跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/09/27 07:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張家綺
研究生(外文):Jia-Ci Jhang
論文名稱:以靜電紡絲及編織技術製備聚乙烯醇/奈米碳管神經導管之製備技術及其應用評估
論文名稱(外文):Using Electrospinning and Braiding Techniques to Fabricate Polyvinyl(alcohol)/ Carbon Nanotube Nerve Conduit
指導教授:陳悅生
指導教授(外文):Yueh-Sheng Chen
學位類別:博士
校院名稱:中國醫藥大學
系所名稱:生物醫學研究所博士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:110
中文關鍵詞:聚乙烯醇奈米碳管靜電紡絲中空編織物神經導管
外文關鍵詞:polyvinyl alcohol (PLA)carbon nanotubeselectrostatic spinninghollow braidsnerve conduits
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文藉由編織技術及靜電紡絲技術製備出具有導電性及降解性之聚乙烯醇/奈米碳管神經導管。實驗中以紗線加撚製備出不同撚數之聚乙烯醇紗線,並透過編織技術製備出中空編織物,再經由綠槴子素對其進行交聯,最後以其機械特性、表面觀察及生物特性進行評估,在神經導管結構中作為主要支撐結構及機械強力提供。以靜電紡絲技術製備可導電之聚乙烯醇/奈米碳管靜電紡絲薄膜,並對其進行纖維直徑、導電性、親水性及生物特性等測試評估。由測試結果中可以得知,3 truns/ intch的聚乙烯醇中空編織物及奈米碳管含量為0.25 wt%之聚乙烯醇/奈米碳管有較佳的測試結果,並將其在進行複合,製備出聚乙烯醇/奈米碳管神經導管,並針對其機械特性、導電性及生物特性進行評估。由研究成果中可以得知聚乙烯醇/奈米碳管神經導管拉伸強力為21.9 N,且內層聚乙烯醇/奈米碳管靜電紡絲薄膜具有較低電阻值為9.2 ohm及水接觸角為74.2°,經由降解測試及體外細胞測試中可以得知,神經導管在五周內有穩定的降解速率約為0.85-0.9;與細胞共培養三天後細胞存活數量為對照組之1.03倍,即聚乙烯醇/奈米碳管神經導管之結構及設計符合神經導管之應用。
In this study, braiding technique and electrostatic spinning are employed to produce polyvinyl alcohol (PLA)/carbon nanotubes (CNT) nerve conduits. For the starter, PLA yarns are twisted at different twist counts, after which the PLA twisted yarns are braided into hollow tubular braids. Next, genipin is added to crosslink with PVA braids. The final materials are tested for mechanical properties, surface observation, and physical properties, thereby providing the nerve conduits with a support structure and better mechanical properties. In addition, electrostatic spinning is conducted to form conductive PLA/CNT electrospinning membranes that are then evaluated for the fiber diameter, electrical conductivity, hydrophilicity, and biological attributes. The test results indicate that the optimal PLA tubes are made with a twist count of 3 turns/inch while the optimal membranes are made of 0.25 wt% of CNT. Hence, the two parameters are combined to produce PLA/CNT nerve conduits, and the mechanical properties, conductivity, and biological attributes are evaluated. PLA/CNT nerve conduits exhibit tensile strength of 21.9 N, meanwhile, the internal PLA/CNT electrospinning membranes demonstrate a lower electrical resistivity of 9.2 ohm and a water angle being 74.2°. According to the biodegradation test and in vitro measurement, PLA/CNT nerve conduits have a stabilized degradation rate being15-20 % as well as 1.03 times greater cell survival counts greater than the control group. With the proposed structure and design, PLA/CNT nerve conduits are proved to be a good candidate for the use of nerve conduits.
目錄
第一章 前言 1
1.1 周圍神經 1
1.2 周圍神經的損傷 2
1.3 神經再生及修復 4
1.4 組織工程 7
1.5 神經導管 10
1.6 文獻回顧 14
1.7 相關專利 18
1.8 研究目的 25
第二章 製程設計 27
2.1 神經導管材料 27
2.2 神經導管製程 32
2.2.1中空編織技術 32
2.2.2靜電紡絲 35
2.3交聯機制 39
2.4神經導管特性評估 40
第三章 實驗 46
3.1實驗材料 46
3.2實驗儀器 47
3.3實驗流程說明 49
3.4測試項目 56
3.5實驗參數設計 61
第四章 結果與討論 63
4.1雙股聚乙烯醇撚紗之表面觀察及拉伸強力測試。 63
4.2 聚乙烯醇中空編織物在交聯前後之表面觀察 67
4.3 聚乙烯醇中空編織物之傅立葉變換紅外光譜(FTIR) 70
4.4 聚乙烯醇中空編織物之機械強度 72
4.5 PVA中空編織物之降解率 74
4.6 聚乙烯醇/奈米碳管靜電紡絲溶液之黏度及電導度 76
4.7 聚乙烯醇/奈米碳管靜電紡絲薄膜之表面觀察及纖維尺寸分析 78
4.8 PVA/CNT 靜電紡絲薄膜之傅立葉變換紅外光譜(FTIR) 81
4.9 PVA/CNT 靜電紡絲薄膜之水接觸角 82
4.10聚乙烯醇/奈米碳管靜電紡絲薄膜之導電性 84
4.11 聚乙烯醇/奈米碳管靜電紡絲薄膜之降解率影響 86
4.12 聚乙烯醇/奈米碳管靜電紡絲薄膜之細胞相容性 88
4.13 聚乙烯醇/奈米碳管神經導管之拉伸強度 91
4.14 聚乙烯醇/奈米碳管神經導管之表面電阻 93
4.15 聚乙烯醇/奈米碳管神經導管之降解測試 94
4.16 聚乙烯醇/奈米碳管神經導管之細胞存活率 95
第五章 結論 97
參考文獻 98
1.Conn, P.M., Conn''s translational neuroscience. 2017.
2.Aminoff, M.J. and R.B. Daroff, Encyclopedia of the neurological sciences. 2014.
3.Ohana, M., et al., Current and future imaging of the peripheral nervous system. Diagnostic and Interventional Imaging, 2014. 95(1): p. 17-26.
4.Murray, B., Nerve Injury, in Encyclopedia of the Neurological Sciences (Second Edition), M.J. Aminoff and R.B. Daroff, Editors. 2014, Academic Press: Oxford. p. 333-335.
5.Tuzlakoğlu, K. and R.L. Reis, Biodegradable Polymers for Guided Nerve Regeneration. 2004. p. 579-553.
6.Brown, S.C. and C.A. Sewry, Chapter 2 - Basics of Skeletal Muscle Function and Normal Physiology, in Cardioskeletal Myopathies in Children and Young Adults, J.L. Jefferies, et al., Editors. 2017, Academic Press: Boston. p. 21-38.
7.Olney, R.K., Mononeuropathy Multiplex, in Encyclopedia of the Neurological Sciences, M.J. Aminoff and R.B. Daroff, Editors. 2003, Academic Press: New York. p. 201.
8.Davis, D. and P. Mendoza, Chapter 50 - Rehabilitation of Patients with Peripheral Nerve Injuries, in Nerves and Nerve Injuries, R.S. Tubbs, et al., Editors. 2015, Academic Press: San Diego. p. 783-804.
9.Lederman, R.J., Chapter 42 Other mononeuropathies, in Handbook of Clinical Neurophysiology, J. Kimura, Editor. 2006, Elsevier. p. 893-924.
10.Breiner, A., Denervation, in Encyclopedia of the Neurological Sciences (Second Edition), M.J. Aminoff and R.B. Daroff, Editors. 2014, Academic Press: Oxford. p. 971-972.
11.Agüera, E., et al., Denervated muscle extract promotes recovery of muscle atrophy through activation of satellite cells. An experimental study. Journal of sport and health science, 2019. 8(1): p. 23-31.
12.Isaacs, J., Major Peripheral Nerve Injuries. Hand Clinics, 2013. 29(3): p. 371-382.
13.Savastano, L.E., et al., Sciatic nerve injury: A simple and subtle model for investigating many aspects of nervous system damage and recovery. Journal of Neuroscience Methods, 2014. 227: p. 166-180.
14.Gordon, T., Chapter 61 - The Biology, Limits, and Promotion of Peripheral Nerve Regeneration in Rats and Humans, in Nerves and Nerve Injuries, R.S. Tubbs, et al., Editors. 2015, Academic Press: San Diego. p. 993-1019.
15.Campbell, W.W., Evaluation and management of peripheral nerve injury. Clinical Neurophysiology, 2008. 119(9): p. 1951-1965.
16.Goubier, J.-N. and F. Teboul, Chapter 38 - Grading of Nerve Injuries, in Nerves and Nerve Injuries, R.S. Tubbs, et al., Editors. 2015, Academic Press: San Diego. p. 603-610.
17.Ellis, J.A., H. Goldstein, and C.J. Winfree, Nerve Repair, in Encyclopedia of the Neurological Sciences (Second Edition), M.J. Aminoff and R.B. Daroff, Editors. 2014, Academic Press: Oxford. p. 338-343.
18.Midha, R. and A. Alaqeel, Chapter 16 - Technical Aspects of Nerve Repair, in Nerves and Nerve Injuries, R.S. Tubbs, et al., Editors. 2015, Academic Press: San Diego. p. 225-236.
19.Reier, P.J., L.V. Zholudeva, and M.A. Lane, Chapter 25 - Axonal Degeneration and Regeneration in the Peripheral and Central Nervous Systems, in Conn''s Translational Neuroscience, P.M. Conn, Editor. 2017, Academic Press: San Diego. p. 553-575.
20.Ao, Q., et al., Manufacture of multimicrotubule chitosan nerve conduits with novel molds and characterization in vitro. Journal of Biomedical Materials Research Part A, 2006. 77A(1): p. 11-18.
21.Meier, K. and C.-M. Lehr, Rui L. Reis, Editor, Biodegradable Systems in Tissue Engineering and Regenerative Medicine. European Journal of Pharmaceutics and Biopharmaceutics, 2005. 61: p. 111–112.
22.Bender, M.D., et al., Multi-channeled biodegradable polymer/CultiSpher composite nerve guides. Biomaterials, 2004. 25(7): p. 1269-1278.
23.Raeisdasteh Hokmabad, V., et al., Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2017. 28(16): p. 1797-1825.
24.Cox, S.C., et al., 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Materials Science and Engineering: C, 2015. 47: p. 237-247.
25.Denry, I. and L.T. Kuhn, Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dental Materials, 2016. 32(1): p. 43-53.
26.Kim, J.-A., et al., Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo. Acta Biomaterialia, 2016. 44: p. 155-167.
27.Xu, S., et al., Effect of borosilicate glass on the mechanical and biodegradation properties of 45S5-derived bioactive glass-ceramics. Journal of Non-Crystalline Solids, 2014. 405: p. 91–99.
28.Stábile, F., et al., Processing of ZrO2 Scaffolds Coated By Glass-Ceramic Derived from 45S5 Bioglass. Ceramics International, 2015. 42.
29.Muthukumar, T., et al., Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K. Carbohydrate Polymers, 2016. 152: p. 566-574.
30.Entekhabi, E., et al., Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity. Materials Science and Engineering: C, 2016. 69: p. 380-387.
31.Aibibu, D., M. Hild, and C. Cherif, 6 - An overview of braiding structure in medical textile: Fiber-based implants and tissue engineering, in Advances in Braiding Technology, Y. Kyosev, Editor. 2016, Woodhead Publishing. p. 171-190.
32.Sensharma, P., et al., Biomaterials and cells for neural tissue engineering: Current choices. Materials Science and Engineering: C, 2017. 77: p. 1302-1315.
33.Stang, F., G. Keilhoff, and H. Fansa, Biocompatibility of Different Nerve Tubes. Materials, 2009. 2(4): p. 1480-1507.
34.Sedaghati, T., G. Jell, and A.M. Seifalian, Chapter 57 - Nerve Regeneration and Bioengineering, in Regenerative Medicine Applications in Organ Transplantation, G. Orlando, et al., Editors. 2014, Academic Press: Boston. p. 799-810.
35.Mobini, S., et al., Recent advances in strategies for peripheral nerve tissue engineering. Current Opinion in Biomedical Engineering, 2017. 4: p. 134-142.
36.Pires, F., et al., Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochimica et Biophysica Acta (BBA) - General Subjects, 2015. 1850(6): p. 1158-1168.
37.Gajendiran, M., et al., Conductive biomaterials for tissue engineering applications. Journal of Industrial and Engineering Chemistry, 2017. 51: p. 12-26.
38.Lee, B.-K., et al., End-to-side neurorrhaphy using an electrospun PCL/collagen nerve conduit for complex peripheral motor nerve regeneration. Biomaterials, 2012. 33(35): p. 9027-9036.
39.Reid, A.J., et al., Long term peripheral nerve regeneration using a novel PCL nerve conduit. Neuroscience Letters, 2013. 544: p. 125-130.
40.Das, S., et al., In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials, 2015. 62: p. 66-75.
41.Jang, C.H., et al., Effect of polycaprolactone/collagen/hUCS microfiber nerve conduit on facial nerve regeneration. International Journal of Biological Macromolecules, 2016. 93: p. 1575-1582.
42.Golafshan, N., M. Kharaziha, and M. Fathi, Tough and conductive hybrid graphene-PVA: Alginate fibrous scaffolds for engineering neural construct. Carbon, 2017. 111: p. 752-763.
43.Xu, F., et al., NECL1 coated PLGA as favorable conduits for repair of injured peripheral nerve. Materials Science and Engineering: C, 2017. 70: p. 1132-1140.
44.Wang, G.-W., et al., Design and optimization of a biodegradable porous zein conduit using microtubes as a guide for rat sciatic nerve defect repair. Biomaterials, 2017. 131: p. 145-159.
45.Rao, J., et al., A multi-walled silk fibroin/silk sericin nerve conduit coated with poly(lactic-co-glycolic acid) sheath for peripheral nerve regeneration. Materials Science and Engineering: C, 2017. 73: p. 319-332.
46.Lau, Y.-T., et al., Genipin-treated chitosan nanofibers as a novel scaffold for nerve guidance channel design. Colloids and Surfaces B: Biointerfaces, 2018. 162: p. 126-134.
47.Liu, S., et al., Nano-fibrous and ladder-like multi-channel nerve conduits: Degradation and modification by gelatin. Materials Science and Engineering: C, 2018. 83: p. 130-142.
48.Liting, Y., et al., Gradient Degradable Nerve Guidance Conduit with multilayer structure Prepared by Electrospinning. Materials Letters, 2020. 276: p. 128238.
49.Liu, S., et al., High-resolution combinatorial 3D printing of gelatin-based biomimetic triple-layered conduits for nerve tissue engineering. International Journal of Biological Macromolecules, 2021. 166: p. 1280-1291.
50.Cousin, M.A., et al., The Value of Systematic Reviews in Estimating the Cost and Barriers to Translation in Tissue Engineering. Tissue Engineering Part B: Reviews, 2016. 22(6): p. 430-437.
51.Coenen, A.M.J., et al., Elastic materials for tissue engineering applications: Natural, synthetic, and hybrid polymers. Acta Biomaterialia, 2018. 79: p. 60-82.
52.Nair, L.S. and C.T. Laurencin, Biodegradable polymers as biomaterials. Progress in Polymer Science, 2007. 32(8): p. 762-798.
53.Lin, S.T., L. Kimble, and D. Bhattacharyya, Polymer Blends and Composites for Biomedical Applications, in Biomaterials for Implants and Scaffolds, Q. Li and Y.-W. Mai, Editors. 2017, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 195-235.
54.Armentano, I., et al., Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science, 2013. 38(10): p. 1720-1747.
55.Lloyd, A.W., Interfacial bioengineering to enhance surface biocompatibility. Medical device technology, 2002. 13(1): p. 18-21.
56.Vert, M., Aliphatic Polyesters:  Great Degradable Polymers That Cannot Do Everything. Biomacromolecules, 2005. 6(2): p. 538-546.
57.Wu, L., et al., Synthesis and characterization of biomass lignin-based PVA super-absorbent hydrogel. International Journal of Biological Macromolecules, 2019. 140: p. 538-545.
58.Kim, H., et al., Gelatin/PVA scaffolds fabricated using a 3D-printing process employed with a low-temperature plate for hard tissue regeneration: Fabrication and characterizations. International Journal of Biological Macromolecules, 2018. 120: p. 119-127.
59.Thangprasert, A., et al., Mimicked hybrid hydrogel based on gelatin/PVA for tissue engineering in subchondral bone interface for osteoarthritis surgery. Materials & Design, 2019. 183: p. 108113.
60.Sheik, S., et al., Study on the morphological and biocompatible properties of chitosan grafted silk fibre reinforced PVA films for tissue engineering applications. International Journal of Biological Macromolecules, 2018. 116: p. 45-53.
61.Koosha, M., M. Raoufi, and H. Moravvej, One-pot reactive electrospinning of chitosan/PVA hydrogel nanofibers reinforced by halloysite nanotubes with enhanced fibroblast cell attachment for skin tissue regeneration. Colloids and Surfaces B: Biointerfaces, 2019. 179: p. 270-279.
62.Shokri, S., et al., A new approach to fabrication of Cs/BG/CNT nanocomposite scaffold towards bone tissue engineering and evaluation of its properties. Applied Surface Science, 2015. 357: p. 1758-1764.
63.Pahlevanzadeh, F., et al., Development of PMMA-Mon-CNT bone cement with superior mechanical properties and favorable biological properties for use in bone-defect treatment. Materials Letters, 2019. 240: p. 9-12.
64.Van den Broeck, L., et al., Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering. Materials Science and Engineering: C, 2019. 98: p. 1133-1144.
65.Ahadian, S., et al., Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Acta Biomaterialia, 2017. 52: p. 81-91.
66.Carey, J.P., 1 - Introduction to braided composites, in Handbook of Advances in Braided Composite Materials, J.P. Carey, Editor. 2017, Woodhead Publishing. p. 1-21.
67.Pastore, C.M., et al., 10 - Design of braided composite materials, in Handbook of Advances in Braided Composite Materials, J.P. Carey, Editor. 2017, Woodhead Publishing. p. 365-394.
68.Melenka, G.W., et al., 3 - Manufacturing processes for braided composite materials, in Handbook of Advances in Braided Composite Materials, J.P. Carey, Editor. 2017, Woodhead Publishing. p. 47-153.
69.Husain, O., et al., Investigating the particle to fibre transition threshold during electrohydrodynamic atomization of a polymer solution. Materials Science and Engineering: C, 2016. 65: p. 240-250.
70.Huang, Z.-M., et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003. 63(15): p. 2223-2253.
71.Cheng, J., et al., Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials, 2017. 114: p. 121-143.
72.Hemamalini, T. and V.R. Giri Dev, Comprehensive review on electrospinning of starch polymer for biomedical applications. International Journal of Biological Macromolecules, 2018. 106: p. 712-718.
73.Zong, H., et al., Designing function-oriented artificial nanomaterials and membranes via electrospinning and electrospraying techniques. Materials Science and Engineering: C, 2018. 92: p. 1075-1091.
74.Salas, C., 4 - Solution electrospinning of nanofibers, in Electrospun Nanofibers, M. Afshari, Editor. 2017, Woodhead Publishing. p. 73-108.
75.Muzzarelli, R.A.A., et al., Physical properties imparted by genipin to chitosan for tissue regeneration with human stem cells: A review. International Journal of Biological Macromolecules, 2016. 93: p. 1366-1381.
76.Lins, L.C., et al., Composite PHB/chitosan microparticles obtained by spray drying: effect of chitosan concentration and crosslinking agents on drug relesase. Journal of the Brazilian Chemical Society, 2014. 25: p. 1462-1471.
77.de Y. Pozzo, L., et al., Chitosan coatings crosslinked with genipin for corrosion protection of AZ31 magnesium alloy sheets. Carbohydrate Polymers, 2018. 181: p. 71-77.
78.Mohamadi, F., et al., Electrospun nerve guide scaffold of poly(ε-caprolactone)/collagen/nanobioglass: an in vitro study in peripheral nerve tissue engineering. Journal of Biomedical Materials Research Part A, 2017. 105(7): p. 1960-1972.
79.Ahn, H.-S., et al., Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve. Acta Biomaterialia, 2015. 13: p. 324-334.
80.de, Y.P.L., et al., Chitosan coatings crosslinked with genipin for corrosion protection of AZ31 magnesium alloy sheets. Carbohydr Polym, 2018. 181: p. 71-77.
81.Harris, R., E. Lecumberri, and A. Heras, Chitosan-genipin microspheres for the controlled release of drugs: clarithromycin, tramadol and heparin. Mar Drugs, 2010. 8(6): p. 1750-62.
82.Kharazmi, A., et al., Structural, optical, opto-thermal and thermal properties of ZnS-PVA nanofluids synthesized through a radiolytic approach. Beilstein J Nanotechnol, 2015. 6: p. 529-36.
83.Li, T.-T., et al., Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol(PVA)/Chitosan(CS)/Graphene(Gr) nanofibrous membranes. Journal of Materials Research and Technology, 2019. 8(6): p. 5124-5132.
84.Wang, X.-X., et al., Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Progress in Materials Science, 2021. 115: p. 100704.
85.Dodero, A., et al., Effect of sodium alginate molecular structure on electrospun membrane cell adhesion. Materials Science and Engineering: C, 2021. 124: p. 112067.
86.Nadiv, R., et al., Polymer nanocomposites: Insights on rheology, percolation and molecular mobility. Polymer, 2018. 153: p. 52-60.
87.Valentino, O., et al., Influence of the polymer structure and nanotube concentration on the conductivity and rheological properties of polyethylene/CNT composites. Physica E: Low-dimensional Systems and Nanostructures, 2008. 40(7): p. 2440-2445.
88.Santos, C., et al., Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method. Carbohydrate Polymers, 2014. 99: p. 584-592.
89.Zhang, Z., et al., Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities. Materials Science and Engineering: C, 2016. 69: p. 462-469.
90.Lu, P. and Y.-L. Hsieh, Multiwalled Carbon Nanotube (MWCNT) Reinforced Cellulose Fibers by Electrospinning. ACS Applied Materials & Interfaces, 2010. 2(8): p. 2413-2420.
91.Sebastian, T., et al., Synthesis of hydroxyapatite fibers using electrospinning: A study of phase evolution based on polymer matrix. Journal of the European Ceramic Society, 2020. 40(6): p. 2489-2496.
92.Han, Z., et al., Encapsulating TiO2 into Polyvinyl Alcohol Coated Polyacrylonitrile Composite Beads for the Effective Removal of Methylene Blue. Journal of the Brazilian Chemical Society, 2018. 30: p. 211-223.
93.Zheng, Y., A. Farrukh, and A. del Campo, Optoregulated Biointerfaces to Trigger Cellular Responses. Langmuir, 2018. 34(48): p. 14459-14471.
94.Li, H., W. Qi, and W. Song, Investigation on the Human Hepatoma HEPG2 Cells Adhesion under the Synergy of Stiffness and Superhydrophobicity. Colloid and Interface Science Communications, 2017. 22.
95.Rmaidi, A., et al., Impact of the physico-chemical properties of polymeric microspheres functionalized with cell adhesion molecules on the behavior of mesenchymal stromal cells. Materials Science and Engineering: C, 2021. 121: p. 111852.
96.Braccini, S., et al., Adhesion of fibroblast cells on thin films representing surfaces of polymeric scaffolds of human urethra rationalized by molecular models of integrin binding: cell adhesion on polymeric scaffolds for regenerative medicine. Journal of Biotechnology, 2020. 324: p. 233-238.
97.Wei, X., et al., Enhancement of mechanical properties and conductivity in carbon nanotubes (CNTs)/Cu matrix composite by surface and intratube decoration of CNTs. Materials Science and Engineering: A, 2021. 816: p. 141248.
98.Mora, A., P. Verma, and S. Kumar, Electrical conductivity of CNT/polymer composites: 3D printing, measurements and modeling. Composites Part B: Engineering, 2020. 183: p. 107600.
99.Jain, N. and S. Tiwari, Biomedical application of carbon nanotubes (CNTs) in vulnerable parts of the body and its toxicity study: A state-of-the-art-review. Materials Today: Proceedings, 2021.
100.Pahlevanzadeh, F., et al., CNT and rGO reinforced PMMA based bone cement for fixation of load bearing implants: Mechanical property and biological response. Journal of the Mechanical Behavior of Biomedical Materials, 2021. 116: p. 104320.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊