promoted cutaneous wound healing and regeneration. Stem Cell Res Ther 12, 257, doi:10.1186/s13287-021-02287-9 (2021).
31Liu, Y., Wang, C., Wei, M., Yang, G. & Yuan, L. Multifaceted Roles of Adipose Tissue-Derived Exosomes in Physiological and Pathological Conditions. Front Physiol 12, 669429, doi:10.3389/fphys.2021.669429 (2021).
32Huang, Y. et al. Nrf2/HO-1 Axis Regulates the Angiogenesis of Gastric Cancer via Targeting VEGF. Cancer Manag Res 13, 3155-3169, doi:10.2147/CMAR.S292461 (2021).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊