跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/14 23:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧名竣
研究生(外文):TENG, MING-CHUN
論文名稱:微波溶劑熱法製作立方狀MnS@Ag2S與球形MnS@ZnS核殼奈米材料在光催化產氫之應用
論文名稱(外文):Microwave Solvothermal Synthesis of Cubic MnS@Ag2S and Spherical MnS@ZnS Core-Shell Nanomaterials for Photocatalytic H2 Production Application
指導教授:張棋榕
指導教授(外文):Chang, Chi-Jung
口試委員:吳昌謀蔡健益張棋榕
口試委員(外文):Wu, Chang-MouTsay, Chien-YieChang, Chi-Jung
口試日期:2021-07-15
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:110
中文關鍵詞:光觸媒產氫硫化錳硫化銀硫化鋅核殼結構微波輔助法能帶結構
外文關鍵詞:Photocatalysthydrogen productionMnSAg2SZnScore-shellmicrowave methodband structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
致謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.2.1 立方狀硫化錳/硫化銀光催化產氫複合光觸媒 2
1.2.2 球形硫化錳/硫化鋅光催化產氫複合光觸媒 2
第二章 基礎理論與文獻回顧 4
2.1 光觸媒的發展與應用 4
2.1.1 光觸媒的應用 4
2.1.2 光催化產氫的反應機制 4
2.2 影響光催化活性之因素 6
2.2.1 光觸媒帶隙能量與複合改質 6
2.2.2 晶體結構、形貌與表面積影響 8
2.2.3 光催化反應下環境pH值 9
2.2.4 光觸媒結構缺陷與空缺 10
2.2.5 犧牲溶液 12
2.3 光觸媒基本性質與製備方法 13
2.3.1 硫化錳 13
2.3.2 硫化銀 17
2.3.3 硫化鋅 20
第三章 實驗藥品與步驟 23
3.1 實驗藥品及配件 23
3.2 實驗儀器 25
3.3 實驗流程圖 27
3.3.1 製作立方狀硫化錳/硫化銀複合光觸媒之流程圖 27
3.3.2 製作球形硫化錳/硫化鋅複合光觸媒之流程圖 27
3.4 實驗樣品命名 28
3.4.1 立方狀硫化錳光觸媒樣品命名 28
3.4.2 立方狀硫化錳/硫化銀複合光觸媒樣品命名 28
3.4.3 球形硫化錳/硫化鋅複合光觸媒樣品命名 28
3.5 立方狀硫化錳/硫化銀複合光觸媒產氫實驗步驟 29
3.5.1 立方狀硫化錳光觸媒製備 29
3.5.2 立方狀硫化錳/硫化銀複合光觸媒製備 29
3.5.3 複合光觸媒產氫實驗 30
3.6 球形硫化錳/硫化鋅複合光觸媒產氫實驗步驟 31
3.6.1 球形硫化錳光觸媒製備 31
3.6.2 球形硫化錳/硫化鋅複合光觸媒製備 31
3.6.3 硫化鋅光觸媒製備 32
3.6.4 複合光觸媒產氫實驗 33
3.7 實驗分析及鑑定 34
3.7.1 冷場發射掃描式電子顯微鏡(Cold Field Emission Scanning Electron Microscope, FESEM) 34
3.7.2 場發射穿透式電子顯微鏡及能量散佈X射線光譜儀(Field Emission Transmission Electron Microscope and Energy Dispersive X-Ray Spectroscopy , FETEM and EDS) 35
3.7.3 多功能薄膜X光繞射儀(Multipurpose Thin-film X-ray Diffractometer , HR-XRD) 36
3.7.4 X射線光電子能譜儀 (X-Ray Photoelectron Spectroscopy, XPS/ESCA) 38
3.7.5 近邊X射線吸收精細結構光譜 (Near Edge X-ray Absorption Fine Structure, NEXAFS Spectra) 39
3.7.6 紫外光/可見光/近紅外光光譜儀 (UV/VIS/NIR Spectrophotometer) 41
3.7.7 螢光光譜儀 (Photoluminescence Spectrometer, PL) 43
3.7.8 光電流響應 (Photocurrent)與電化學阻抗(EIS) 44
3.7.9 測量半導體的平帶電位 (Mott-Schottky plot) 45
第四章 結果與討論 47
4.1 立方狀硫化錳/硫化銀複合光觸媒 47
4.1.1 X射線繞射光譜儀 (XRD) 47
4.1.2 光觸媒之表面形貌 (FE-SEM) 49
4.1.3 光觸媒之晶相與元素分佈 (FE-TEM) 52
4.1.4 表面化學性質 (XPS) 55
4.1.5 擴散反射式紫外線-可見光譜 (UV-Vis DRS) 58
4.1.6 螢光光譜分析 (PL) 60
4.1.7 光觸媒之產氫效率 (Efficiency of H2 production) 62
4.1.8 光電流響應 (I-T curve) 65
4.1.9 近邊X射線吸收精細結構光譜 (NEXAFS Spectra) 67
4.1.10 立方狀硫化錳/硫化銀複合光觸媒反應機制 69
4.2 球形硫化錳/硫化鋅複合光觸媒 71
4.2.1 X射線繞射光譜儀 (XRD) 71
4.2.2 光觸媒之表面形貌 (FE-SEM) 73
4.2.3 光觸媒之晶相與元素分佈 (FE-TEM) 75
4.2.4 表面化學性質 (XPS) 77
4.2.5 擴散反射式紫外線-可見光譜 (UV-Vis DRS) 80
4.2.6 Mott-Schottky plot 82
4.2.7 螢光光譜分析 (PL) 84
4.2.8 光觸媒之產氫效率 (Efficiency of H2 production) 86
4.2.9 光電流響應 (I-T curve) 88
4.2.10 電化學阻抗頻譜 (EIS) 89
4.2.11 球形硫化錳/硫化鋅複合光觸媒反應機制 91
第五章 結論 93
5.1 立方狀硫化錳/硫化銀複合光觸媒之光催化產氫 93
5.2 球形硫化錳/硫化鋅複合光觸媒之光催化產氫 94
第六章 參考資料 95
[1] A. Bugat, Future Means of Hydrogen Production, (2006). https://www.osti.gov/etdeweb/biblio/20966987 (accessed May 13, 2021).
[2]再生能源資訊網, 再生能源資訊網, (n.d.). https://www.re.org.tw (accessed May 13, 2021).
[3]A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature. 238 (1972) 37–38. https://doi.org/10.1038/238037a0.
[4]X. Zhang, X. Liu, L. Zhang, D. Li, S. Liu, Novel porous Ag2S/ZnS composite nanospheres: Fabrication and enhanced visible-light photocatalytic activities, J. Alloys Compd. 655 (2016) 38–43. https://doi.org/10.1016/j.jallcom.2015.08.202.
[5]Y. Chen, Y. Liang, M. Zhao, Y. Wang, L. Zhang, Y. Jiang, G. Wang, P. Zou, J. Zeng, Y. Zhang, In Situ Ion Exchange Synthesis of Ag2S/AgVO3 Graphene Aerogels for Enhancing Photocatalytic Antifouling Efficiency, Ind. Eng. Chem. Res. 58 (2019) 3538–3548. https://doi.org/10.1021/acs.iecr.8b05962.
[6]X. Shi, X. Chen, X. Chen, S. Zhou, S. Lou, Y. Wang, L. Yuan, PVP assisted hydrothermal synthesis of BiOBr hierarchical nanostructures and high photocatalytic capacity, Chem. Eng. J. 222 (2013) 120–127. https://doi.org/10.1016/j.cej.2013.02.034.
[7]X. Yan, E. Michael, S. Komarneni, J.R. Brownson, Z.-F. Yan, Microwave- and conventional-hydrothermal synthesis of CuS, SnS and ZnS: Optical properties, Ceram. Int. 39 (2013) 4757–4763. https://doi.org/10.1016/j.ceramint.2012.11.062.
[8]S.N. Ahmed, W. Haider, Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review, Nanotechnology. 29 (2018) 342001. https://doi.org/10.1088/1361-6528/aac6ea.
[9]N. Fajrina, M. Tahir, A critical review in strategies to improve photocatalytic water splitting towards hydrogen production, Int. J. Hydrog. Energy. 44 (2019) 540–577. https://doi.org/10.1016/j.ijhydene.2018.10.200.
[10]G. Sahara, O. Ishitani, Efficient Photocatalysts for CO2 Reduction, Inorg. Chem. 54 (2015) 5096–5104. https://doi.org/10.1021/ic502675a.
[11]D. Chatterjee, S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants, J. Photochem. Photobiol. C Photochem. Rev. 6 (2005) 186–205. https://doi.org/10.1016/j.jphotochemrev.2005.09.001.
[12]J. Gamage, Z. Zhang, Applications of Photocatalytic Disinfection, Int. J. Photoenergy. 2010 (2010). https://doi.org/10.1155/2010/764870.
[13]H. Zhang, B. Chen, H. Jiang, C. Wang, H. Wang, X. Wang, A strategy for ZnO nanorod mediated multi-mode cancer treatment, Biomaterials. 32 (2011) 1906–1914. https://doi.org/10.1016/j.biomaterials.2010.11.027.
[14]K. Maeda, Photocatalytic water splitting using semiconductor particles: History and recent developments, J. Photochem. Photobiol. C Photochem. Rev. 12 (2011) 237–268. https://doi.org/10.1016/j.jphotochemrev.2011.07.001.
[15]P. Yang, Z.-J. Zhao, X. Chang, R. Mu, S. Zha, G. Zhang, J. Gong, The Functionality of Surface Hydroxy Groups on the Selectivity and Activity of Carbon Dioxide Reduction over Cuprous Oxide in Aqueous Solutions, Angew. Chem. 130 (2018) 7850–7854. https://doi.org/10.1002/ange.201801463.
[16]W.-T. Chen, A. Chan, Z.H.N. Al-Azri, A.G. Dosado, M.A. Nadeem, D. Sun-Waterhouse, H. Idriss, G.I.N. Waterhouse, Effect of TiO2 polymorph and alcohol sacrificial agent on the activity of Au/TiO2 photocatalysts for H2 production in alcohol–water mixtures, J. Catal. 329 (2015) 499–513. https://doi.org/10.1016/j.jcat.2015.06.014.
[17]H. Yan, H. Yang, TiO2–g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation, J. Alloys Compd. 509 (2011) L26–L29. https://doi.org/10.1016/j.jallcom.2010.09.201.
[18]F. Zuo, L. Wang, P. Feng, Self-doped Ti3+@TiO2 visible light photocatalyst: Influence of synthetic parameters on the H2 production activity, Int. J. Hydrog. Energy. 39 (2014) 711–717. https://doi.org/10.1016/j.ijhydene.2013.10.120.
[19]S.Y. Tee, K.Y. Win, W.S. Teo, L.-D. Koh, S. Liu, C.P. Teng, M.-Y. Han, Recent Progress in Energy-Driven Water Splitting, Adv. Sci. 4 (2017) 1600337. https://doi.org/10.1002/advs.201600337.
[20]L. Yang, S. Guo, X. Li, Au nanoparticles@MoS2 core-shell structures with moderate MoS2 coverage for efficient photocatalytic water splitting, J. Alloys Compd. 706 (2017) 82–88. https://doi.org/10.1016/j.jallcom.2017.02.240.
[21]L. Clarizia, D. Spasiano, I. Di Somma, R. Marotta, R. Andreozzi, D.D. Dionysiou, Copper modified-TiO2 catalysts for hydrogen generation through photoreforming of organics. A short review, Int. J. Hydrog. Energy. 39 (2014) 16812–16831. https://doi.org/10.1016/j.ijhydene.2014.08.037.
[22]Y. Wu, G. Lu, S. Li, The Role of Cu(I) Species for Photocatalytic Hydrogen Generation Over CuOx/TiO2, Catal. Lett. 133 (2009) 97–105. https://doi.org/10.1007/s10562-009-0165-y.
[23]R. Brahimi, Y. Bessekhouad, A. Bouguelia, M. Trari, CuAlO2/TiO2 heterojunction applied to visible light H2 production, J. Photochem. Photobiol. Chem. 186 (2007) 242–247. https://doi.org/10.1016/j.jphotochem.2006.08.013.
[24]A.A. Nada, H.A. Hamed, M.H. Barakat, N.R. Mohamed, T.N. Veziroglu, Enhancement of photocatalytic hydrogen production rate using photosensitized TiO2/RuO2-MV2+, Int. J. Hydrog. Energy. 33 (2008) 3264–3269. https://doi.org/10.1016/j.ijhydene.2008.04.027.
[25]Z. Fang, X. Huang, Y. Wang, W. Feng, Y. Zhang, S. Weng, X. Fu, P. Liu, Dual-defective strategy directing in situ assembly for effective interfacial contacts in MoS2 cocatalyst/In2S3 light harvester layered photocatalysts, J. Mater. Chem. A. 4 (2016) 13980–13988. https://doi.org/10.1039/C6TA05507A.
[26]Y. Liu, H. Wang, X. Yuan, Y. Wu, H. Wang, Y.Z. Tan, J.W. Chew, Roles of sulfur-edge sites, metal-edge sites, terrace sites, and defects in metal sulfides for photocatalysis, Chem Catal. (2021) 44–68. https://doi.org/10.1016/j.checat.2021.01.002.
[27]H. Wang, Y. Xia, H. Li, X. Wang, Y. Yu, X. Jiao, D. Chen, Highly active deficient ternary sulfide photoanode for photoelectrochemical water splitting, Nat. Commun. 11 (2020) 3078. https://doi.org/10.1038/s41467-020-16800-w.
[28]Q. Wang, N. An, Y. Bai, H. Hang, J. Li, X. Lu, Y. Liu, F. Wang, Z. Li, Z. Lei, High photocatalytic hydrogen production from methanol aqueous solution using the photocatalysts CuS/TiO2, Int. J. Hydrog. Energy. 38 (2013) 10739–10745. https://doi.org/10.1016/j.ijhydene.2013.02.131.
[29]S. Yang, H. Wang, H. Yu, S. Zhang, Y. Fang, S. Zhang, F. Peng, A facile fabrication of hierarchical Ag nanoparticles-decorated N-TiO2 with enhanced photocatalytic hydrogen production under solar light, Int. J. Hydrog. Energy. 41 (2016) 3446–3455. https://doi.org/10.1016/j.ijhydene.2015.12.190.
[30]L.A. Silva, S.Y. Ryu, J. Choi, W. Choi, M.R. Hoffmann, Photocatalytic Hydrogen Production with Visible Light over Pt-Interlinked Hybrid Composites of Cubic-Phase and Hexagonal-Phase CdS, J. Phys. Chem. C. 112 (2008) 12069–12073. https://doi.org/10.1021/jp8037279.
[31]C.-J. Chang, C.-W. Wang, Y.-H. Wei, C.-Y. Chen, Enhanced photocatalytic H2 production activity of Ag-doped Bi2WO6-graphene based photocatalysts, Int. J. Hydrog. Energy. 43 (2018) 11345–11354. https://doi.org/10.1016/j.ijhydene.2018.03.091.
[32]C.-J. Chang, Y.-G. Lin, H.-T. Weng, Y.-H. Wei, Photocatalytic hydrogen production from glycerol solution at room temperature by ZnO-ZnS/graphene photocatalysts, Appl. Surf. Sci. 451 (2018) 198–206. https://doi.org/10.1016/j.apsusc.2018.05.004.
[33]C. Li, P. Hu, H. Meng, Z. Jiang, Role of Sulfites in the Water Splitting Reaction, J. Solut. Chem. 45 (2016) 67–80. https://doi.org/10.1007/s10953-015-0422-1.
[34]L. Mi, Y. Chen, Z. Zheng, H. Hou, W. Chen, S. Cui, Beneficial metal ion insertion into dandelion-like MnS with enhanced catalytic performance and genetic morphology, RSC Adv. 4 (2014) 19257–19265. https://doi.org/10.1039/C4RA00961D.
[35]M. Dan, Q. Zhang, S. Yu, A. Prakash, Y. Lin, Y. Zhou, Noble-metal-free MnS/In2S3 composite as highly efficient visible light driven photocatalyst for H2 production from H2S, Appl. Catal. B Environ. 217 (2017) 530–539. https://doi.org/10.1016/j.apcatb.2017.06.019.
[36]Y. Tang, T. Chen, W. Guo, S. Chen, Y. Li, J. Song, L. Chang, S. Mu, Y. Zhao, F. Gao, Reduced graphene oxide supported MnS nanotubes hybrid as a novel non-precious metal electrocatalyst for oxygen reduction reaction with high performance, J. Power Sources. 362 (2017) 1–9. https://doi.org/10.1016/j.jpowsour.2017.07.019.
[37]L. Zhang, L. Zhou, H.B. Wu, R. Xu, X.W. (David) Lou, Unusual Formation of Single-Crystal Manganese Sulfide Microboxes Co-mediated by the Cubic Crystal Structure and Shape, Angew. Chem. Int. Ed. 51 (2012) 7267–7270. https://doi.org/10.1002/anie.201202877.
[38]T. Chen, Y. Tang, Y. Qiao, Z. Liu, W. Guo, J. Song, S. Mu, S. Yu, Y. Zhao, F. Gao, All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials, Sci. Rep. 6 (2016) 23289. https://doi.org/10.1038/srep23289.
[39]Y. Tang, T. Chen, S. Yu, Morphology controlled synthesis of monodispersed manganese sulfide nanocrystals and their primary application in supercapacitors with high performances, Chem. Commun. 51 (2015) 9018–9021. https://doi.org/10.1039/C5CC01700A.
[40]D.-H. Ha, T. Ly, J.M. Caron, H. Zhang, K.E. Fritz, R.D. Robinson, A General Method for High-Performance Li-Ion Battery Electrodes from Colloidal Nanoparticles without the Introduction of Binders or Conductive-Carbon Additives: The Cases of MnS, Cu2–xS, and Ge, ACS Appl. Mater. Interfaces. 7 (2015) 25053–25060. https://doi.org/10.1021/acsami.5b03398.
[41]S.M. Lee, J.-K. Lee, Y.C. Kang, Electrochemical Properties of Hollow-Structured MnS–Carbon Nanocomposite Powders Prepared by a One-Pot Spray Pyrolysis Process, Chem. – Asian J. 9 (2014) 590–595. https://doi.org/10.1002/asia.201301261.
[42]J. Beltran-Huarac, O. Resto, J. Carpena-Nuñez, W.M. Jadwisienczak, L.F. Fonseca, B.R. Weiner, G. Morell, Single-Crystal γ-MnS Nanowires Conformally Coated with Carbon, ACS Appl. Mater. Interfaces. 6 (2014) 1180–1186. https://doi.org/10.1021/am404746k.
[43]J. Beltran-Huarac, J. Palomino, O. Resto, J. Wang, W.M. Jadwisienczak, B.R. Weiner, G. Morell, Highly-crystalline γ-MnS nanosaws, RSC Adv. 4 (2014) 38103–38110. https://doi.org/10.1039/C4RA05561F.
[44]S. Biswas, S. Kar, S. Chaudhuri, Growth of different morphological features of micro and nanocrystalline manganese sulfide via solvothermal process, J. Cryst. Growth. 299 (2007) 94–102. https://doi.org/10.1016/j.jcrysgro.2006.10.236.
[45]B.J. Skromme, Y. Zhang, D.J. Smith, S. Sivananthan, Growth and characterization of pseudomorphic single crystal zinc blende MnS, Appl. Phys. Lett. 67 (1995) 2690–2692. https://doi.org/10.1063/1.114294.
[46]D. Meng, Z. Qian, Z. Yun-Qian, Z. Ying, Preparation of MnS with Different Crystal Phases for Photocatalytic H2 Production from H2S, J. Inorg. Mater. 32 (2017) 1308. https://doi.org/10.15541/jim20170104.
[47]S. Lee, M. Song, S. Kim, V. Mathew, B. Sambandam, J.-Y. Hwang, J. Kim, High lithium storage properties in a manganese sulfide anode via an intercalation-cum-conversion reaction, J. Mater. Chem. A. 8 (2020) 17537–17549. https://doi.org/10.1039/D0TA05758D.
[48]X. Zhang, Y. Chen, C. Jia, Q. Zhou, Y. Su, B. Peng, S. Yin, M. Xin, Two-step solvothermal synthesis of α-MnS spheres: Growth mechanism and characterization, Mater. Lett. 62 (2008) 125–127. https://doi.org/10.1016/j.matlet.2007.04.093.
[49]Q. Yuan, D. Liu, N. Zhang, W. Ye, H. Ju, L. Shi, R. Long, J. Zhu, Y. Xiong, Noble-Metal-Free Janus-like Structures by Cation Exchange for Z-Scheme Photocatalytic Water Splitting under Broadband Light Irradiation, Angew. Chem. 129 (2017) 4270–4274. https://doi.org/10.1002/ange.201700150.
[50]Y. Jun, Y. Jung, J. Cheon, Architectural Control of Magnetic Semiconductor Nanocrystals, J. Am. Chem. Soc. 124 (2002) 615–619. https://doi.org/10.1021/ja016887w.
[51]A.M. Ferretti, S. Mondini, A. Ponti, Manganese Sulfide (MnS) Nanocrystals: Synthesis, Properties, and Applications, IntechOpen, 2016. https://doi.org/10.5772/65092.
[52]S. Biswas, S. Kar, S. Chaudhuri, Solvothermal synthesis of α-MnS single crystals, J. Cryst. Growth. 284 (2005) 129–135. https://doi.org/10.1016/j.jcrysgro.2005.06.043.
[53]Y. Zhang, H. Wang, H. Yan, M. Yoshimura, Low-temperature hydrothermal synthesis of pure metastable γ-manganese sulfide (MnS) crystallites, J. Cryst. Growth. 243 (2002) 214–217. https://doi.org/10.1016/S0022-0248(02)01495-1.
[54]P. Zhao, Q. Zeng, X. He, H. Tang, K. Huang, Preparation of γ-MnS hollow spheres consisting of cones by a hydrothermal method, J. Cryst. Growth. 18 (2008) 4268–4272. https://doi.org/10.1016/j.jcrysgro.2008.06.076.
[55]M.M. Hosseini-Hajivar, F. Jamali-Sheini, R. Yousefi, Microwave-assisted solvothermal synthesis and physical properties of Zn-doped MnS nanoparticles, Solid State Sci. 93 (2019) 31–36. https://doi.org/10.1016/j.solidstatesciences.2018.10.010.
[56]B. Ghanbari, F. Jamali-Sheini, R. Yousefi, Microwave-assisted solvothermal synthesis and optoelectronic properties of γ-MnS nanoparticles, J. Mater. Sci. Mater. Electron. 29 (2018) 10976–10985. https://doi.org/10.1007/s10854-018-9179-9.
[57]X. Yu, C. Li-yun, H. Jian-feng, L. Jia, F. Jie, Y. Chun-yan, Influence of S/Mn molar ratio on the morphology and optical property of γ-MnS thin films prepared by microwave hydrothermal, J. Alloys Compd. 549 (2013) 1–5. https://doi.org/10.1016/j.jallcom.2012.09.032.
[58]J. Ge, Y. Li, Controllable CVD route to CoS and MnS single-crystal nanowires, Chem. Commun. (2003) 2498–2499. https://doi.org/10.1039/B307452H.
[59]D. CHAI, S. YANG, X. YUAN, B. YANG, Preparation and Characterization of α-MnS Nanocrystals, J. Chin. Ceram. Soc. 39 (2011) 1175–1178.
[60]N.S. Arul, L.S. Cavalcante, J. In Han, Facile synthesis of ZnS/MnS nanocomposites for supercapacitor applications, J. Solid State Electrochem. 22 (2018) 303–313. https://doi.org/10.1007/s10008-017-3782-1.
[61]J. Zheng, W. Ji, X. Wang, M. Ikezawa, P. Jing, X. Liu, H. Li, J. Zhao, Y. Masumoto, Improved Photoluminescence of MnS/ZnS Core/Shell Nanocrystals by Controlling Diffusion of Mn Ions into the ZnS Shell, J. Phys. Chem. C. 114 (2010) 15331–15336. https://doi.org/10.1021/jp104513k.
[62]Y. Gui, L. Qian, X. Qian, Hydrothermal synthesis of uniform rock salt (α-) MnS transformation from wurtzite (γ-) MnS, Mater. Chem. Phys. 125 (2011) 698–703. https://doi.org/10.1016/j.matchemphys.2010.09.071.
[63]J. Yu, H. Tang, Solvothermal synthesis of novel flower-like manganese sulfide particles, J. Phys. Chem. Solids. 69 (2008) 1342–1345. https://doi.org/10.1016/j.jpcs.2007.10.099.
[64]Y. Zhang, Z. Zhang, S. Wang, X. Ma, Y. Qian, Synthesis and characterization of α-MnS polyhedrons and spheres, Mater. Chem. Phys. 97 (2006) 365–370. https://doi.org/10.1016/j.matchemphys.2005.08.054.
[65]H. Dlala, M. Amlouk, S. Belgacem, P. Girard, D. Barjon, Structural and optical properties of Ag2S thin films prepared by spray pyrolysis, Eur. Phys. J. Appl. Phys. 2 (1998) 13–16. https://doi.org/10.1051/epjap:1998162.
[66]F. Jiang, Q. Tian, M. Tang, Z. Chen, J. Yang, J. Hu, One-pot synthesis of large-scaled Janus Ag–Ag2S nanoparticles and their photocatalytic properties, CrystEngComm. 13 (2011) 7189–7193. https://doi.org/10.1039/C1CE05632H.
[67]T.B. Nasrallah, H. Dlala, M. Amlouk, S. Belgacem, J.C. Bernède, Some physical investigations on Ag2S thin films prepared by sequential thermal evaporation, Synth. Met. 151 (2005) 225–230. https://doi.org/10.1016/j.synthmet.2005.05.005.
[68]S. KITOVA, J. ENEVA, A. PANOV, H. HAEFKE, Infrared photography based on vapor-deposited silver sulfide thin films, Infrared Photogr. Based Vap.-Deposited Silver Sulfide Thin Films. 38 (1994) 484–488.
[69]S. Hull, D.A. Keen, D.S. Sivia, P.A. Madden, M. Wilson, The high-temperature superionic behaviour of Ag2S, J. Phys. Condens. Matter. 14 (2001) L9–L17. https://doi.org/10.1088/0953-8984/14/1/102.
[70]P. Jiang, C.-N. Zhu, Z.-L. Zhang, Z.-Q. Tian, D.-W. Pang, Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo, Biomaterials. 33 (2012) 5130–5135. https://doi.org/10.1016/j.biomaterials.2012.03.059.
[71]C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, Q. Wang, In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window, Biomaterials. 35 (2014) 393–400. https://doi.org/10.1016/j.biomaterials.2013.10.010.
[72]A. Chatterjee, A. Priyam, S.C. Bhattacharya, A. Saha, pH dependent interaction of biofunctionalized CdS nanoparticles with nucleobases and nucleotides: A fluorimetric study, J. Lumin. 126 (2007) 764–770. https://doi.org/10.1016/j.jlumin.2006.11.010.
[73]S.I. Sadovnikov, E.A. Kozlova, E.Yu. Gerasimov, A.A. Rempel, A.I. Gusev, Enhanced photocatalytic hydrogen evolution from aqueous solutions on Ag2S/Ag heteronanostructure, Int. J. Hydrog. Energy. 42 (2017) 25258–25266. https://doi.org/10.1016/j.ijhydene.2017.08.145.
[74]W. Jiang, Z. Wu, X. Yue, S. Yuan, H. Lu, B. Liang, Photocatalytic performance of Ag2S under irradiation with visible and near-infrared light and its mechanism of degradation, RSC Adv. 5 (2015) 24064–24071. https://doi.org/10.1039/C4RA15774E.
[75]S.I. Sadovnikov, A.I. Gusev, A.A. Rempel, Artificial silver sulfide Ag2S: Crystal structure and particle size in deposited powders, Superlattices Microstruct. 83 (2015) 35–47. https://doi.org/10.1016/j.spmi.2015.03.024.
[76]L. Lv, H. Wang, Ag2S nanorice: Hydrothermal synthesis and characterization study, Mater. Lett. 121 (2014) 105–108. https://doi.org/10.1016/j.matlet.2014.01.121.
[77]X. Fan, X. Qin, L. Jing, Y. Luan, M. Xie, Controllable synthesis of floatable nanocrystalline Ag2S and Ag by a silane coupling agent-modified solvothermal method, Mater. Res. Bull. 47 (2012) 3732–3737. https://doi.org/10.1016/j.materresbull.2012.06.032.
[78]B.M. Al-Shehri, Mohd. Shkir, T.M. Bawazeer, S. AlFaify, M.S. Hamdy, A rapid microwave synthesis of Ag2S nanoparticles and their photocatalytic performance under UV and visible light illumination for water treatment applications, Phys. E Low-Dimens. Syst. Nanostructures. 121 (2020) 114060. https://doi.org/10.1016/j.physe.2020.114060.
[79]W. Yang, L. Zhang, Y. Hu, Y. Zhong, H.B. Wu, X.W. (David) Lou, Microwave-Assisted Synthesis of Porous Ag2S–Ag Hybrid Nanotubes with High Visible-Light Photocatalytic Activity, Angew. Chem. 124 (2012) 11669–11672. https://doi.org/10.1002/ange.201206715.
[80]J.-F. Zhu, Y.-J. Zhu, M.-G. Ma, L.-X. Yang, L. Gao, Simultaneous and Rapid Microwave Synthesis of Polyacrylamide−Metal Sulfide (Ag2S, Cu2S, HgS) Nanocomposites, J. Phys. Chem. C. 111 (2007) 3920–3926. https://doi.org/10.1021/jp0677851.
[81]H. Zhang, B. Wei, L. Zhu, J. Yu, W. Sun, L. Xu, Cation exchange synthesis of ZnS–Ag2S microspheric composites with enhanced photocatalytic activity, Appl. Surf. Sci. 270 (2013) 133–138. https://doi.org/10.1016/j.apsusc.2012.12.140.
[82]J. Song, C. Ma, W. Zhang, X. Li, W. Zhang, R. Wu, X. Cheng, A. Ali, M. Yang, L. Zhu, R. Xia, X. Xu, Bandgap and Structure Engineering via Cation Exchange: From Binary Ag2S to Ternary AgInS2, Quaternary AgZnInS alloy and AgZnInS/ZnS Core/Shell Fluorescent Nanocrystals for Bioimaging, ACS Appl. Mater. Interfaces. 8 (2016) 24826–24836. https://doi.org/10.1021/acsami.6b07768.
[83]Y.-C. Pu, L.-C. Wang, S.-N. Wu, J.-C. Chang, C.-S. Yeh, Aspect Ratio-Dependent Charge Carrier Dynamics in Matchstick-like Ag2S-ZnS Nanorods for Solar Hydrogen Generation, J. Phys. Chem. Lett. (2020) 2150–2157. https://doi.org/10.1021/acs.jpclett.0c00413.
[84]T. Di, B. Cheng, W. Ho, J. Yu, H. Tang, Hierarchically CdS–Ag2S nanocomposites for efficient photocatalytic H2 production, Appl. Surf. Sci. 470 (2019) 196–204. https://doi.org/10.1016/j.apsusc.2018.11.010.
[85]W. Yu, J. Yin, Y. Li, B. Lai, T. Jiang, Y. Li, H. Liu, J. Liu, C. Zhao, S.C. Singh, J. Chen, B. Lin, H. Idriss, C. Guo, Ag2S Quantum Dots as an Infrared Excited Photocatalyst for Hydrogen Production, ACS Appl. Energy Mater. 2 (2019) 2751–2759. https://doi.org/10.1021/acsaem.9b00091.
[86]L. Bai, X. Cai, J. Lu, L. Li, S. Zhong, L. Wu, P. Gong, J. Chen, S. Bai, Surface and Interface Engineering in Ag2S@MoS2 Core–Shell Nanowire Heterojunctions for Enhanced Visible Photocatalytic Hydrogen Production, ChemCatChem. 10 (2018) 2107–2114. https://doi.org/10.1002/cctc.201701998.
[87]M.-H. Hsu, C.-J. Chang, H.-T. Weng, Efficient H2 Production Using Ag2S-Coupled ZnO@ZnS Core–Shell Nanorods Decorated Metal Wire Mesh as an Immobilized Hierarchical Photocatalyst, ACS Sustain. Chem. Eng. 4 (2016) 1381–1391. https://doi.org/10.1021/acssuschemeng.5b01387.
[88]W.L. Ong, G.W. Ho, Enhanced Photocatalytic Performance of TiO2 Hierarchical Spheres Decorated with Ag2S Nanoparticles, Procedia Eng. 141 (2016) 7–14. https://doi.org/10.1016/j.proeng.2015.09.217.
[89]X. Yang, H. Xue, J. Xu, X. Huang, J. Zhang, Y.-B. Tang, T.-W. Ng, H.-L. Kwong, X.-M. Meng, C.-S. Lee, Synthesis of Porous ZnS:Ag2S Nanosheets by Ion Exchange for Photocatalytic H2 Generation, ACS Appl. Mater. Interfaces. 6 (2014) 9078–9084. https://doi.org/10.1021/am5020953.
[90]T. Yamamoto, S. Kishimoto, S. Iida, Control of valence states for ZnS by triple-codoping method, Phys. B Condens. Matter. 308–310 (2001) 916–919. https://doi.org/10.1016/S0921-4526(01)00842-0.
[91]M. Bredol, J. Merikhi, ZnS precipitation: morphology control, J. Mater. Sci. 33 (1998) 471–476. https://doi.org/10.1023/A:1004396519134.
[92]P. Calandra, M. Goffredi, V.T. Liveri, Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy, Colloids Surf. Physicochem. Eng. Asp. 160 (1999) 9–13. https://doi.org/10.1016/S0927-7757(99)00256-3.
[93]X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, ZnS nanostructures: From synthesis to applications, Prog. Mater. Sci. 56 (2011) 175–287. https://doi.org/10.1016/j.pmatsci.2010.10.001.
[94]X. Ma, J. Song, Y. Zhangsen, The light emission properties of ZnS:Mn nanoparticles, Thin Solid Films. 519 (2011) 5043–5045. https://doi.org/10.1016/j.tsf.2011.01.125.
[95]G.-J. Lee, J.J. Wu, Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications — A review, Powder Technol. 318 (2017) 8–22. https://doi.org/10.1016/j.powtec.2017.05.022.
[96]H. Chen, J. Yang, H. Chen, L. Lu, Solar photocatalytic hydrogen energy production using PbS-ZnS heterojunction/electrospun fiber composites, Energy Explor. Exploit. 37 (2019) 1477–1486. https://doi.org/10.1177/0144598718802426.
[97]R. Rameshbabu, P. Ravi, M. Sathish, Cauliflower-like CuS/ZnS nanocomposites decorated g-C3N4 nanosheets as noble metal-free photocatalyst for superior photocatalytic water splitting, Chem. Eng. J. 360 (2019) 1277–1286. https://doi.org/10.1016/j.cej.2018.10.180.
[98]X. Hao, J. Zhou, Z. Cui, Y. Wang, Y. Wang, Z. Zou, Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production, Appl. Catal. B Environ. 229 (2018) 41–51. https://doi.org/10.1016/j.apcatb.2018.02.006.
[99]L. Wang, G. Jin, Y. Shi, H. Zhang, H. Xie, B. Yang, H. Sun, Co-catalyst-free ZnS-SnS2 porous nanosheets for clean and recyclable photocatalytic H2 generation, J. Alloys Compd. 753 (2018) 60–67. https://doi.org/10.1016/j.jallcom.2018.04.086.
[100]G. Mendoza-Damián, A. Hernández-Gordillo, Ma.E. Fernández-García, P. Acevedo-Peña, F.J. Tzompantzi-Morales, R. Pérez-Hernández, Influence of ZnS wurtzite–sphalerite junctions on ZnO Core-ZnS Shell-1D photocatalysts for H2 production, Int. J. Hydrog. Energy. 44 (2019) 10528–10540. https://doi.org/10.1016/j.ijhydene.2019.02.193.
[101]J. Lu, J. Zhang, Q. Chen, H. Liu, Porous CuS/ZnS microspheres derived from a bimetallic metal-organic framework as efficient photocatalysts for H2 production, J. Photochem. Photobiol. Chem. 380 (2019) 111853. https://doi.org/10.1016/j.jphotochem.2019.111853.
[102]J. Li, L. Yan, Y. Wang, Y. Kang, W. Ma, L. Liang, Solvothermal Synthesis of Sphere-Like ZnS Microparticles and Its Visible-Light Catalytic Properties, J. Nanosci. Nanotechnol. 18 (2018) 1117–1122. https://doi.org/10.1166/jnn.2018.14202.
[103]H. Yang, C. Huang, X. Su, A. Tang, Microwave-assisted synthesis and luminescent properties of pure and doped ZnS nanoparticles, J. Alloys Compd. 402 (2005) 274–277. https://doi.org/10.1016/j.jallcom.2005.04.150.
[104]J.-Q. Sun, X.-P. Shen, K.-M. Chen, Q. Liu, W. Liu, Low-temperature synthesis of hexagonal ZnS nanoparticles by a facile microwave-assisted single-source method, Solid State Commun. 147 (2008) 501–504. https://doi.org/10.1016/j.ssc.2008.06.041.
[105]S. Sambasivam, D.P. Joseph, D.R. Reddy, B.K. Reddy, C.K. Jayasankar, Synthesis and characterization of thiophenol passivated Fe-doped ZnS nanoparticles, Mater. Sci. Eng. B. 150 (2008) 125–129. https://doi.org/10.1016/j.mseb.2008.03.009.
[106]W.Q. Peng, G.W. Cong, S.C. Qu, Z.G. Wang, Synthesis of shuttle-like ZnO nanostructures from precursor ZnS nanoparticles, Nanotechnology. 16 (2005) 1469–1473. https://doi.org/10.1088/0957-4484/16/9/008.
[107]P. Yang, M. Lü, D. Xü, D. Yuan, G. Zhou, Synthesis and photoluminescence characteristics of doped ZnS nanoparticles, Appl. Phys. A. 73 (2001) 455–458. https://doi.org/10.1007/s003390100733.
[108]A. Kudo, M. Sekizawa, Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst, Chem. Commun. (2000) 1371–1372. https://doi.org/10.1039/B003297M.
[109]J. Zhang, J. Yu, Y. Zhang, Q. Li, J.R. Gong, Visible Light Photocatalytic H2-Production Activity of CuS/ZnS Porous Nanosheets Based on Photoinduced Interfacial Charge Transfer, Nano Lett. 11 (2011) 4774–4779. https://doi.org/10.1021/nl202587b.
[110]C.-J. Chang, J.-K. Chen, K.-S. Lin, C.-Y. Huang, C.-L. Huang, Improved H2 production of ZnO@ZnS nanorod-decorated Ni foam immobilized photocatalysts, Int. J. Hydrog. Energy. 46 (2021) 11357–11368. https://doi.org/10.1016/j.ijhydene.2020.06.192.
[111]C.-J. Chang, Y.-H. Wei, K.-P. Huang, Photocatalytic hydrogen production by flower-like graphene supported ZnS composite photocatalysts, Int. J. Hydrog. Energy. 42 (2017) 23578–23586. https://doi.org/10.1016/j.ijhydene.2017.04.219.
[112]G.-J. Lee, S. Anandan, S.J. Masten, J.J. Wu, Photocatalytic hydrogen evolution from water splitting using Cu doped ZnS microspheres under visible light irradiation, Renew. Energy. 89 (2016) 18–26. https://doi.org/10.1016/j.renene.2015.11.083.
[113]Y.P. Xie, Z.B. Yu, G. Liu, X.L. Ma, H.-M. Cheng, CdS–mesoporous ZnS core–shell particles for efficient and stable photocatalytic hydrogen evolution under visible light, Energy Environ. Sci. 7 (2014) 1895–1901. https://doi.org/10.1039/C3EE43750G.
[114]J. Zhang, Y. Wang, J. Zhang, Z. Lin, F. Huang, J. Yu, Enhanced Photocatalytic Hydrogen Production Activities of Au-Loaded ZnS Flowers, ACS Appl. Mater. Interfaces. 5 (2013) 1031–1037. https://doi.org/10.1021/am302726y.
[115]國家同步輻射研究中心, (n.d.). https://www.nsrrc.org.tw/chinese/lightsource.aspx (accessed July 19, 2021).
[116]X. Liu, Q. Liu, P. Wang, Y. Liu, B. Huang, E.A. Rozhkova, Q. Zhang, Z. Wang, Y. Dai, J. Lu, Efficient photocatalytic H2 production via rational design of synergistic spatially-separated dual cocatalysts modified Mn0.5Cd0.5S photocatalyst under visible light irradiation, Chem. Eng. J. 337 (2018) 480–487. https://doi.org/10.1016/j.cej.2017.12.125.
[117]P. Tiwari, J. Jaiswal, R. Chandra, Optical and electrical properties of highly ordered α-, γ- and α + γ-MnS films deposited by reactive sputtering technique, J. Appl. Phys. 126 (2019) 213108. https://doi.org/10.1063/1.5127004.
[118]J. Wang, J. Luo, D. Liu, S. Chen, T. Peng, One-pot solvothermal synthesis of MoS2-modified Mn0.2Cd0.8S/MnS heterojunction photocatalysts for highly efficient visible-light-driven H2 production, Appl. Catal. B Environ. 241 (2019) 130–140. https://doi.org/10.1016/j.apcatb.2018.09.033.
[119]P. Zhang, R. Guo, L. Wu, W. Wang, W. Pan, Z. Yuan, S. Nie, Y. Liu, Constructing Z-scheme heterojunction with a special electron transfer path and more active sites over MnS/D-PCN for photocatalytic H2 evolution, Appl. Surf. Sci. 542 (2021) 148707. https://doi.org/10.1016/j.apsusc.2020.148707.
[120]Y. Liu, P. Geng, J. Wang, Z. Yang, H. Lu, J. Hai, Z. Lu, D. Fan, M. Li, In-situ ion-exchange synthesis Ag2S modified SnS2 nanosheets toward highly photocurrent response and photocatalytic activity, J. Colloid Interface Sci. 512 (2018) 784–791. https://doi.org/10.1016/j.jcis.2017.10.112.
[121]H. Zhang, G. Wang, D. Chen, X. Lv, J. Li, Tuning Photoelectrochemical Performances of Ag−TiO2 Nanocomposites via Reduction/Oxidation of Ag, Chem. Mater. 20 (2008) 6543–6549. https://doi.org/10.1021/cm801796q.
[122]R. Tang, H. Su, Y. Sun, X. Zhang, L. Li, C. Liu, B. Wang, S. Zeng, D. Sun, Facile Fabrication of Bi2WO6/Ag2S Heterostructure with Enhanced Visible-Light-Driven Photocatalytic Performances, Nanoscale Res. Lett. 11 (2016) 126. https://doi.org/10.1186/s11671-016-1319-7.
[123]Y. Sun, J. Jiang, Y. Cao, Y. Liu, S. Wu, J. Zou, Facile fabrication of g-C3N4/ZnS/CuS heterojunctions with enhanced photocatalytic performances and photoconduction, Mater. Lett. 212 (2018) 288–291. https://doi.org/10.1016/j.matlet.2017.10.111.
[124]J. Zheng, Z. Lei, Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability, Appl. Catal. B Environ. 237 (2018) 1–8. https://doi.org/10.1016/j.apcatb.2018.05.060.
[125]M. Zhang, N. Fang, X. Song, Y. Chu, S. Shu, Y. Liu, p–n Heterojunction Photocatalyst Mn0.5Cd0.5S/CuCo2S4 for Highly Efficient Visible Light-Driven H2 Production, ACS Omega. 5 (2020) 32715–32723. https://doi.org/10.1021/acsomega.0c05106.
[126]J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction Photocatalysts, Adv. Mater. 29 (2017) 1601694. https://doi.org/10.1002/adma.201601694.
[127]H. Gong, G. Wang, H. Li, Z. Jin, Q. Guo, Mn0.2Cd0.8S nanorods assembled with 0D CoWO4 nanoparticles formed p-n heterojunction for efficient photocatalytic hydrogen evolution, Int. J. Hydrog. Energy. 45 (2020) 26733–26745. https://doi.org/10.1016/j.ijhydene.2020.07.059.
[128]Y. Tang, D. Zhang, X. Qiu, L. Zeng, B. Huang, H. Li, X. Pu, Y. Geng, Fabrication of a NiCo2O4/Zn0.1Cd0.9S p-n heterojunction photocatalyst with improved separation of charge carriers for highly efficient visible light photocatalytic H2 evolution, J. Alloys Compd. 809 (2019) 151855. https://doi.org/10.1016/j.jallcom.2019.151855.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊