跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/27 03:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳佳達
研究生(外文):Chia-Ta Wu
論文名稱:探討Lactobacillus rhamnosus GG 對於不同過敏原致敏鼠的療效與臨床藥物結合之評估
論文名稱(外文):Efficacy of evaluation of Lactobacillus rhamnosus GG and combination treatment with corticosteroid in different-allergen sensitized animal asthma model
指導教授:呂克桓呂克桓引用關係柯俊良柯俊良引用關係
指導教授(外文):Ko-Huang LueJiunn-Liang Ko
口試委員:黃璟隆江榮山張嘉哲
口試委員(外文):Jing-Long HuangRong-San JiangChia-Che Chang
口試日期:2021-01-14
學位類別:博士
校院名稱:中山醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:97
中文關鍵詞:氣喘塵蟎益生菌鼠李糖乳桿菌類固醇
外文關鍵詞:AsthmaHDMprobioticLactobacillus rhamnosus GGglucocorticoids
DOI:10.6834/csmu202100042
相關次數:
  • 被引用被引用:0
  • 點閱點閱:54
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:氣喘是一種複雜的慢性呼吸道發炎疾病,具有不同的表現型和嚴重程度,並伴隨有嚴重的健康和經濟負擔。建立氣喘之動物實驗模式可以提供有關氣喘致病機轉和治療信息。雞卵蛋白(OVA)致敏在氣喘模式中有其局限性。此外,我們調查到DerP是家塵蟎之一,更是台灣的常見的主要過敏原。本研究使用DerP建立更貼近臨床的動物致敏模式。益生菌是一種微生物,其可為宿主提供健康益處,調節腸道中的微生物平衡,控制免疫微環境並緩解過敏和發炎。
研究目的:研究OVA和Der pII1-129致敏鼠的免疫系統是否有很多不同。並探討益生菌LGG和LGG結合prednisolone在過敏氣哮喘小鼠模型中對呼吸道發炎的作用。
材料與方法:本研究使用雌性、BALB / c小鼠,進行急性期(28天)和慢性期(76天)的致敏模式,並使用OVA或Der pII1-129作為致敏原。並納入單純口服LGG、口服prednisolone或prednisolone + LGG對動物進行治療。評估呼吸道過度反應(AHR),血清特異性IgE / IgG1 / IgG2a,肺部發炎細胞浸潤和細胞激素的表現。
結果:不僅OVA致敏,而且Der pII1-129致敏均可成功誘導AHR,高表現量IgE以及肺部發炎細胞浸潤等。細胞激素部分,OVA致敏鼠可能具有最高的Th2細胞激素和IL-6表達,而Der pII1-129致敏鼠則是以IL-8,IL-10,IL-13和TGF-β表現量較高。在LGG治療組中,呼吸道發炎、Th1 / Th2細胞激素分泌平衡和肺部發炎細胞浸潤等皆有改善。此外,合併治療組(LGG +prednisolone)對AHR的抑制作用比單一治療組更為顯著。在接受單一治療或合併治療的小鼠中,血清IgE和IgG1表現量均有降低。合併治療組甚至可以比單一治療組有更高的IgG2a表現量。除Th2細胞激素外,合併治療組還抑制了與類固醇阻抗有關的IL-6,IL-8和IL-17。合併治療可顯著減少肺部發炎細胞浸潤並減輕呼吸道發炎。
結論:單純口服益生菌可以改善氣喘的嚴重程度。益生菌合併同糖皮質激素可更提升其抗發言作用,因此對氣喘治療是更有幫助的。用不同的過敏原致敏可能發揮不同的免疫環境。此外,用純化的Derp II1-129進行致敏研究,可提供更貼近人類氣喘的小鼠致敏模式,其可用於探討預防或治療致敏原誘導的呼吸道炎症狀的不同介入策略。
BACKGROUND: Asthma is a complex multifactorial chronic airway inflammatory disease with diverse phenotypes and levels of severity and is associated with significant health and economic burden. The ethical issues associated with the studies in asthmatic patients, required development of animal model of asthma. Animal models of asthma can provide valuable information on several features of asthma pathogenesis and treatment. Ovalbumin (OVA) sensitization has limitations in modelling asthma. Thus, we detected the allergen sensitization used DerP which one of HDMs and common allergen in Taiwan. Probiotics are microorganism which can provide health benefit to host, regulate microbial balance in the intestine, control immune microenvironment and alleviate the condition of allergy and inflammation.
OBJECT:We investigate whether had many different of immune system in OVA and DerPII1-129 sensitization mice. and to explore probiotics-LGG and the combination effects of LGG with prednisolone in controlling airway inflammation in a murine model for allergic asthma.
METHODS: We used OVA or Der p 2-sensitized asthma model in female BALB/c mice during sensitization in acute stage (28 days) and chronic stage (76 days). The animals were only treated with LGG, oral prednisolone or combination treatment with both LGG. Airway hyperresponsiveness, serum specific IgE/ IgG1/ IgG2a, infiltrating inflammatory cells in lung and cytokines in BALF were assessed.
RESULTS:According to the results, not only OVA, but also DerP2 sensitization mice could induce AHR, high levels of IgE, inflammatory cell infiltration in lung and airway inflammation. In cytokines, OVA sensitized mice could induce more higher Th2 cytokines than DerP2 sensitization. Moreover, IL-6, IL-8, IL-10, IL-13 and TGF-b in BALF were express higher in DerP2 sensitization mice than OVA sensitization.
In LGG treated groups were improved airway imflammation, Th1/Th2 cytokines balance and inflammatory cell infiltration in lung. Moreover, the suppression of AHR was more significant in combination therapy groups (LGG+prednisolone) than the single therapy groups. The serum IgE and IgG1 level were both decreased in the mice receiving single therapy or combination therapy. The combination therapy groups could even upregulate serum IgG2a level more than the single therapy groups. Besides Th2 cytokines, combination therapy also inhibits IL-6, IL-8 and IL-17 which are associated with steroid insensitivity. Combination treatment decreased the infiltrating inflammatory cells in the lungs significantly and ameliorated lung inflammation.
CONCLUSIONS:Probiotics only may improve the severity of asthma. And Probiotics may synergize the anti-inflammatory effect of glucocorticoids and thus may be beneficial in the treatment of asthma. Sensitization with different allergens may play different immune environment. Moreover, sensitized with allergen of purified DerPII1-129 offers a more relevant murine model of human allergic asthma and can be suitable for characterizing different intervention strategies to prevent or treat allergen-induced lung inflammation.
目錄
謝誌 ------------------------------------------------------------------------------- I
中文摘要 ------------------------------------------------------------------------ II
英文摘要 ----------------------------------------------------------------------- IV
第一章 緒論
1.1 過敏 -------------------------------------------------------------------- 1
1.2 過敏的分型 ----------------------------------------------------------- 2
1.3 與過敏有關的疾病 -------------------------------------------------- 5
1.4 過敏疾病的現況 ------------------------------------------------------5
1.5 過敏疾病的治療 ----------------------------------------------------- 6
1.6 過敏原 ------------------------------------------------------------------8
1.6.1 家塵蟎 ---------------------------------------------------------- 9
1.6.2 黴菌 --------------------------------------------------------------9
1.6.3 蟑螂 ------------------------------------------------------------- 9
1.6.4花粉 -------------------------------------------------------------- 9
1.6.5 寵物過敏原 -------------------------------------------------- 10
1.6.6食物過敏原 --------------------------------------------------- 10
1.7 常見過敏原的盛行率 ---------------------------------------------- 11
1.8 益生菌 ---------------------------------------------------------------- 12
1.8.1 益生菌適應症之研究 -------------------------------------- 14
1.8.2 鼠李糖乳桿菌Lactobacillus rhamnosus GG ----------- 16
第二章 研究動機 ---------------------------------------------------- 17
第三章 材料與方法
3.1 益生菌LGG之備製 ------------------------------------------------ 18
3.2 皮脂類固醇 ---------------------------------------------------------- 18
3.3 過敏原之備製 ------------------------------------------------------- 18
3.3.1 OVA雞卵蛋白 ------------------------------------------------ 18
3.3.2 GST-Der pII1-129塵蟎蛋白製備---------------------------------------- 18
3.4 動物實驗 ------------------------------------------------------------- 21
3.4.1 動物實驗致敏原之使用 ------------------------------------ 21
3.4.2 動物致敏模式 ------------------------------------------------ 22
3.4.3 致敏原急性期(28天)致敏模式 ------------------------- 22
3.4.4 致敏原慢性期(76天)致敏模式 ------------------------- 23
3.4.5 實驗動物分組 ------------------------------------------------ 24
3.5 血清中OVA-specific-IgE、IgG1、IgG2a測定 ---------------- 24
3.6 肺泡沖洗液中血球的分類計數 ---------------------------------- 25
3.7 血清與細胞沖洗液中各種細胞激素的測定 ------------------- 26
3.8 MMPs之檢測 -------------------------------------------------------- 27
3.9 肺部組織病理切片 ------------------------------------------------- 28
3.10 統計分析 ------------------------------------------------------------ 28
第四章 研究結果
4.1 益生菌LGG對於急性期OVA致敏鼠在AHR的影響 -----29
4.2 益生菌LGG對於急性期OVA致敏鼠在血清中OVA-specific IgE與OVA- pecific-IgG2a的表現 ------------------------------------29
4.3 益生菌LGG對於急性期OVA致敏鼠在呼吸道發炎細胞浸潤上的影響 ---------------------------------------------------------------30
4.4 益生菌LGG對於急性期OVA致敏鼠在血清與肺泡沖洗液中各種細胞激素之影響 ------------------------------------------------30
4.5 益生菌LGG對於急性期OVA致敏鼠在肺部MMP9表現量的影響 ---------------------------------------------------------------------31
4.6 益生菌LGG對於慢性期致敏模式在AHR上的影響 --------33
4.7 益生菌LGG對於慢性期致敏模式在血清中OVA-specific-IgE與OVA-specific-IgG2a的表現 ------------------------------------33
4.8 益生菌LGG對於慢性期致敏模式在呼吸道細胞浸潤的影響 -----------------------------------------------------------------------------34
4.9 益生菌LGG對於慢性期致敏模式在BALF中各種細胞激素的影響------------------------------------------------------------------34
4.10 益生菌LGG對於慢性期致敏模式在肺部組織中IL-17 與 TNF-α表現量之影響 ------------------------------------------------35
4.11 益生菌LGG對於慢性期致敏模式在呼吸道膠原蛋白沈澱(collagen deposition) 之影響 --------------------------------------35
4.12 急性期OVA致敏模式與Der pII1-129 塵蟎蛋白致敏動物模式在呼吸道過度反應的表現-------------------------------------37
4.13 急性期OVA致敏模式與Der pII1-129 塵蟎蛋白致敏動物模式在血清中specific-IgE與specific-IgG1之表現 -----------37
4.14 急性期OVA致敏模式與Der pII1-129 塵蟎蛋白致敏動物模式在各種細胞激素之表現 ---------------------------------------38
4.15 性期OVA致敏模式與Der pII1-129 塵蟎蛋白致敏動物模式在肺部發炎細胞浸潤之表現 ------------------------------------38
4.16 急性期OVA致敏模式與Der pII1-129 塵蟎蛋白致敏動物模式在呼吸道發炎現象之表現-------------------------------------39
4.17 益生菌LGG對於急性期Der pII1-129塵蟎蛋白致敏鼠在AHR上的影響 --------------------------------------------------------40
4.18 益生菌LGG對於急性期Der pII1-129塵蟎蛋白致敏鼠在血清中Der pII1-129-specific-IgE與Der pII1-129-specific-IgG2a的表現 ----------------------------------------------------------41
4.19 益生菌LGG對於急性期Der pII1-129塵蟎蛋白致敏鼠在呼吸道發炎細胞浸潤上的影響 ------------------------------------41
4.20 益生菌LGG對於急性期Der pII1-129塵蟎蛋白致敏鼠在肺泡沖洗液中細胞激素的影響 ------------------------------------42
4.21 益生菌LGG對於急性期Der pII1-129塵蟎蛋白致敏鼠在呼吸道發炎上的影響-------------------------------------------------42
4.22 益生菌LGG合併皮脂類固醇Prednisolone使用對於急性期Der pII1-129塵蟎蛋白致敏鼠AHR之影響---------------------44
4.23 益生菌LGG合併皮脂類固醇Prednisolone使用對於急性期Der pII1-129塵蟎蛋白致敏鼠血清中Der pII1-129-specific-IgE/IgG1/ IgG2a之影響 --------------------------------------------45
4.24 益生菌LGG合併皮脂類固醇Prednisolone使用對於急性期Der pII1-129塵蟎蛋白致敏鼠對於各種細胞激素表現量之影響 ------------------------------------------------------------------------45
4.25 益生菌LGG合併皮脂類固醇Prednisolone使用對於急性期Der pII1-129塵蟎蛋白致敏鼠肺部發炎細胞浸潤之影響-----46
4.26 益生菌LGG合併皮脂類固醇Prednisolone使用對於急性期Der pII1-129塵蟎蛋白致敏鼠呼吸道發炎狀況之影響 ------46

第五章 討論 ------------------------------------------------------------------- 48
第六章 結論與建議 ---------------------------------------------------------- 54
參考文獻 ----------------------------------------------------------------------- 55
圖表說明 ----------------------------------------------------------------------- 71
附錄 (投稿論文抽印本與排名)

圖目錄
Figure 1. The protocols for the mouse models of acute allergic asthma. -------------------------------------------------------------------------- 71
Figure 2. The protocols for the mouse models of chronic allergic asthma. -------------------------------------------------------------------------- 72
Figure 3. The effect of LGG treatment in AHR in OVA-sensitization animal model ------------------------------------------------------------------- 73
Figure 4. The effect of LGG treatment in infiltrating cells of the lungs in OVA-sensitization animal model ---------------------------------------- 74
Figure 5. The effect of LGG on AHR in chronic stage OVA-sensitization model ---------------------------------------------------------- 75
Figure 6. LGG treatment in infiltrating cells of the lungs in chronic stage with OVA-sensitization animal model -------------------------------76
Figure 7. LGG affects IL-17 and TNF-α expression in chronic stage with OVA-sensitization animal model--------------------------------------77
Figure 8. LGG affects collagen deposition in lung tissue in chronic stage with OVA-sensitization animal model ----------------------------- 78
Figure 9. The different on AHR in OVA or Der pII1-129-sensitization mice------------------------------------------------------------------------------- 79
Figure 10. The different on OVA-specific IgE/IgG1 and Der pII1-129-specific IgE/IgG1 in serum in OVA or Der pII1-129-sensitization mice -------------------------------------------------------------------------------------- 80
Figure 11. The different on differential cytokines expression in BALF in OVA or Der pII1-129- sensitization mice -------------------------------- 81
Figure 12. The difference of infiltrating cells of the lungs in OVA or Der pII1-129- sensitization mice ---------------------------------------------- 82
Figure 13. The different of lung inflammation in BALF in OVA or Der pII1-129- sensitization mice ---------------------------------------------------- 83
Figure 14. The effect of LGG treatment in AHR in Der pII1-129-sensitization animal model --------------------------------------------------- 84
Figure 15. The effect of LGG of infiltrating cells of the lungs in Der pII1-129-sensitization mice----------------------------------------------------- 85
Figure 16. The effect of LGG of lung inflammation in Der pII1-129-sensitization mice ------------------------------------------------------------- 86
Figure 17. The effect of LGG and Prednisolone on AHR ------------ 87
Figure 18. The effect of LGG and Prednisolone on differential cytokines express in BALF in Der pII1-129-sensitization mice --------- 88
Figure 19. The effect of LGG and Prednisolone of infiltrating cells of the lungs in Der pII1-129-sensitization mice ---------------------------------89
Figure 20. The effect of LGG and Prednisolone of lung inflammation in BALF in Der pII1-129-sensitization mice ---------------------------------90
表目錄
Table 1. The effects of the LGG treatment on OVA-specific-IgE/IgG2a in serum. -----------------------------------------------------------91
Table 2. The effect of LGG on cytokines in BALF in OVA-sensitization animal model in BALF. Data points represent the median +/- IQR of the individual mouse groups. ----------------------- 92
Table 3. The effects of the LGG treatment on MMP9 expression in serum and BAL ---------------------------------------------------------------- 93
Table 4. The effects of the LGG treatment on OVA-specific-IgE/IgG2a in serum in chronic stage. ---------------------------------------------------- 94
Table 5. The effect of LGG in acute stage of Der pII1-129-specific antibodies in serum. Data points represent the median +/- IQR of the individual mouse groups ----------------------------------------------------- 95
Table 6. The effect of LGG on cytokines in BALF in Der pII1-129-sensitization animal model in BALF. Data points represent the median +/- IQR of the individual mouse groups. ---------------------------------- 96
Table 7. LGG and Prednisolone on Der pII1-129-specific IgE/IgG1/ IgG2a in serum in Der pII1-129-sensitization mice Data points represent the median +/- IQR of the individual mouse groups -------------------- 97
1.GINA glide 2020
2.台灣氣喘衛教協會-五歲以下GINA氣喘診療指南
3.A. Barry Kay. Allergy and Hypersensitivity: History and Concepts. 2008. DOI:10.1002/9781444300918.CH1.
4.Johannes Ring. Terminology of Allergic Phenomena. History of Allergy. Chem Immunol Allergy. Basel, Karger, 2014, vol 100, pp 46–52
5.Strachan, D.P. and D.G. Cook. Health effects of passive smoking. 6. Parental smoking and childhood asthma: longitudinal and case-control studies. Thorax, 1998. 53(3): p. 204-12.
6.T Kawayama, P M O'Byrne, et al. Effects of inhaled ciclesonide on circulating T-helper type 1/T-helper type 2 cells in atopic asthmatics after allergen challenge. Clin Exp Allergy, 2006. 36(11): p. 1417-24.
7.Nakajima, H. and K. Takatsu. Role of cytokines in allergic airway inflammation. Int Arch Allergy Immunol, 2007. 142(4): p. 265-73.
8.Johansson SG, Bieber T, et al. Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol 2004; 113(5):832-6.
9.Johansson SG, Hourihane JO, et al. A revised nomenclature for allergy. An EAACI position statement from the EAACI nomenclature task force. Allergy 2001; 56(9):813-24.
10.H Secrist, C J Chelen, et al. Allergen immunotherapy decreases interleukin 4 production in CD4+ T cells from allergic individuals. J Exp Med, 1993. 178(6): p. 2123-30.
11.Bochner BS, Busse WW. Advances in mechanisms of allergy. J Allergy Clin Immunol 2004; 113(5):868-75.
12.衛生福利部統計處。世界過敏性疾病日衛生福利統計通報。2019
13.Hwang CY, Chen YJ, et al. Prevalence of atopic dermatitis, allergic rhinitis and asthma in Taiwan: a national study 2000 to 2007. Acta Derm Venereol. 2010; 90:589–94.
14.Wu WF, Wan KS, et al. Prevalence, severity, and time trends of allergic conditions in 6-to-7-year-old school children in Taipei. J Investig Allergol Clin Immunol. 2011; 21(7):556-62.
15.Stewart GA, Zhang J, et al. The Structure and Function of Allergens. In: Adkinson NF, Jr., Bochner BS, Busse WW, Holgate ST, Lemanske RFJ, Simons FER, editors. Middleton's Allergy - Principles & Practice. Philadelphia,PA: Mosby Elsevier, 2009: 569-608.
16.Aalberse RC, van RR. Crossreactive carbohydrate determinants. Clin Rev Allergy Immunol 1997; 15(4):375-87.
17.Ebo DG, Hagendorens MM, et al. Sensitization to cross-reactive carbohydrate determinants and the ubiquitous protein profilin: mimickers of allergy. Clin Exp Allergy 2004; 34(1):137-44
18.蔡肇基。The most common allergens in Taiwan.
19.徐世達, 嬰幼兒氣喘預防與處置的新觀念. 台灣氣喘衛教學會, 2010. 18: p. 6.
20.Ulrik CS, Backer V. Atopy in Danish children and adolescents: results from a longitudinal population study. Ann Allergy Asthma Immunol. 2000; 85(4): 293-7.
21.Linneberg A, Nielsen NH, et al. Increasing prevalence of specific IgE to aeroallergens in an adult population: two cross-sectional surveys 8 years apart: the Copenhagen Allergy Study. J Allergy Clin Immunol. 2000;106(2):247-52.
22.Chang YC, Hsieh KH. The study of house dust mites in Taiwan. Ann Allergy. 1989; 62(2):101-6.
23.Voorhorst R, Spieksma FT. Correspondence: of mites and men. J Allergy. 1967; 40(6):357-8.
24.Huang HW, Lue KH, et al. Distribution of allergens in children with different atopic disorders in central Taiwan. Acta Paediatr Taiwan.
25.Ojwang V, Nwaru BI, et al. Early exposure to cats, dogs and farm animals and the risk of childhood asthma and allergy. Pediatr Allergy Immunol. 2020 Apr;31(3):265-272.
26.朱斯鴻、徐世達 。不同年齡的過敏病童血清中常見過敏原特異性免疫球蛋白E的盛行率。
27.賴慶嶺、徐世達。台灣五種塵蟎特異性IgE抗體濃度的調
28.McFarland LV. From yaks to yogurt: the history, development, and current use of probiotics. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. May 15 2015;60 Suppl 2:S85-90.
29.Wu CT, Chen PJ, et al. Effects of immunomodulatory supplementation with Lactobacillus rhamnosus on airway inflammation in a mouse asthma model. J Microbiol Immunol Infect. 2016; 49(5):625-635.
30.Cabana MD, Shane AL, et al. Probiotics in primary care pediatrics. Clin Pediatr (Phila). 2006; 45(5):405-10.
31.陳建甫、吳克恭. 益生菌在過敏性疾病的療效探討. 台灣兒童過敏氣喘及免疫學會. 2007; 8:3.
32.Pessi T, Sütas Y, et al. Interleukin-10 generation in atopic children following oral Lactobacillus rhamnosus GG. Clin Exp Allergy. 2000; 30(12): 1804-8.
33.Oak SJ, Jha R. The effects of probiotics in lactose intolerance: A systematic review. Critical reviews in food science and nutrition. Feb 9 2018:1-9.
34.LaMont JT. Probiotics for children with gastroenteritis. New Engl J Med (2018) 379: 20176-2077.
35.Allen SJ, Martinez EG, et al. Probiotics for treating acute infectious diarrhoea. Cochrane Database Sys Rev. (2010) 11: CD003048.
36.Canani RB, Cirillo P, et al. Probiotics for treatment of acute diarrhea in children: randomized clinical trial of five different preparations. BMJ (2007) 335: 340.
37.Hempel S, Newberry SJ, et al. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: A systematic review and meta-analysis. JAMA. 2012;307(18):1959-1969.
38.Zhang M-M, Qian W, et al. Probiotics in Helicobacter pylori eradication therapy: a systematic review and meta-analysis. World journal of gastroenterology. 2015;21(14):4345-4357.
39.Elazab N, Mendy A, et al. Probiotic administration in early life, atopy, and asthma: a meta-analysis of clinical trials. Pediatrics. Sep 2013;132(3):e666-676.
40.Freedman SB et al. Multicenter trial of a combination probiotic for children with gastroenteritis. New Engl J Med (2018) 379: 2015-2026.
41.Zmora N, Zilberman-Schapira G, et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell (2018) 174: 1388-405.
42.Urban´ska M, Gieruszczak-Bia ek D, et al. Systematic review with meta-analysis: Lactobacillus reuteri DSM 17938 for diarrhoeal diseases in children. Aliment Pharmacol Ther. 2016; 43: 1025-34.
43.Flach. Cogent Food & Agriculture (2018), 4: 1452839.
44.Allen SJ, Martinez EG, et al. Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst Rev 2010; 2010: CD003048.
45.McFarland LV. Meta-analysis of probiotics for the prevention of traveler’s diarrhea. Travel Med Infect Dis 2007; 5: 97-105.
46.Hilton E, Kolakowski P, et al. Efficacy of lactobacillus GG as a diarrheal preventive in travelers. J Travel Med 1997; 4: 41-3.
47.Briand V, Buffet P, et al. Absence of efficacy of nonviable Lactobacillus acidophilus for the prevention of traveler's diarrhea: a randomized, double-blind, controlled study. Clin Infect Dis 2006; 43: 1170-5.
48.Guo Q, Goldenberg JZ, et al. Probiotics for the prevention of pediatric antibiotic associated diarrhea. Cochrane Database Syst Rev 2015; 4: CD004827.
49.Hiromi Seki, Masaaki Shiohara, et al. Prevention of antibiotic-associated diarrhea in children by Clostridium butyricum MIYAIRI. Pediatr Int 2003: 45: 86-90.
50.Ford AC, Quigley EM, et al. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and metaanalysis. Am J Gastroenterol 2014; 109: 1547-61.
51.Guerra PV, Lima LN, et al. Pediatric functional constipation treatment with Bifidobacterium-containing yogurt: a crossover, double blind, controlled trial. World J Gastroenterol 2011; 17: 3916-21.
52.Guojian Zhang, Miao Lu et al. Inhibition of Streptococcus mutans Biofilm Formation and Virulence by Lactobacillus plantarum K41 Isolated From Traditional Sichuan Pickles. Front Microbiol. 2020; 11:774.
53.Priya Nimish Deo, Revati Deshmukh. Oral microbiome: Unveiling the fundamentals. J Oral Maxillofac Pathol. 2019; 23(1): 122–128.
54.Garcia-Castillo V, Komatsu R, et al. Evaluation of the Immunomodulatory Activities of the Probiotic Strain Lactobacillus fermentum UCO-979C. Front Immunol. 2019; 10:1376.
55.Morshedi M, Hashemi R, et al. Immunomodulatory and anti-inflammatory effects of probiotics in multiple sclerosis: a systematic review. J Neuroinflammation. 2019; 16(1):231.
56.Lee YT, Lee SS, et al. Effect of the fungal immunomodulatory protein FIP-fve on airway inflammation and cytokine production in mouse asthma model. Cytokine. 2013; 61(1):237-44.
57.KY Hsieh, CI Hsu, et al. Oral administration of an edible-mushroom-derived protein inhibits the development of food-allergic reactions in mice. Clin Exp Allergy. 2003; 33(11):1595-602.
58.D. Sistek, R. Kelly, et al. Is the effect of probiotics on atopic dermatitis confined to food sensitized children? Clin Exp Allergy, 36 (5) (2006), pp. 629-633.
59.Yu J, Jang SO, et al. The Effects of Lactobacillus rhamnosus on the Prevention of Asthma in a Murine Model. Allergy Asthma Immunol Res. 2010; 2(3):199-205.
60.K Nelms, AD Keegan, et al. The IL-4 receptor: signaling mechanisms and biologic functions Annu Rev Immunol, 17 (1999), pp. 701-738.
61.AM Castellazzi, C Valsecchi, et al. Probiotics and food allergy. Ital J Pediatr, 39 (2013), pp. 47-57.
62.A Torii, S Torii, et al. Lactobacillus Acidophilus strain L-92 regulates the production of Th1 cytokine as well as Th2 cytokines. Allergol Int, 56 (3) (2007), pp. 293-301.
63.KM Lammers, A Vergopoulos, et al. Probiotic therapy in the prevention of pouchitis onset: decreased interleukin-1beta, interleukin-8, and interferon-gamma gene expression. Inflamm Bowel Dis, 11 (5) (2005), pp. 447-454.
64.W. Mattos, S. Lim, et al. Matrix metalloproteinase-9 expression in asthma: effect of asthma severity, allergen challenge, and inhaled corticosteroids. Chest, 122 (5) (2002), pp. 1543-1552.
65.I. Ohno, H. Ohtani, et al. osinophils as a source of matrix metalloproteinase-9 in asthmatic airway inflammation. Am J Respir Cell Mol Biol, 16 (3) (1997), pp. 212-219.
66.J.A. Warner, P. Julius, et al. Matrix metalloproteinases in bronchoalveolar lavage fluid following antigen challenge. Int Arch Allergy Immunol, 113 (1-3) (1997), pp. 318-320
67.O. Ozdemir. Various effects of different probiotic strains in allergic disorders: an update from laboratory and clinical data. Clin Exp Immunol. 160 (2010), pp. 295-304
68.D. Sistek, R. Kelly, et al. Is the effect of probiotics on atopic dermatitis confined to food sensitized children? Clin Exp Allergy, 36 (2006), pp. 629-633
69.SM Gatej, V Marino, et al. Probiotic Lactobacillus rhamnosus GG prevents alveolar bone loss in a mouse model of experimental periodontitis. J Clin Periodontol, 45 (2018), pp. 204-212
70.H. Jäsberg, T. Tervahartiala, et al. Probiotic intervention influences the salivary levels of Matrix Metalloproteinase (MMP)-9 and Tissue Inhibitor of metalloproteinases (TIMP)-1 in healthy adults Arch Oral Biol, 85 (2018), pp. 58-63
71.P Kannampalli, S Pochiraju, et al. Probiotic Lactobacillus rhamnosus GG (LGG) and prebiotic prevent neonatal inflammation-induced visceral hypersensitivity in adult rats. Neuro Gastroenterol Motil, 26 (2014), pp. 1694-1704
72.T. Robak, A. Gladalska, et al. The tumour necrosis factor family of receptors/ligands in the serum of patients with rheumatoid arthritis. Eur Cytokine Netw. 9 (1998), pp. 145-154
73.J.R. Bradley. TNF-mediated inflammatory disease. J Pathol. 214 (2008), pp. 149-160
74.M Cembrzynska-Nowak, E Szklarz, et al. Elevated release of tumor necrosis factor-alpha and interferon-gamma by bronchoalveolar leukocytes from patients with bronchial asthma. Am Rev Respir Dis. 147 (1993), pp. 291-295
75.PH Howarth, KS Babu, et al. Tumour necrosis factor (TNFalpha) as a novel therapeutic target in symptomatic corticosteroid dependent asthma Thorax. 60 (2005), pp. 1012-1018
76.Halwani R, Al-Muhsen S, Al-Jahdali H, Hamid Q. Role of transforming growth factor-β in airway remodeling in asthma. Am J Respir Cell Mol Biol. 2011; 44(2):127-33.
77.Branton MH, Kopp JB. TGF-beta and fibrosis. Microbes Infect. 1999;1(15):1349-65.
78.Kelley J, Kovacs EJ, Nicholson K, Fabisiak JP. Transforming growth factor–beta production by lung macrophages and fibroblasts. Chest 1991;99 (Suppl 3)85S–86S.
79.Coker RK, Laurent GJ, Shahzeidi S, Hernandez-Rodriguez NA, Pantelidis P, du Bois RM, et al. Diverse cellular TGF-beta 1 and TGF-beta 3 gene expression in normal human and murine lung. Eur Respir J 1996; 9:2501–2507.
80.de Boer WI, van Schadewijk A, Sont JK, Sharma HS, Stolk J, Hiemstra PS, et al. Transforming growth factor beta1 and re- cruitment of macrophages and mast cells in airways in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998; 158:1951–1957.
81.Lee KY, Ho SC, Lin HC, Lin SM, Liu CY, Huang CD, et al. Neutrophil-derived elastase induces TGF-beta1 secretion in human airway smooth muscle via NF-kappaB pathway. Am J Respir Cell Mol Biol 2006; 35:407–414.
82.Lloyd CM, Hawrylowicz CM. Regulatory T cells in asthma. Immunity 2009;31:438–449.
83.Tamasauskiene L, Sitkauskiene B. Role of Th22 and IL-22 in pathogenesis of allergic airway diseases: Pro-inflammatory or anti-inflammatory effect? Pediatr Neonatol. 2018; 59(4):339-344
84.Nabe T. Steroid-Resistant Asthma and Neutrophils. Biological & pharmaceutical bulletin. 2020;43 1:31-5.
85.Kuruvilla ME, Lee FE-H, Lee GB. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol. 2019;56(2):219-33. doi: 10.1007/s12016-018-8712-1. PubMed PMID: 30206782.
86.Ilmarinen P, Tuomisto LE, Niemelä O, Danielsson J, Haanpää J, Kankaanranta T, et al. Comorbidities and elevated IL-6 associate with negative outcome in adult-onset asthma. European Respiratory Journal. 2016;48(4):1052. doi: 10.1183/13993003.02198-2015.
87.Ernst G, Auteri S, Caro F, Colodenco F, Fernandez M, Menga G, et al. Significant Increase of IL-8 Sputum Levels in Treatment Resistant Severe Asthma Compared with Difficult to Treat Severe Asthma Patients. J Genet Syndr Gene Ther. 2014;5. doi: 10.4172/2157-7412.1000218.
88.Barczyk A, Pierzchala W, SozaÑSka E. Interleukin-17 in sputum correlates with airway hyperresponsiveness to methacholine. Respiratory Medicine. 2003;97(6):726-33. doi: https://doi.org/10.1053/rmed.2003.1507.
89.Bullens DMA, Truyen E, Coteur L, Dilissen E, Hellings PW, Dupont LJ, et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respiratory Research. 2006;7(1):135. doi: 10.1186/1465-9921-7-135.
90.Newcomb DC, Peebles RS, Jr. Th17-mediated inflammation in asthma. Curr Opin Immunol. 2013;25(6):755-60. Epub 2013/09/11. doi: 10.1016/j.coi.2013.08.002. PubMed PMID: 24035139.
91.Agache I, Ciobanu C, Agache C, Anghel M. Increased serum IL-17 is an independent risk factor for severe asthma. Respiratory Medicine. 2010;104(8):1131-7. doi: https://doi.org/10.1016/j.rmed.2010.02.018.
92.Molet S, Hamid Q, Davoine F, Nutku E, Taha R, Pagé N, et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. Journal of Allergy and Clinical Immunology. 2001;108(3):430-8. doi: https://doi.org/10.1067/mai.2001.117929.
93.Nanzer AM, Chambers ES, Ryanna K, Richards DF, Black C, Timms PM, et al. Enhanced production of IL-17A in patients with severe asthma is inhibited by 1α,25-dihydroxyvitamin D3 in a glucocorticoid-independent fashion. Journal of Allergy and Clinical Immunology. 2013;132(2):297-304.e3. doi: https://doi.org/10.1016/j.jaci.2013.03.037.
94.Chung KF. Airway microbial dysbiosis in asthmatic patients: A target for prevention and treatment? J Allergy Clin Immunol. 2017;139(4):1071-81. doi: 10.1016/j.jaci.2017.02.004. PubMed PMID: 28390574.
95.Kalliomäki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet. 2001;357(9262):1076-9. doi: 10.1016/s0140-6736(00)04259-8. PubMed PMID: 11297958.
96.Moura JCV, Moura ICG, Gaspar GR, Mendes GMS, Faria BAV, Jentzsch NS, et al. The use of probiotics as a supplementary therapy in the treatment of patients with asthma: a pilot study and implications. Clinics (Sao Paulo). 2019;74:e950-e. Epub 2019/08/12. doi: 10.6061/clinics/2019/e950. PubMed PMID: 31411278.
97.Chen Y-S, Lin Y-L, Jan R-L, Chen H-H, Wang J-Y. Randomized placebo-controlled trial of lactobacillus on asthmatic children with allergic rhinitis. Pediatric Pulmonology. 2010;45(11):1111-20. doi: 10.1002/ppul.21296.
98.Liu J, Chen F-H, Qiu S-Q, Yang L-T, Zhang H-P, Liu J-Q, et al. Probiotics enhance the effect of allergy immunotherapy on regulating antigen specific B cell activity in asthma patients. Am J Transl Res. 2016;8(12):5256-70. PubMed PMID: 28078000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊