跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/09/25 13:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林秋男
研究生(外文):Chiu-Nan Lin
論文名稱:包覆亞甲基藍的幾丁聚醣對牙科植體之光抗菌化學治療
論文名稱(外文):Photoantimicrobial chemotherapy of methylene blue-encapsulated chitosan on dental implants
指導教授:陳俊呈陳俊呈引用關係
指導教授(外文):Chun-Cheng Chen
口試委員:張憲彰吳靖宙蔡定侃丁信智
口試委員(外文):Hsien-Chang ChangChing-Chou WuTing-Kan TsaiShinn-Jyh Ding
口試日期:2021-07-23
學位類別:博士
校院名稱:中山醫學大學
系所名稱:口腔科學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:46
中文關鍵詞:牙科植體牙科植體周圍炎光抗菌化學療法亞甲藍幾丁聚醣
外文關鍵詞:dental implantperi-implantitisphotoantimicrobial chemothrapymethylene bluechitosan
DOI:10.6834/csmu202100259
相關次數:
  • 被引用被引用:0
  • 點閱點閱:70
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於鈦金屬人工牙根植體在人體中的高成功率,使得人工植牙已經變成患者因疾病缺牙後的一種有效而且可靠的替代治療方式。但隨著人工植牙治療的盛行,細菌在人工植牙周圍軟硬組織中的積累,所造成的疾病發生率也隨之提高。過去學者們已經致力於研究,如何減少或消除鈦金屬人工植體上的細菌黏附和生物膜,以減低致病菌對人工牙根健康的影響。在人工牙根植體周圍炎的治療中,雷射領域的應用已被公認是有效的新治療方式。然而,在雷射治療中,光抗菌化學療法 (PACT)中常用的亞甲藍(MB)光敏劑因為在鈦金屬植體表面的滯留性不好,而對細菌產生的效果有限。本研究的目的是在體外實驗中,使用水溶性四級銨幾丁聚醣(QTS),來增強亞甲藍光敏劑的滯留性與抗菌性,以及針對被生物膜汙染的大顆粒噴砂及酸蝕(SLA)表面處理的鈦合金上的所產生的效用做出評估。我們比較了使用不同濃度的QTS+MB來做PACT治療,在消滅革蘭氏陰性放線菌或革蘭氏陽性變形鏈球菌上的有效性。我們檢查細菌計數和脂多醣(LPS)檢測,以及評估人類成骨細胞樣MG63細胞的生長。結果表明,具有滯留能力的QTS+MB協同治療,顯著降低了鈦合金表面生物膜的堆積。更重要的是,在以QTS+MB-PACT治療處理過後的鈦金屬試片上,MG63細胞的成骨活性結果表現不輸給無菌的鈦金屬試片對照組。得出的結論是,在提高留滯能力、有效根除細菌和促進細胞生長方面,使用1% QTS包覆100 μg/mL MB的PACT協同治療是治療人工牙根植體周圍炎的一種有希望的治療方式。
Intensive efforts have been made to eliminate or substantial reduce bacterial adhesion and biofilm formation on titanium implants. However, in the management of peri-implantitis, the methylene blue (MB) photosensitizer commonly used in photoantimicrobial chemotherapy (PACT) is limited to a low retention on the implant surface. The purpose of this study was to assess enhancive effect of water-soluble quaternary ammonium chitosan (QTS) on MB retention on biofilm-infected SLA (sandblasted, large grid, and acid-etched) Ti alloy surfaces in vitro. The effectiveness of QTS + MB with different concentrations in eliminating Gram-negative A. actinomycetemcomitans or Gram-positive S. mutans bacteria was compared before and after PACT. Bacterial counting and lipopolysaccharide (LPS) detection were examined, and then the growth of human osteoblast-like MG63 cells was evaluated. The results indicated that the synergistic QTS + MB with retention ability significantly decreased the biofilm accumulation on the Ti alloy surface, which was better than the same concentration of 1 wt% methyl cellulose (MC). More importantly, the osteogenic activity of MG63 cells on the disinfected sample treated by QTS + MB-PACT modality was comparable to that of sterile Ti control, significantly higher than that by MC + MB-PACT modality. It is concluded that, in terms of improved retention efficacy, effective bacteria eradication, and enhanced cell growth, synergistically, PACT using the 100 μg/mL MB-encapsulated 1% QTS was a promising modality for the treatment of peri-implantitis.
致謝........................................................................I
中文摘要....................................................................II
Abstract..................................................................III
Content....................................................................IV
Figure list...............................................................VII
Table list.................................................................IX
Chapter 1 Introduction......................................................1
1.1 Dental implants.....................................................1
1.2 Osseointergration and dental implant surface treatment..............1
1.3 Biofilm.............................................................2
1.4 Streptococcus mutans................................................2
1.5 Aggregatibacter actinomycetemcomitan................................3
1.6 LPS.................................................................3
1.7 Peri-implant diseases...............................................3
1.8 Treatment methods for peri-implantitis..............................4
1.9 Nonsurgical treatments..............................................5
1.10 Mechanical debridement..............................................6
1.11 Air-polishing with glycine powder...................................6
1.12 Chemical debridement................................................7
1.13 HOCL chemical agent.................................................7
1.14 Laser treatment.....................................................8
1.15 aPDT treatment......................................................8
1.16 Photosensitizer.....................................................9
1.17 Bioadhesion of photosensitizer.....................................10
Chapter 2 Materials and methods............................................11
2.1 Preparation of QTS.................................................11
2.2 Preparation of solution............................................11
2.3 L929 cytotoxicity..................................................12
2.4 Viscosity..........................................................12
2.5 Preparation of titanium alloy......................................12
2.6 Solution flowability...............................................13
2.7 Bacteria seeding...................................................13
2.8 Photodynamic treatment.............................................13
2.9 Antibacterial efficacy.............................................14
2.9.1 Bacterial counting.................................................14
2.9.2 Bacterial colony observation.......................................14
2.9.3 LPS detection......................................................14
2.10 MG63 cell culture..................................................15
2.10.1 Cell attachment....................................................15
2.10.2 Cell proliferation.................................................15
2.10.3 Alkaline phosphatase activity......................................15
2.10.4 Calcium deposit quantification.....................................15
2.11 Statistical analysis...............................................16
Chapter 3 Results..........................................................17
3.1 L929 cell Cytotoxicity.............................................17
3.2 Viscosity of photosensitizer solutions.............................18
3.3 Retention efficacy of photosensitizer solutions....................19
3.4 Bacteriostatic ratio of different treatments.......................20
3.5 Bacterial colonies of different treatments.........................21
3.6 Residual LPS amount................................................22
3.7 MG63 Cell morphology of different treatments.......................23
3.8 MG63 Cell proliferation of different treatments....................24
3.9 Alkaline phosphatase (ALP) activity of different treatments........25
3.10 Mineralization of different treatments.............................26
Chapter 4 Discussion.......................................................28
Chapter 5 Conclusions......................................................34
References.................................................................35
[1] Roccuzzo A, Stähli A, Monje A, Sculean A, Salvi GE. Peri-Implantitis: A Clinical Update on Prevalence and Surgical Treatment Outcomes. J Clin Med. 2021 Mar 6;10(5):1107.
[2] Negoro M, Kanazawa M, Sato D, Shimada R, Miyayasu A, Asami M, Katheng A, Kusumoto Y, Abe Y, Baba K, Minakuchi S. Patient-reported outcomes of implant-assisted removable partial dentures with magnetic attachments using short implants: A prospective study. J Prosthodont Res. 2021 Jul 1.
[3] Brånemark PI, Adell R, Breine U, Hansson BO, Lindström J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg. 1969;3(2):81-100.
[4] Brånemark PI, Adell R, Albrektsson T, Lekholm U, Lundkvist S, Rockler B. Osseointegrated titanium fixtures in the treatment of edentulousness. Biomaterials. 1983 Jan;4(1):25-8.
[5] Junker R, Dimakis A, Thoneick M, Jansen JA. Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res. 2009 Sep;20 Suppl 4:185-206.
[6] Dohan Ehrenfest DM, Coelho PG, Kang BS, Sul YT, Albrektsson T. Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol. 2010 Apr;28(4):198-206.
[7] Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, Kloss F, Gröbe A, Heiland M, Ebker T. Impact of Dental Implant Surface Modifications on Osseointegration. Biomed Res Int. 2016;2016:6285620.
[8] Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res. 1991 Jul;25(7):889-902.
[9] Buser D, Sennerby L, De Bruyn H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontol 2000. 2017 Feb;73(1):7-21.
[10] Wennerberg A, Galli S, Albrektsson T. Current knowledge about the hydrophilic and nanostructured SLActive surface. Clin Cosmet Investig Dent. 2011 Sep 5;3:59-67.
[11] Buser D, Janner SF, Wittneben JG, Brägger U, Ramseier CA, Salvi GE. 10-year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: a retrospective study in 303 partially edentulous patients. Clin Implant Dent Relat Res. 2012 Dec;14(6):839-51.
[12] Wennerberg A, Albrektsson T. On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants. 2010 Jan-Feb;25(1):63-74.
[13] Huang L, Xu QA, Liu C, Fan MW, Li YH. Anti-caries DNA vaccine-induced secretory immunoglobulin A antibodies inhibit formation of Streptococcus mutans biofilms in vitro. Acta Pharmacol Sin. 2013 Feb;34(2):239-46.
[14] Nomura H, Isshiki Y, Sakuda K, Sakuma K, Kondo S. Effects of oakmoss and its components on biofilm formation of Legionella pneumophila. Biol Pharm Bull. 2013;36(5):833-7.
[15] Wojtyczka RD, Kępa M, Idzik D, Kubina R, Kabała-Dzik A, Dziedzic A, Wąsik TJ. In Vitro Antimicrobial Activity of Ethanolic Extract of Polish Propolis against Biofilm Forming Staphylococcus epidermidis Strains. Evid Based Complement Alternat Med. 2013;2013:590703.
[16] Zhao K, Tseng BS, Beckerman B, Jin F, Gibiansky ML, Harrison JJ, Luijten E, Parsek MR, Wong GCL. Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms. Nature. 2013 May 16;497(7449):388-391.
[17] Welin-Neilands J, Svensäter G. Acid tolerance of biofilm cells of Streptococcus mutans. Appl Environ Microbiol. 2007 Sep;73(17):5633-8.
[18] Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res. 2011;45(1):69-86.
[19] Marsh PD. Dental plaque: biological significance of a biofilm and community life-style. J Clin Periodontol. 2005;32 Suppl 6:7-15.
[20] Bottner A, He RY, Sarbu A, Nainar SMH, Dufour D, Gong SG, Lévesque CM. Streptococcus mutans isolated from children with severe-early childhood caries form higher levels of persisters. Arch Oral Biol. 2020 Feb;110:104601.
[21] Tamura S, Yonezawa H, Motegi M, Nakao R, Yoneda S, Watanabe H, Yamazaki T, Senpuku H. Inhibiting effects of Streptococcus salivarius on competence-stimulating peptide-dependent biofilm formation by Streptococcus mutans. Oral Microbiol Immunol. 2009 Apr;24(2):152-61.
[22] Jung CJ, Yeh CY, Shun CT, Hsu RB, Cheng HW, Lin CS, Chia JS. Platelets enhance biofilm formation and resistance of endocarditis-inducing streptococci on the injured heart valve. J Infect Dis. 2012 Apr 1;205(7):1066-75.
[23] Meyer DH, Fives-Taylor PM. The role of Actinobacillus actinomycetemcomitans in the pathogenesis of periodontal disease. Trends Microbiol. 1997 Jun;5(6):224-8.
[24] Wilson M, Henderson B. Virulence factors of Actinobacillus actinomycetemcomitans relevant to the pathogenesis of inflammatory periodontal diseases. FEMS Microbiol Rev. 1995 Dec;17(4):365-79.
[25] Gu K, Bainbridge B, Darveau RP, Page RC. Antigenic components of Actinobacillus actinomycetemcomitans lipopolysaccharide recognized by sera from patients with localized juvenile periodontitis. Oral Microbiol Immunol. 1998 Jun;13(3):150-7.
[26] Sweeney RP, Lowary TL. New insights into lipopolysaccharide assembly and export. Curr Opin Chem Biol. 2019 Dec;53:37-43.
[27] Wang X, Quinn PJ. Lipopolysaccharide: Biosynthetic pathway and structure modification. Prog Lipid Res. 2010 Apr;49(2):97-107. doi: 10.1016/j.plipres.2009.06.002.
[28] Zablotsky MH, Diedrich DL, Meffert RM. Detoxification of endotoxin-contaminated titanium and hydroxyapatite-coated surfaces utilizing various chemotherapeutic and mechanical modalities. Implant Dent. 1992 Summer;1(2):154-8.
[29] Ntrouka VI, Slot DE, Louropoulou A, Van der Weijden F. The effect of chemotherapeutic agents on contaminated titanium surfaces: a systematic review. Clin Oral Implants Res. 2011 Jul;22(7):681-690.
[30] Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006 Oct;17 Suppl 2:68-81.
[31] Elani HW, Starr JR, Da Silva JD, Gallucci GO. Trends in Dental Implant Use in the U.S., 1999-2016, and Projections to 2026. J Dent Res. 2018 Dec;97(13):1424-1430.
[32] Berglundh T, Armitage G, Araujo MG, Avila-Ortiz G, Blanco J, Camargo PM, Chen S, Cochran D, Derks J, Figuero E, Hämmerle CHF, Heitz-Mayfield LJA, Huynh-Ba G, Iacono V, Koo KT, Lambert F, McCauley L, Quirynen M, Renvert S, Salvi GE, Schwarz F, Tarnow D, Tomasi C, Wang HL, Zitzmann N. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Periodontol. 2018 Jun;89 Suppl 1:S313-S318.
[33] Derks J, Tomasi C. Peri-implant health and disease. A systematic review of current epidemiology. J Clin Periodontol. 2015 Apr;42 Suppl 16:S158-71.
[34] Charalampakis G, Ramberg P, Dahlén G, Berglundh T, Abrahamsson I. Effect of cleansing of biofilm formed on titanium discs. Clin Oral Implants Res. 2015 Aug;26(8):931-936.
[35] Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018 Jul;16(7):397-409.
[36] Aveyard J , Bradley JW , McKay K , McBride F , Donaghy D , Raval R , D'Sa RA . Linker-free covalent immobilization of nisin using atmospheric pressure plasma induced grafting. J Mater Chem B. 2017 Apr 7;5(13):2500-2510.
[37] Yuan K, Chan YJ, Kung KC, Lee TM. Comparison of osseointegration on various implant surfaces after bacterial contamination and cleaning: a rabbit study. Int J Oral Maxillofac Implants. 2014 Jan-Feb;29(1):32-40.
[38] Huang TC, Chen CJ, Chen CC, Ding SJ. Enhancing osteoblast functions on biofilm-contaminated titanium alloy by concentration-dependent use of methylene blue-mediated antimicrobial photodynamic therapy. Photodiagnosis Photodyn Ther. 2019 Sep;27:7-18.
[39] Roos-Jansåker AM, Lindahl C, Renvert H, Renvert S. Nine- to fourteen-year follow-up of implant treatment. Part II: presence of peri-implant lesions. J Clin Periodontol. 2006 Apr;33(4):290-5.
[40] van Velzen FJ, Ofec R, Schulten EA, Ten Bruggenkate CM. 10-year survival rate and the incidence of peri-implant disease of 374 titanium dental implants with a SLA surface: a prospective cohort study in 177 fully and partially edentulous patients. Clin Oral Implants Res. 2015 Oct;26(10):1121-8.
[41] Fransson C, Lekholm U, Jemt T, Berglundh T. Prevalence of subjects with progressive bone loss at implants. Clin Oral Implants Res. 2005 Aug;16(4):440-6.
[42] Heitz-Mayfield LJ, Lang NP. Comparative biology of chronic and aggressive periodontitis vs. peri‐implantitis. Periodontol 2000. 2010;53:167‐181.
[43] Roccuzzo A, De Ry S, Sculean A, Roccuzzo M, Salvi G.E. Current approaches for the non-surgical management of periimplant diseases. Curr. Oral Health Rep. 2020.
[44] Meyer S, Giannopoulou C, Courvoisier D, Schimmel M, Müller F, Mombelli A. Experimental mucositis and experimental gingivitis in persons aged 70 or over. Clinical and biological responses. Clin Oral implant Res. 2016;28(8):1005‐1012.
[45] Tirone F, Salzano S, Rodi D, Pozzatti L. Three-Year Evaluation of the Influence of Implant Surfaces on Implant Failure and Peri-implantitis: A Double-Blind Randomized Controlled Trial with Split-Mouth Design. Int J Oral Maxillofac Implants. 2021 Mar-Apr;36(2):e23-e30.
[46] Mombelli A, Lang NP. The diagnosis and treatment of peri-implantitis. Periodontol 2000. 1998 Jun;17:63-76.
[47] Amoroso PF, Adams RJ, Waters MG, Williams DW. Titanium surface modification and its effect on the adherence of Porphyromonas gingivalis: an in vitro study. Clin Oral Implants Res. 2006 Dec;17(6):633-7.
[48] Chen CJ, Ding SJ, Chen CC. Effects of Surface Conditions of Titanium Dental Implants on Bacterial Adhesion. Photomed Laser Surg. 2016 Sep;34(9):379-88.
[49] Slots J, Ting M. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in human periodontal disease: occurrence and treatment. Periodontol 2000. 1999 Jun;20:82-121.
[50] Bonito AJ, Lux L, Lohr KN. Impact of local adjuncts to scaling and root planing in periodontal disease therapy: a systematic review. J Periodontol. 2005 Aug;76(8):1227-36.
[51] Soukos NS, Goodson JM. Photodynamic therapy in the control of oral biofilms. Periodontol 2000. 2011 Feb;55(1):143-66.
[52] Lang NP, Salvi GE, Sculean A. Nonsurgical therapy for teeth and implants-When and why? Periodontol 2000. 2019 Feb;79(1):15-21.
[53] Lang NP, Mombelli A, Tonetti MS, Brägger U, Hämmerle CH. Clinical trials on therapies for peri-implant infections. Ann Periodontol. 1997 Mar;2(1):343-56.
[54] Jepsen S, Berglundh T, Genco R, Aass AM, Demirel K, Derks J, Figuero E, Giovannoli JL, Goldstein M, Lambert F, Ortiz-Vigon A, Polyzois I, Salvi GE, Schwarz F, Serino G, Tomasi C, Zitzmann NU. Primary prevention of peri-implantitis: managing peri-implant mucositis. J Clin Periodontol. 2015 Apr;42 Suppl 16:S152-7.
[55] Heitz-Mayfield LJ, Mombelli A. The therapy of peri‐implantitis: a systematic review. Int J Oral Maxillofac Implants. 2014;29(Suppl):325‐ 345.
[56] Figuero E, Graziani F, Sanz I, Herrera D, Sanz M. Management of peri-implant mucositis and peri-implantitis. Periodontol 2000. 2014 Oct;66(1):255-73.
[57] Blasi A, Iorio-Siciliano V, Pacenza C, Pomingi F, Matarasso S, Rasperini G. Biofilm removal from implants supported restoration using different instruments: a 6-month comparative multicenter clinical study. Clin Oral Implants Res. 2016 Feb;27(2):e68-73.
[58] Renvert S, Lindahl C, Roos-Jans ker AM, Persson GR. Treatment of peri‐implantitis using an Er:YAG laser or an air‐abrasive device: a randomized clinical trial. J Clin Periodontol. 2011;38(1):65‐73.
[59] Mettraux GR, Sculean A, Bürgin WB, Salvi GE. Two‐year clinical outcomes Following non‐surgical mechanical therapy of peri‐implantitis with adjunctive diode laser application. Clin Oral Implant Res. 2016;27(7):845‐849
[60] Schwarz F, Becker K, Sager M. Efficacy of professionally administered plaque removal with or without adjunctive measures for the treatment of peri‐implant mucositis. A systematic review and metaanalysis. J Clin Periodontol. 2015;42(Suppl 16):13.
[61] Wohlfahrt JC, Aass AM, Koldsland OC. Treatment of peri-implant mucositis with a chitosan brush-A pilot randomized clinical trial. Int J Dent Hyg. 2019 May;17(2):170-176.
[62] John G, Sahm N, Becker J, Schwarz F. Nonsurgical treatment of peri-implantitis using an air-abrasive device or mechanical debridement and local application of chlorhexidine. Twelve-month follow-up of a prospective, randomized, controlled clinical study. Clin Oral Investig. 2015 Nov;19(8):1807-14.
[63] Kreisler M, Kohnen W, Christoffers AB, Götz H, Jansen B, Duschner H, d'Hoedt B. In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er : YAG laser and an air powder system. Clin Oral Implants Res. 2005 Feb;16(1):36-43.
[64] Renvert S, Roos-Jansåker AM, Claffey N. Non-surgical treatment of peri-implant mucositis and peri-implantitis: a literature review. J Clin Periodontol. 2008 Sep;35(8 Suppl):305-15.
[65] Ntrouka V, Hoogenkamp M, Zaura E, van der Weijden F. The effect of chemotherapeutic agents on titanium-adherent biofilms. Clin Oral Implants Res. 2011 Nov;22(11):1227-34.
[66] Bürgers R, Witecy C, Hahnel S, Gosau M. The effect of various topical peri-implantitis antiseptics on Staphylococcus epidermidis, Candida albicans, and Streptococcus sanguinis. Arch Oral Biol. 2012 Jul;57(7):940-7.
[67] Mombelli A, Lang NP. Antimicrobial treatment of peri‐implant infections. Clin Oral Implant Res. 1992;3(4):162‐168.
[68] Büchter A, Meyer U, Kruse-Losler B, Joos U, Kleinheinz J. Sustained release of doxycycline for the treatment of peri‐implantitis: Randomised controlled trial. Br J Oral Maxillofac Surg. 2004;42(5):439‐ 444.
[69] Iorio-Siciliano V, Blasi A, Stratul SI, Ramaglia L, Sculean A, Salvi GE, Rusu D. Anti-infective therapy of peri-implant mucositis with adjunctive delivery of a sodium hypochlorite gel: a 6-month randomized triple-blind controlled clinical trial. Clin Oral Investig. 2020 Jun;24(6):1971-1979.
[70] Lapenna D, Cuccurullo F. Hypochlorous acid and its pharmacological antagonism: an update picture. Gen Pharmacol. 1996 Oct;27(7):1145-7.
[71] Wang L, Bassiri M, Najafi R, Najafi K, Yang J, Khosrovi B, Hwong W, Barati E, Belisle B, Celeri C, Robson MC. Hypochlorous acid as a potential wound care agent: part I. Stabilized hypochlorous acid: a component of the inorganic armamentarium of innate immunity. J Burns Wounds. 2007 Apr 11;6:e5.
[72] Rossi-Fedele G, Guastalli AR, Doğramacı EJ, Steier L, De Figueiredo JA. Influence of pH changes on chlorine-containing endodontic irrigating solutions. Int Endod J. 2011 Sep;44(9):792-9.
[73] Mainnemare A, Mégarbane B, Soueidan A, Daniel A, Chapple IL. Hypochlorous acid and taurine-N-monochloramine in periodontal diseases. J Dent Res. 2004 Nov;83(11):823-31.
[74] Chen CJ, Chen CC, Ding SJ. Effectiveness of Hypochlorous Acid to Reduce the Biofilms on Titanium Alloy Surfaces in Vitro. Int J Mol Sci. 2016 Jul 19;17(7):1161.
[75] Deppe H, Horch HH, Neff A. Conventional versus CO2 laser-assisted treatment of peri-implant defects with the concomitant use of pure-phase beta-tricalcium phosphate: a 5-year clinical report. Int J Oral Maxillofac Implants. 2007 Jan-Feb;22(1):79-86.
[76] Bach G, Neckel C, Mall C, Krekeler G. Conventional versus laser-assisted therapy of periimplantitis: a five-year comparative study. Implant Dent. 2000;9(3):247-51.
[77] Aimetti M, Mariani GM, Ferrarotti F, Ercoli E, Liu CC, Romano F. Adjunctive efficacy of diode laser in the treatment of peri-implant mucositis with mechanical therapy: A randomized clinical trial. Clin Oral Implants Res. 2019 May;30(5):429-438.
[78] Lin GH, Suárez López Del Amo F, Wang HL. Laser therapy for treatment of peri-implant mucositis and peri-implantitis: An American Academy of Periodontology best evidence review. J Periodontol. 2018 Jul;89(7):766-782.
[79] Aoki A, Sasaki KM, Watanabe H, Ishikawa I. Lasers in nonsurgical periodontal therapy. Periodontol 2000. 2004;36:59-97.
[80] Konopka K, Goslinski T. Photodynamic therapy in dentistry. J Dent Res. 2007 Aug;86(8):694-707.
[81] Sculean A, Aoki A, Romanos G, Schwarz F, Miron RJ, Cosgarea R. Is Photodynamic Therapy an Effective Treatment for Periodontal and Peri-Implant Infections? Dent Clin North Am. 2015 Oct;59(4):831-58.
[82] Moan J, Berg K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol. 1991 Apr;53(4):549-53.
[83] Silva JC, Lacava ZG, Kuckelhaus S, Silva LP, Neto LF, Sauro EE, Tedesco AC. Evaluation of the use of low level laser and photosensitizer drugs in healing. Lasers Surg Med. 2004;34(5):451-7.
[84] Braham P, Herron C, Street C, Darveau R. Antimicrobial photodynamic therapy may promote periodontal healing through multiple mechanisms. J Periodontol. 2009 Nov;80(11):1790-8.
[85] Takasaki AA, Aoki A, Mizutani K, Schwarz F, Sculean A, Wang CY, Koshy G, Romanos G, Ishikawa I, Izumi Y. Application of antimicrobial photodynamic therapy in periodontal and peri-implant diseases. Periodontol 2000. 2009;51:109-40.
[86] Wainwright M. Photoantimicrobials and PACT: what's in an abbreviation? Photochem Photobiol Sci. 2019 Jan 1;18(1):12-14.
[87] Bassetti M, Schär D, Wicki B, Eick S, Ramseier CA, Arweiler NB, Sculean A, Salvi GE. Anti-infective therapy of peri-implantitis with adjunctive local drug delivery or photodynamic therapy: 12-month outcomes of a randomized controlled clinical trial. Clin Oral Implants Res. 2014 Mar;25(3):279-287.
[88] Schär D, Ramseier CA, Eick S, Arweiler NB, Sculean A, Salvi GE. Anti-infective therapy of peri-implantitis with adjunctive local drug delivery or photodynamic therapy: six-month outcomes of a prospective randomized clinical trial. Clin Oral Implants Res. 2013 Jan;24(1):104-10.
[89] Sgolastra F, Petrucci A, Severino M, Graziani F, Gatto R, Monaco A. Adjunctive photodynamic therapy to non-surgical treatment of chronic periodontitis: a systematic review and meta-analysis. J Clin Periodontol. 2013 May;40(5):514-26.
[90] Arweiler NB, Pietruska M, Pietruski J, Skurska A, Dolińska E, Heumann C, Auschill TM, Sculean A. Six-month results following treatment of aggressive periodontitis with antimicrobial photodynamic therapy or amoxicillin and metronidazole. Clin Oral Investig. 2014 Dec;18(9):2129-35.
[91] Oz M, Lorke DE, Hasan M, Petroianu GA. Cellular and molecular actions of Methylene Blue in the nervous system. Med Res Rev. 2011 Jan;31(1):93-117.
[92] Khdair A, Gerard B, Handa H, Mao G, Shekhar MP, Panyam J. Surfactant-polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy. Mol Pharm. 2008 Sep-Oct;5(5):795-807.
[93] Wilson M. Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochem Photobiol Sci. 2004 May;3(5):412-8.
[94] Bürgers R, Witecy C, Hahnel S, Gosau M. The effect of various topical peri-implantitis antiseptics on Staphylococcus epidermidis, Candida albicans, and Streptococcus sanguinis. Arch Oral Biol. 2012 Jul;57(7):940-7.
[95] Longer MA, Robinson JR. Fundamental Aspects of Bioadhesion. Pharm. Int. 1986 7:114–117.
[96] Shaikh R, Raj Singh TR, Garland MJ, Woolfson AD, Donnelly RF. Mucoadhesive drug delivery systems. J Pharm Bioallied Sci. 2011 Jan;3(1):89-100.
[97] Ahuja A, Ali J, Khar KR. Mucoadhesive Drug Delivery Systems. Drug Dev. Ind. Pharm. 1997;23:489–515.
[98] López-Jiménez L, Fusté E, Martínez-Garriga B, Arnabat-Domínguez J, Vinuesa T, Viñas M. Effects of photodynamic therapy on Enterococcus faecalis biofilms. Lasers Med Sci. 2015 Jul;30(5):1519-26.
[99] Sechriest VF, Miao YJ, Niyibizi C, Westerhausen-Larson A, Matthew HW, Evans CH, Fu FH, Suh JK. GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis. J Biomed Mater Res. 2000 Mar 15;49(4):534-41.
[100] Ding SJ. Biodegradation Behavior of Chitosan/Calcium Phosphate Composites. J. Non-Crystal. Solids 2007 353: 2367–2373.
[101] Wang P, Shen Y, Zhao L. Chitosan nanoparticles loaded with aspirin and 5-fluororacil enable synergistic antitumour activity through the modulation of NF-κB/COX-2 signalling pathway. IET Nanobiotechnol. 2020 Aug;14(6):479-484.
[102] Uzair B, Akhtar N, Sajjad S, Bano A, Fasim F, Zafar N, Leghari SAK. Targeting microbial biofilms: by Arctium lappa l. synthesised biocompatible CeO2-NPs encapsulated in nano-chitosan. IET Nanobiotechnol. 2020 May;14(3):217-223.
[103] Lin MC, Chen CC, Wu IT, Ding SJ. Enhanced antibacterial activity of calcium silicate-based hybrid cements for bone repair. Mater Sci Eng C Mater Biol Appl. 2020 May;110:110727.
[104] Raafat D, Sahl HG. Chitosan and its antimicrobial potential--a critical literature survey. Microb Biotechnol. 2009 Mar;2(2):186-201.
[105] Lin CH, Chien HF, Lin MH, Chen CP, Shen M, Chen CT. Chitosan Inhibits the Rehabilitation of Damaged Microbes Induced by Photodynamic Inactivation. Int J Mol Sci. 2018 Sep 1;19(9):2598.
[106] Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010 Jan 31;62(1):83-99.
[107] Lee WF, Chiu RJ. Investigation of Charge Effects on Drug Release Behavior for Ionic Thermosensitive Hydrogels. Mater. Sci. Eng. C 2002 20:161–166.
[108] Shrestha A, Hamblin MR, Kishen A. Characterization of a conjugate between Rose Bengal and chitosan for targeted antibiofilm and tissue stabilization effects as a potential treatment of infected dentin. Antimicrob Agents Chemother. 2012 Sep;56(9):4876-84.
[109] Choi SS, Lee HK, Chae HS. Synergistic in vitro photodynamic antimicrobial activity of methylene blue and chitosan against Helicobacter pylori 26695. Photodiagnosis Photodyn Ther. 2014 Dec;11(4):526-32.
[110] Romeo U, Nardi GM, Libotte F, Sabatini S, Palaia G, Grassi FR. The Antimicrobial Photodynamic Therapy in the Treatment of Peri-Implantitis. Int J Dent. 2016;2016:7692387.
[111] Hamblin MR. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol. 2016 Oct;33:67-73.
[112] Akilov OE, O’Riordan K, Kosaka S, Hasan T. Photodynamic Therapy Against Intracellular Pathogens: Problems and Potentials. Med. Lasers Appl. 2006 21: 251–260.
[113] Maisch T, Baier J, Franz B, Maier M, Landthaler M, Szeimies RM, Bäumler W. The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7223-8.
[114] Stalling SS, Akintoye SO, Nicoll SB. Development of Photocrosslinked Methylcellulose Hydrogels for Soft Tissue Reconstruction. Acta Biomater. 2009 5: 1911–1918.
[115] Baltazar LM, Ray A, Santos DA, Cisalpino PS, Friedman AJ, Nosanchuk JD. Antimicrobial Photodynamic Therapy: An Effective Alternative Approach to Control Fungal Infections. Front. Microbiol. 2015 6:202.
[116] Sharma SK, Dai T, Kharkwal GB, Huang YY, Huang L, De Arce VJ, Tegos GP, Hamblin MR. Drug discovery of antimicrobial photosensitizers using animal models. Curr Pharm Des. 2011;17(13):1303-19.
[117] Wei CK, Ding SJ. Dual-Functional Bone Implants with Antibacterial Ability and Osteogenic Activity. J. Mater. Chem. B 2017 5:1943–1953.
[118] Tate MC, Shear DA, Hoffman SW, Stein DG, LaPlaca MC. Biocompatibility of Methylcellulose-Based Constructs Designed for Intracerebral Gelation Following Experimental Traumatic Brain Injury. Biomaterials 2001 22:1113–1123.
[119] Rolim JP, de-Melo MA, Guedes SF, Albuquerque-Filho FB, de Souza JR, Nogueira NA, Zanin IC, Rodrigues LK. The Antimicrobial Activity of Photodynamic Therapy Against Streptococcus Mutans Using Different Photosensitizers. J. Photochem. Photobiol. B 2012 106:40–46.
[120] Lee YS, Wurster RD. Methylene Blue Induces Cytotoxicity in Human Brain Tumor Cells. Cancer Lett. 1995 88:141–145.
[121] Jung J, Wen J, Sun Y. Amphiphilic quaternary ammonium chitosans self-assemble onto bacterial and fungal biofilms and kill adherent microorganisms. Colloids Surf B Biointerfaces. 2019 Feb 1;174:1-8.
[122] Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A, Molin S, Tolker-Nielsen T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol. 2003 Jun;48(6):1511-24.
[123] Fontana CR, Abernethy AD, Som S, Ruggiero K, Doucette S, Marcantonio RC, Boussios CI, Kent R, Goodson JM, Tanner AC, Soukos NS. The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J Periodontal Res. 2009 Dec;44(6):751-9.
[124] Miyata S, Miyaji H, Kawasaki H, Yamamoto M, Nishida E, Takita H, Akasaka T, Ushijima N, Iwanaga T, Sugaya T. Antimicrobial photodynamic activity and cytocompatibility of Au25(Capt)18 clusters photoexcited by blue LED light irradiation. Int J Nanomedicine. 2017 Apr 4;12:2703-2716.
[125] Kim SH, Park SH, Chang BS, Lee SY, Lee JK, Um HS. Antimicrobial Effect of Photodynamic Therapy Using Methylene Blue and Red Color Diode Laser on Biofilm Attached to Sandblasted and Acid-Etched Surface of Titanium. Laser Dent. Sci. 2017 1:83–90.
[126] Huang TC, Chen CJ, Ding SJ, Chen CC. Antimicrobial efficacy of methylene blue-mediated photodynamic therapy on titanium alloy surfaces in vitro. Photodiagnosis Photodyn Ther. 2019 Mar;25:7-16.
[127] Camacho-Alonso F, Julián-Belmonte E, Chiva-García F, Martínez-Beneyto Y. Bactericidal Efficacy of Photodynamic Therapy and Chitosan in Root Canals Experimentally Infected with Enterococcus faecalis: An In Vitro Study. Photomed Laser Surg. 2017 Apr;35(4):184-189.
[128] Darabpour E, Kashef N, Mashayekhan S. Chitosan nanoparticles enhance the efficiency of methylene blue-mediated antimicrobial photodynamic inactivation of bacterial biofilms: An in vitro study. Photodiagnosis Photodyn Ther. 2016 Jun;14:211-7.
[129] Del Carpio-Perochena A, Kishen A, Shrestha A, Bramante CM. Antibacterial Properties Associated with Chitosan Nanoparticle Treatment on Root Dentin and 2 Types of Endodontic Sealers. J Endod. 2015 Aug;41(8):1353-8.
[130] Davey ME, O’Toole GA. Microbial Biofilms: From Ecology to Molecular Genetics. Microbiol. Mol. Biol. Rev. 2000 64:847–867.
[131] Kreisler M, Kohnen W, Christoffers AB, Götz H, Jansen B, Duschner H, d'Hoedt B. In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er : YAG laser and an air powder system. Clin Oral Implants Res. 2005 Feb;16(1):36-43.
[132] Shrestha A, Cordova M, Kishen A. Photoactivated Polycationic Bioactive
Chitosan Nanoparticles Inactivate Bacterial Endotoxins. J. Endod. 2015 41:686–691.
[133] Almeida JM, Theodoro LH, Bosco AF, Nagata MJ, Oshiiwa M, Garcia VG. In Vivo Effect of Photodynamic Therapy on Periodontal Bone Loss in Dental Furcations. J. Periodontal. 2008 79:1081–1088.
[134] Ding SJ, Chu YH, Wang DY. Enhanced Properties of Novel Zirconia-Based Osteo-Implant Systems. Appl. Mater. Today 2017 9;622–632.
[135] Eick S, Meier I, Spoerlé F, Bender P, Aoki A, Izumi Y, Salvi GE, Sculean A. In Vitro-Activity of Er:YAG Laser in Comparison with other Treatment Modalities on Biofilm Ablation from Implant and Tooth Surfaces. PLoS One. 2017 Jan 26;12(1):e0171086.
[136] Wu IT, Kao PF, Huang YR, Ding SJ. In Vitro and in Vivo Osteogenesis of Gelatin-Modified Calcium Silicate Cement with Washout Resistance. Mater. Sci. Eng. C 2020 117:111297.
[137] Gristina AG. Biomaterial-Centered Infection: Microbial Adhesion Versus Tissue Integration. Science 1987 237:1588–1595.
[138] Wu BC, Wei CK, Hsueh NS, Ding SJ. Comparative cell attachment, cytotoxicity and antibacterial activity of radiopaque dicalcium silicate cement and white-coloured mineral trioxide aggregate. Int Endod J. 2015 Mar;48(3):268-76.
[139] Huang YR, Wu IT, Chen CC, Ding SJ. In vitro comparisons of microscale and nanoscale calcium silicate particles. J Mater Chem B. 2020 Jul 22;8(28):6034-6047.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊