跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 20:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李聰敏
研究生(外文):LEE, TSUNG-MIN
論文名稱:利用田口方法與自製下肢假體評量電腦斷層影像品質的最小可分辨差異
論文名稱(外文):Quantifying The Minimum Detectable Difference Of Computed Tomography Scanned Images Via The Taguchi Analysis: A Feasibility Study With An Indigenous Extremity Phantom And A Planar Gauge
指導教授:潘榕光
指導教授(外文):PAN, LUNG KWANG
口試委員:潘榕光陳健懿趙敏楊登和潘龍發
口試委員(外文):PAN, LUNG-KWANGCHEN, CHIEN-YICHAO, MAX-MINYANG, DENG-HOPAN, LUNG-FA
口試日期:2021-01-05
學位類別:博士
校院名稱:中臺科技大學
系所名稱:醫學影像暨放射科學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:109
中文關鍵詞:CT 影像線群塊規田口方法直交表最小可偵測差異MATLAB學生 t 檢定
外文關鍵詞:CT scan imagingline group gaugeTaguchiorthogonal arrayminimum detectable differenceMATLABStudent's t-test
相關次數:
  • 被引用被引用:1
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:1
將電腦斷層的七個掃描參數因子(kVp、mAs、螺距、FOV、切片厚度、旋轉時間和矩陣大小)組成田口方法獨特的L18直交表,對周邊動脈阻塞性疾病(PAOD)症候群的電腦斷層掃描進行最佳化的參數設定分析,在最佳化過程中,採用自製線群塊規假體來量化最小可偵測差異(minimum detectable difference, MDD)。首先將L18直交表產生之電腦斷層影像,經由三位訓練有素的資深放射師各別進行了三次排序專家審視,得到最佳化電腦斷層掃描設定參數組合,PAOD的最佳CT掃描參數為100kvp、 240 mAs、0.513掃描螺距、320 FOV、4.0 mm切片厚度、旋轉時間0.75s與768×768矩陣大小。最後經由最小可偵測差異(MDD)經修正後的學生t檢定和變異數分析證實為1.43 mm,深度為0.35 mm。在最佳化過程中,由於可以擴大和加強群組之間的影像相關性,所以採用的排序方法優於算分方法。對不同醫療儀器設備和文獻來源的MDD進行了比較分析,結果顯示根據量化的MDD,心臟X光儀器具有最佳的空間解析率。同時,由於相對使用較低的kVp或者和mAs,本研究採用PAOD之電腦斷層掃描參數所得到MDD數據是優於先前腹部實驗的結果。
Seven factors of CT (kVp, mAs, pitch, FOV, slice thickness, rotation time, and matrix size) were organized into Taguchi unique L18 orthogonal array to optimize the CT scan protocol for peripheral arterial occlusive disease (PAOD) syndrome. An indigenous line group gauge was adopted to quantify the minimum detectable difference (MDD) in the optimizing process. The optimal combination of CT scan protocols was obtained from three well-trained radiologists who ranked the scanned images of the gauge three times. The optimal setting of CT scan protocol for PAOD was 100 kVp, 240 mAs, 0.513 pitch, 320 FOV, 4.0 slice thickness, rotation time of 0.75s, and 768×768 matrix size. The smallest MDD was verified as 1.43 mm at a 0.35 mm depth of the gauge by the revised Student's t-test and ANOVA. The ranking process was found to be preferable than grading in the optimizing process because the imaging correlation among groups could be magnified and emphasized. The comparative analysis of various MDDs obtained from different medical facilities and literary sources was performed, which revealed that the cardiac X-ray provided the finest spatial resolution according to the quantified MDD. Meanwhile, the CT scan protocol for PAOD adopted in this study had finer MDD than that for the abdomen due to comparatively low kVp or/and mAs.
目錄
摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 IX
第一章前言 1
1.1 研究背景 1
1.2 研究動機 6
1.3 研究目的 6
1.4 文章架構 7
第二章 背景回顧與文獻分析 9
2.1 周圍動脈阻塞性疾病(Peripheral Arterial Occlusive Disease , PAOD)概論 9
2.1.1 周圍動脈阻塞性疾病其病理機轉 9
2.1.2 周圍動脈阻塞性疾病的診斷 10
2.1.3 周圍動脈阻塞性疾病的治療 12
2.2 研究相關文獻探討 13
2.2.1 電腦斷層(CT)與相關儀器的影像品質分析 13
2.2.2 Minimum Detectable Difference (MDD)之實際運用 16
第三章 材料與方法 19
3.1 田口實驗方法簡述 19
3.1.1 田口實驗方法 19
3.1.2 田口直交表(Orthogonal Array, OA) 20
3.1.3 田口分析法 22
3.1.4 變異係數分析 22
3.2 實驗設備與假體 24
3.2.1 電腦斷層(Computed Tomography)與顯影劑 24
3.2.2 壓克力線群塊規假體 26
3.2.3 擬人下肢壓克力假體 28
3.3 研究實驗設計 31
3.3.1 電腦斷層掃描因子的選用 31
3.3.1.1 管球旋轉時間(Rotation time) 31
3.3.1.2 照野(Field of view, FOV) 31
3.3.1.3 切面厚度(Slice thickness) 32
3.3.1.4 管電流與時間乘積(mAs) 32
3.3.1.5 管電壓峰值(kVp) 32
3.3.1.6 螺距比(Pitch) 33
3.3.1.7 矩陣大小(Matrix size) 33
3.4 直交表實驗因子的設定 34
3.5 CT影像鑑別和評量理論 37
3.5.1 CT影像專家檢定法之Ranking評分方式 37
3.5.2 CT影像品質量化程序 37
3.5.3半高全寬(Full width at half maximum, FWHM)之檢驗方法 39
3.5.4 Minimum Detectable Difference (MDD)之檢驗與計算方法 41
3.6 實驗步驟及流程 43
第四章 結果 45
4.1 CT影像的原始數據資料分析 45
4.1.1 Ranking評分方式的影像數據分析 45
4.1.2 因子反應分析 48
4.2 Ranking評分方式之變異數分析 51
4.3 量化MDD在現實中提供豐富的資訊信息 52
第五章 討論 54
5.1 CT影像實驗因子的交互作用 54
5.2 驗證田口之建議 56
5.3 控制操作運用訊號雜訊比 59
5.4 排序方式優於算分方式 61
5.4.1 電腦斷層影像資料分析之Grading評分方式 61
5.4.2 Grading評分方式的數據分析 62
5.4.3 因子反應分析 64
5.4.4 影像排序方法優於算分方法原因分析 67
5.5 MDD與先前研究結果的比較 69
5.6 CT影像最佳化參數之臨床病例驗證 73
第六章 結論 84
第七章 未來展望 85
參考文獻 86

圖目錄
圖一、血管硬化機轉導致血管形成粥狀樣斑塊 2
圖二、細微之膕動脈和下肢動脈血管網絡 4
圖三、微細的膕動脈與小腿末梢動脈網絡 5
圖四、飛利浦電腦斷層掃描系統 25
圖五、壓克力線群塊規假體(PMMA line group phantom)設計示意圖 27
圖六、擬人小腿壓克力假體和線群塊規假體圖 29
圖七、實際CT掃描影像及猪前臂骨放入壓克力容器圖 29
圖八、壓克力假體與塊規假體放置在CT檯上預備圖 30
圖九、小腿壓克力假體與塊規組裝假體之真實CT側面影像 30
圖十、使用MATLAB將原始CT影像轉換為灰階數值矩陣圖 38
圖十一、兩波峰的平均數與幅高半寬之示意圖 40
圖十二、利用相似三角形定理即可得MDD 之絕對距離 42
圖十三、實驗步驟與流程簡化圖 44
圖十四、線群塊規假體經電腦斷層掃瞄後取得之十八組影像 46
圖十五、Ranking評分方式之因子反應圖 49
圖十六、因子之強與弱交互作用圖 54
圖十七、重要因子與各項設定因子之強烈交互作用圖 55
圖十八、根據MATLAB函數的CT掃描系統之常規預設掃描 58
圖十九、SN 0、SN I 和SNⅡ因不同公式致不同結果之因子反應圖 60
圖二十、Grading評分方式的因子反應圖 65
圖二十一、醫療用商業壓克力假體型號是2144715 Rev 8 71
圖二十二、常規預設參數的商業壓克力假體軸切面CT影像 72
圖二十三、最佳化後參數的商業壓克力假體軸切面CT影像 72
圖二十四、臨床病例驗證案例一之參數最佳化前與後矢狀切面影像 75
圖二十五、臨床病例驗證案例二之參數最佳化前與後矢狀切面影像 76
圖二十六、臨床病例驗證案例三之參數最佳化前與後矢狀切面影像 77
圖二十七、臨床病例驗證案例四之參數最佳化前與後矢狀切面影像 78
圖二十八、臨床病例驗證案例五之參數最佳化前與後冠狀切面影像 79
圖二十九、臨床病例驗證案例六之參數最佳化前與後冠狀切面影像 80
圖三十、 臨床病例驗證案例七之參數最佳化前與後冠狀切面影像 81
圖三十一、臨床病例驗證案例八之參數最佳化前與後冠狀切面影像 82

表目錄
表一、田口方法之L18直交表 21
表二、本研究使用七項CT掃描參數因子與分配之水準 35
表三、參照田口方法所設計之L18 (37)直交表 36
表四、Ranking評分方式,塊規假體之CT影像評分 47
表五、Ranking評分方式之因子反應分析表 50
表六、Ranking評分方式之變異數分析 52
表七、常規預設、第九標和最佳化後參數之MDD精確計算值 57
表八、Grading評分方式,塊規假體之CT影像評分 63
表九、Grading評分方式之因子反應分析表 66
表十、常規預設、第九標、排序及算分數最佳化參數之MDD值 68
表十一、來自各種不同醫療儀器之量化MDD值 70





參考文獻
[1] Mark K, et al. (2019). The Association of Periodontitis and Peripheral Arterial Occlusive Disease—A Systematic Review, Int J Mol Sci, 20(12):2936.
[2] 衛生福利部統計處,歷年死因統計
https://dep.mohw.gov.tw/DOS/cp-3352-33579-113.html
[3] Fowkes, FG, et al. (2013). Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis, Lancet, 382 (9901):1329–1340.
[4] Seitaro O, et al. (2016). CT Angiography in Patients with Peripheral Arterial Disease: Effect of Small Focal Spot Imaging and Iterative Model Reconstruction on the Image Quality, Academic Radiology, 23(10):1283-1289.
[5] Violi F, et al. (2012). Antiplatelet therapy in peripheral artery disease, Handbook of experimental pharmacology, 210:547–563.
[6] O'Neill WC, et al. (2015). Prevalence of nonatheromatous lesions in peripheral arterial disease, Arterioscler Thromb Vasc Biol, 35:439-447.
[7] Karwowski W, et al. (2012). The mechanism of vascular calcification - a systematic review, Med Sci Monit , 18:RA1-11.
[8] Y CC, et al. (2016). Lower Extremity Peripheral Artery Disease in End-stage Renal Disease: A Literature Review, J Intern Med Taiwan, 27:68-78.
[9] Fontaine R, et al. (1954). Surgical treatment of peripheral circulation disorders, Helv Chir Acta, 21:499-533.
[10] Hirsch AT, et al. (2006). ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation, Circulation, 113:e463-e654.
[11] Muller MD, et al. (2013). Physiology in Medicine: Peripheral arterial disease, J Appl Physiol, 115:1219–1226.
[12] Salvatore Novo, (2002). Classification, epidemiology, risk factors, and natural history of peripheral arterial disease, Diabetes, Obesity and Metabolism, 4(2):1-6
[13] Anne SC, et al. (2006). CT Angiography of Peripheral Arterial Occlusive Disease, Tech Vasc Interventional Rad, 9:143-149.
[14] Arthurs ZM, et al. (2010). Evaluation of peripheral atherosclerosis: a comparative analysis of angiography and intravascular ultrasound imaging, J Vasc Surg , 51:933-938.
[15] Thanongchai S, et al. (2010). Optimization of the table speed of lower extremity CT angiography protocols in different patient age groups, Journal of Cardiovascular Computed Tomography, 4:173–183.
[16] Matthew DM, et al. (2013). Physiology in Medicine: Peripheral arterial disease, J Appl Physiol,115:1219–1226
[17] Creager MA, et al. (2016). The Crisis of Vascular Disease and the Journey to Vascular Health, Circulation, 133:2593–2598.
[18] Malyar N, et al. (2013). Recent trends in morbidity and in-hospital outcomes of in-patients with peripheral arterial disease: A nationwide population-based analysis, Eur. Heart J, 34:2706–2714.
[19] Rooke TW, et al. (2011). 2011 ACCF/AHA focused update of the guideline for the management of patients with peripheral artery disease (updating the 2005guideline), Vasc Med, 16:452-476.
[20] Kitaura K, et al. (2009). Assessment of peripheral arterial disease of lower limbs with ultrasonography and ankle brachial index at the initiation of hemodialysis, Ren Fail, 31:785-790.
[21] Met R, et al. (2009). Diagnostic performance of computed tomography angiography in peripheral arterial disease: a systematic review and meta-analysis. JAMA, 301:415- 424.
[22] Perriss R, et al. (2005). Preliminary experience with contrast-enhanced MR angiography in patients with end-stage renal failure, Acad Radiol, 12:652-657.
[23] Chang CJ, et al. (2014). Therapy for Lower Extremity Peripheral Arterial Disease, The Journal of Taiwan Pharmacy, 30(3):92-97.
[24] Hirsch AT, et al. 2006. ACC/AHA2005 practice guidelines for the management of patients with peripheral arterial disease (Lower Extremity, Renal, Mesenteric, and Abdominal Aortic), Circulation, 113:e474-e547.
[25] Norgren L, et al. (2007). Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II), J Vasc Surg, 45:Suppl S1-S5.
[26] Utsunomiya D, et al. (2010). Comparison of standard- and low-tube voltage MDCT angiography in patients with peripheral arterial disease, Eur Radiol, 20:2758–2765.
[27] Patel BN, et al. (2011). Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: Optimization of energy level viewing significantly increases lesion contrast, Clinical Radiology, 68:148-154.
[28] Jasmin E, et al. (2013). Low-Dose Dual-Source CT Angiography With Iterative Reconstruction for Coronary Artery Stent Evaluation, JACC: Cardiovascular Imaging, 6 (4):458– 465.
[29] Anjali VT, et al. (2016). A study of the internal diameter of popliteal artery, anterior and posterior tibial arteries in cadavers, Indian Journal of Clinical Anatomy and Physiology, 3(3):287-290.
[30] Eggers PW, et al. (1999). Nontraumatic lower extremity amputations in Medicare end-stage renal disease population, Kidney Internal, 56:1524-1533.
[31] Peng BR, et al. (2019). Optimizing the minimum detectable difference of computed tomography scanned images using Taguchi analysis: a feasibility study with an indigenous hepatic phantom and line group gauge, Journal of Mechanics in Medicine and Biology, 19(8):1940048.
[32] Samrit K, et al. (2017). The Optimization of the Single Photon Emission Computed Tomography Image Quality via Taguchi Analysis: A Feasibility Study of a V-Shaped Phantom, Journal of Medical Imaging and Health Informatics, 7:143-148.
[33] Pan LF, et al. (2017). Optimizing left anterior oblique (LAO) caudal imaging in coronary angiography using the taguchi method: A phantom study with clinical verification, Int J Cardiovasc Imaging, 33(9):1287-1295.
[34] Pan LF, et al. (2015). Optimization of the imaging quality of 64- slice CT acquisition protocol using taguchi analysis: A phantom study, Bio-Medical Materials and Engineering, 26:S1651-S1658.
[35] Brock TCM, et al. (2015). The minimum detectable difference (MDD) and the interpretation of treatment-related effects of pesticides in experimental ecosystems, Environ Sci Pollut Res, 22(2):1160-1174.
[36] Chou CC, et al. (2017). A Low Minimum Detectable Power, High Dynamic Range,V-Band CMOS Millimeter-Wave Logarithmic Power Detector, IEEE, 17225035.
[37] Pan LF, et al. (2019). Taguchi method-based optimization of the minimum detectable difference of a cardiac X-ray imaging system using a precise line pair gauge, J Mech Med Biol, 19(7):1940030,
[38] Ashley DH, et al. (2008). Minimum Detectable Difference of MR Diffusion Maps in Acute Ischemic Stroke, Journal of Magnetic Resonance Imaging, 27:629-633.
[39] Marios AG, et al. (2013). Minimum Detectable Change in Lung Nodule Volume in a Phantom CT Study, Academic Radiology, 20(11):1364-1370.
[40] Chang CF, et al. (2019). Semi-quantification of the minimum detectable difference of imaging quality of gamma camera SPET for four radionuclides via an innovative PMMA phantom with a V-shaped slit: interpretation of a feasibility study, Hell J Nucl Med, 22(1):49-57.
[41] Ross PJ, et al. (1996). Orthogonal array selection and utilization. In: Taguchi techniques for quality engineering, McGraw-Hill Inc. Second ed. , Chapt 3.
[42] Lochner RH, et al. (1990). Two-level experiments: Full factorial designs. In:Designing for quality-An introduction to the best of Taguchi and westernmethods of statistical experimental design. Kraus Organization Limited. , Chapt 3.
[43] 李輝煌,(2000),田口方法:品質設計的原理與實務,四版。高立圖書有限公司,249-309.
[44] Taguchi G. Introduction to Quality Engineering. Asian Productivity Organization 1990.
[45] Barker TB. (1990). The concept of quality. In: Engineering quality by design , Marcel Dekker, Inc., Chapt 1.
[46] Dhavlika MN, et al. (2003). Combined Taguchi and dual response method for optimization of a centerless grinding operation, Journal of Materials Processing Technology, 132(1-3):90-94.
[47] Tzeng YF, et al. (2005). Dimensional quality optimisation of high-speed CNC milling process with dynamic quality characteristic, Robotics and Computer-Integrated Manufacturing, 21:506-517.
[48] Shrikant K, et al. (2015). Taguchi design of experiments for optimization of ionic conductivity in nanocrystalline Gadolinium doped Ceria, Ceramics International, 41(7):8973-8980.
[49] Alireza ZA, et al. (2015). A general optimized geometry of angled ribs for enhancing the thermo-hydraulic behavior of a solar air heater channel -A Taguchi approach, Renewable Energy, 83:47-54.
[50] Harun T, et al. (2015). Application of Taguchi method for optimization of concrete strengthened with polymer after high temperature, Construction and Building Materials, 79:97-103.
[51] Hassan M, et al. (2016). Optimal design of a functionally graded biodegradable composite bone plate by using the Taguchi method and finite element analysis, Composite Structures, 119:166-173.
[52] Tan CN, et al. (2014). Using Taguchi and ANOVA methods to study the combined effects of drilling parameters on dynamic barite sag, Journal of Petroleum Science and Engineering, 121:126-133.
[53] Ibrahim IH, et al. (2009). Applying Taguchi’s off-line quality control method and ANOVA on the maneuverability of the F-5E intake, Mathematical and Computer Modelling, 49(7-8):1359-1371.
[54] 林昶仲,(2015),CT 攝影技術學,合記圖書出版社,136-140
[55] 黃正仲,(2010),放射科學-放射師必知的物理、生物和防護(第九版),力大圖書有限公司,367-393
[56] Lee TM, et al. (2020). Integration of Taguchi analysis with phantom and innovative gauges: optimization of the CT scan protocol for Peripheral Arterial Occlusive Disease (PAOD) Syndrome, Journal of Mechanics in Medicine and Biology, 20(6): 2040005.
[57] Barbora H, et al. (2018). CT angiography in the Lower Extremity Peripheral Artery Disease Feasibility of an Ultra-Low Volume Contrast Media Protocol, Cardiovasc Intervent Radiol, 41:1751-1764.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 利用商業假體與田口最佳化評量 乳房攝影之影像品質
2. 利用田口方法與商用塊規最佳化椎體成型術中透視影像品質
3. 運用田口方法優化電腦斷層自製下肢模型影像之最小可分辨差異
4. 評量心導管實驗室中輻射從業人員與病患接受心導管檢查過程中所接受到的輻射暴露劑量
5. 利用田口方法配合改良型塊規探討640切CT的30公斤小兒腹部影像之最小可分辨差異
6. 運用動態田口分析方法優化心臟電腦斷層血管攝影像之最小可分辨差異:利用三個50、70、90公斤自製假體與V型塊規
7. 單光子電腦斷層應用於紅斑性狼瘡腎炎半定量鎵腎臟造影的價值-可行性研究
8. 利用個人劑量計評估核醫99mTc-MDP骨骼掃描病人的體內劑量
9. 利用台灣癌症登記資料庫分析非小細胞肺癌第三期合併N2淋巴結轉移病患的治療與預後
10. 應用田口方法最佳化BREAST FAN 乳房假體於乳房超音波掃描參數之設定
11. 應用田口方法於優化不銹鋼鑽削製程參數之研究–以硬質合金鑽頭為例
12. 利用逆運算法分析主動脈疾病患者之臨床生理數據以預測其手術指數
13. 運用田口方法與自製肝臟假體評量電腦斷層掃描肝臟血管的最小可分辨差異
14. 利用田口方法和商業塊規最佳化心導管攝影的影像品質
15. 利用逆運算疊代法評估癲癇病患的臨床數據預測服用valproic acid後之有效血中濃度