跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/04/01 16:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張美琳
研究生(外文):Dias Nirmala Prakoso
論文名稱:用有限元素法於鋼儲架的抗震結構分析與設計
論文名稱(外文):Seismic Resistant Structural Analysis and Design for Steel Storage Rack Using Finite Element Method
指導教授:李政鋼李政鋼引用關係趙鳴趙鳴引用關係
指導教授(外文):Prof. Cheng-Kang LeeProf. Min Chao
口試委員:鄭永長趙鳴李政鋼
口試委員(外文):Yung-Chang ChengProf. Min ChaoProf. Cheng-Kang Lee
口試日期:2021-01-08
學位類別:碩士
校院名稱:正修科技大學
系所名稱:工業工程與管理研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:93
中文關鍵詞:鋼儲物架托盤架抗震有限元分析
外文關鍵詞:Steel storage racksPallet racksSeismic resistantFinite element analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
在許多行業中,越來越多的鋼製儲物架使用以及在過去的地震事件中觀察到的儲物架和托盤商品的性能推動了儲物架的抗震技術的發展。雅加達位於一個非常複雜和活躍的構造區域。這種情況導致印度尼西亞成為世界上地震潛力最大的地區的一部分。許多儲物架在地震中發生故障。機架本身的結構性故障或商品從架子上掉下來的情況下,其中任何一種故障模式都不會破壞生命安全性能目標。由於這些事實,有必要評估雅加達的鋼製儲物架的抗震性。

這項研究調查了用於交叉通道機架響應的地震基礎隔離系統的設計,該系統可以滿足所有潛在機架負載配置的規定性能目標。潛在載荷配置和齒條長寬比的巨大變化在地震響應中起關鍵作用,這可能會導致滑動,搖擺或組合的滑石行為。

在徹底審查相關文獻和實踐的基礎上,已經確定了地震參數,評估方法和分析技術,可用於雅加達市的鋼製儲物架。評估是使用RMI 2012,SNI-03-1726-2019和ASCE / SEI 7-16編碼建議的靜態非線性(推覆)分析程序進行的,其中使用了代表研究區域的地震參數。放入使用商業軟件SAP2000-v15.0.1建模的常規機架結構的有限元模型。

報告中包含的信息將對參與其他領域類似機架立式設計的工程師或製造商有所幫助。
Increasing use of steel storage racks across many industries and observed performance of the racks and pallet merchandise during past earthquake events have motivated the development of seismic protective technologies for the racks. Jakarta is located in a very complex and active tectonic region. This situation led Indonesia to be part of the region that has the highest seismic potential in the world. Many storage racks fail during earthquakes. Structural failure of the rack itself or to merchandise falling off of the shelves where either failure mode would not quench the life-safety performance target. Due to these facts, the need for an evaluation of the seismic resistance of steel storage racks in Jakarta is a necessity.

This research investigates the design of a seismic base isolation system for cross-aisle rack response that can satisfy prescribed performance objectives for all potential rack load configurations. The large variation in potential load configurations and the rack aspect ratio play a key role in seismic response which may result in sliding, rocking, or combined slide-rock behavior.

Seismic parameters, assessment methodologies, analysis techniques have been determined for use in Jakarta city for steel storage rack based on a thorough review of relevant literature and practices. The assessment has been carried out using the static nonlinear (pushover) analysis procedure proposed by RMI 2012, SNI-03-1726-2019, and ASCE/SEI 7-16 codes have been adopted where seismic parameters representing the study area have been used. Put on a Finite Element Model of a conventional rack structure modeled using the commercial software SAP2000-v15.0.1.

The information contained into the report would be beneficial to engineers or manufacturers who are involved with similar the design of rack uprights in other areas.
ACKNOWLEDGMENTS................................................................... II
ABSTRACT ................................................................................. III
LIST OF CONTENTS...................................................................V
LIST OF FIGURE……………………………………………………………………VI
LIST OF TABLE………………………………………………………………………X

Chapter 1 Introduction………………………………………...…….………………..1
1.1Research Background……………………………...……….…………….……1
1.2Research Problems …………………………….…………….…………….......2
1.3Research Intention …………...…………….……………….……….………...3
1.4Research Scope and Limitations ……….……………………….……..…........3
1.5Research Methodology ………………………………….……….……………4
Chapter 2 Literature review………. ……………………………….………………….5
2.1 Research Background ……………………………………..…….……….……5
2.2 Landfroms of Indonesia …………………………….……………………..…..6
2.3 Economy in South Jakarta………………………………………….……..……7
2.4 Prioritization Earthquake of Factors and Building Structure Risk
Categories………………………………………………………………...........8
2.5 MCEG In Indonesia………………………………. ...……...….………………9
2.6 Site Class ……………………………………...…………………….………..10
2.7 Alloy Design Spectral Response Acceleration Parameters ..…..……..…….…11
2.8 Alloy Seismic Design Category …………….….…………...………….…….11
2.9 Alloy Design Response Spectral Curve of Indonesia…………….…………..12
Chapter 3 Methodology………………………………….………….………………..13
3.1 Description of Steel Rack Structures Considered………………..………….13
3.2 Seismic Design Algorithm ……………………………………..………..….15
3.3 Improvement of Outline Rack ….…………………………….….…….........16
3.4 Design Specifications …………………………………………….…………18
3.5 Background About SAP2000-v15.0.1 ………………………………………19
3.6 Frame Model………………………………………………………………...20
3.7 Frame Section Design…………………………………………….…………23
Chapter 4 The Structural Performance and Design of Steel Storage Racks…….........29
4.1 Analysis Procedure Used …………………………………………….……..29
4.2 Seismic Condition ………………………………………….………...……..30
4.3 Determine Site Cofficients Fa and Fv ………………………………………32
4.4 Determine Design Spectral Response Acceleration Parameters SDS and
SD1 ………………………………………………………..……..….……….35
4.5 Determine Spectrum Response Graph……………………………….……...36
4.7 Determine Load Combinations ……………………………………………..38
Chapter 5 Conclusion and Recommendations …...…………………………….…….75
5.1 Conclusion ……………..…………………………………………….……..75
5.2 Recommendations …………..……………………………………….……...77
References ……………………………………….……………….………………….78

[1] Putra, Rusnadi Rahmat. Kiyono, Junji. Ono, Yusuke. Parajuli, Hari Ram. Seismic Hazard Analysis for Indonesia. 2012, 1-2.
[2] Dewi, R. Y. dan Sudrajat A. V, 2007, Analisis Kinerja Struktur Beton Bertulang dengan Sistem Balok Kolom dan Flat Slab Terhadap Beban Gempa Kuat, Program Studi Teknik Sipil Fakultas Teknik Sipil dan Lingkungan Institut Teknologi Bandung, BandungBadan Tenaga Nuklir Nasional. 2015. "Laporan Evaluasi Tapak RDE Aspek Kegempaan". 3-4.
[3] Dewi, R. Y. dan Sudrajat A. V, 2007, Analisis Kinerja Struktur Beton Bertulang dengan Sistem Balok Kolom dan Flat Slab Terhadap Beban Gempa Kuat, Program Studi Teknik Sipil Fakultas Teknik Sipil dan Lingkungan Institut Teknologi Bandung, BandungBadan Tenaga Nuklir Nasional. 2015. "Laporan Evaluasi Tapak RDE Aspek Kegempaan", 3-4.
[4] Dewi, R. Y. dan Sudrajat A. V, 2007, Analisis Kinerja Struktur Beton Bertulang dengan Sistem Balok Kolom dan Flat Slab Terhadap Beban Gempa Kuat, Program Studi Teknik Sipil Fakultas Teknik Sipil dan Lingkungan Institut Teknologi Bandung, BandungBadan Tenaga Nuklir Nasional. 2015. "Laporan Evaluasi Tapak RDE Aspek Kegempaan", 3-4.
[5] https://en.wikipedia.org/wiki/Indonesia
[6] https://en.wikipedia.org/wiki/Human_Development_Index
[7] SNI-1726-2019 : Seismic Regulations for Buildings and Non-buildings, 15.
[8] SNI-1726-2019 : Seismic Regulations for Buildings and Non-buildings, 20.
[9] ASCE 7-16: Minimum Design Loads and Associated Criteria for Buildings and Other Structures,116.
[10] ASCE 7-16: Minimum Design Loads and Associated Criteria for Buildings and Other Structures,116.
[11] ASCE 7-16: Minimum Design Loads and Associated Criteria for Buildings and Other Structures,115.
[12] ASCE 7-16: Minimum Design Loads and Associated Criteria for Buildings and Other Structures,115.
[13] An optimization model for the design of rack storage systems. IIE Annual Conference and Expo 2014.
[14] An optimization model for the design of rack storage systems. IIE Annual Conference and Expo 2014.
[15] SNI 03-1729-2002: Seismic Regulations for Buildings and Non-buildings
[16] ASCE 7-10: Minimum Design Loads and Associated Criteria for Buildings and Other Structures.
[17] SNI-1726-2019 : Seismic Regulations for Buildings and Non-buildings
[18] ASCE 7-16: Minimum Design Loads and Associated Criteria for Buildings and Other Structures.
[19] ANSI MH16.1 [RMI 2012]: Specification for the Design, Testing and Utilization of Industrial Steel Storage Racks.
[20] GB50018-2002: Technical code for cold-formed thin-wall steel structure.
[21] BS EN 15512:2009 Steel static storage systems. Adjustable pallet racking systems. Principles for structural design.
[22] EN15620-2010: European Standard specifies tolerances, deformations, and clearances.
[23] http://rsapuskim2019.litbang.pu.go.id/
[24] http://rsapuskim2019.litbang.pu.go.id/
[25] http://rsapuskim2019.litbang.pu.go.id/
[26] http://rsapuskim2019.litbang.pu.go.id/
[27] http://rsapuskim2019.litbang.pu.go.id/
[28] WAP (shanghai) Corp.,Ltd. Structural Calculation Report. June, 2019, 52-53.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top