( 您好!臺灣時間:2024/06/25 23:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):SHEN, MING-YAN
論文名稱(外文):Polyhydroxyalkanoates Production from High Organic Content Wastewater by Mixed Microbial Cultures and Its Techno-economic Analysis
指導教授(外文):Chen-Yeon ChuChayanon Sawatdeenarunat
口試委員(外文):Saoharit Nitayavardhana
外文關鍵詞:PolyhydroxyalkanoatesMixed Microbial ConsortiaPyruvateHigh Organic Wastewater
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今將近 4.8 至 12.7 萬噸由化石燃料製成的塑料正在從陸地進入海洋。使用聚羥基鏈烷酸酯 (PHA)生物塑膠成為解決方案。研究使用高碳源的有機廢水當成基質與混和菌種進行發酵來降低 PHA 的生產價格。 PHAs主要由PHB和PHV組成且丙酮酸鹽是生產聚羥基鏈烷酸酯 (PHA) 的前驅物之一。丙酮酸尤其適用於 PHV之生產。在這項研究中,丙酮酸濃度從 0、0.25、0.5 到 1.0 g 丙酮酸/L 不等,在序列間歇反應器 (SBR) 中進行,以提高 PHV 和 PHA 的生產率。發現峰值產量為 53.6 g PHAs/g VSS (%) 和 3,350 mg VSS/L,而丙酮酸濃度為 1 g/L,初始 COD 為 57,440 mg/L,pH 為 4.5,DO 為 0.47 mg/L 。 PHA 生產系統為 994,143 美元,使用壽命為 20 年。每年的運營成本為 159,711 美元。投資回收期為 6.21 年,內部收益率 (IRR) 分別為 16%。
Nowadays, almost 4.8 to 12.7 million-ton plastics made by fossil fuel are entering the ocean form land. One of the potential bio-degradable plastics is Polyhydroxyalkanoates (PHAs). The high organic wastewater as a subtract was studied for reducing the production price of PHAs from Mixed Microbial Consortia. PHAs is mainly consist of PHB and PHV. Pyruvate is one of the precursors to produce Polyhydroxyalkanoates (PHAs) especially for PHV production. In this study, the pyruvate concentrations varied from 0, 0.25, 0.5 to 1.0 g Pyruvate/L were conducted in Sequencing Batch Reactor (SBR) to enhance the productivities of PHV and PHAs. It was found that the peak production of 53.6 g PHAs/g VSS (%) and 3,350 mg VSS/L while the pyruvate concentration was 1 g /L, initial COD was 57,440 mg/L, pH was 4.5 and DO was 0.47 mg/L. PHA production system is 994,143 USD for 20 years lifetime. the operation costs are 159,711 USD every year. The payback period is 6.21 yesrs, internal rate of return (IRR) is 16 %, respectively.
Background and Rationale 8
Research Objectives 10
Research Hypotheses 10
Research Scope 11
Scope of Content 11
Definitions 12
Conceptual Framework 12
Bacteria Source
Dissolved Oxygen
Techno-Economic Analysis
Research Design 20
Population and Sample Group 23
Research Instruments 25
Data Collection 25
Seed sludge 27
Effect of substrate ratio
Pyruvate Effect
Techno-economic analysis of PHA
Appendix A Experimental Equipment.

Albuquerque, M. G. E., Concas, S., Bengtsson, S., & Reis, M. A. M. (2010). Mixed culture polyhydroxyalkanoates production from sugar molasses: the use of a 2-stage CSTR system for culture selection. Bioresource technology, 101(18), 7112-7122.
Albuquerque, M. G. E., Eiroa, M., Torres, C., Nunes, B. R., & Reis, M. A. M. (2007). Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. Journal of biotechnology, 130(4), 411-421.
Arshad, M., Abbas, M., & Iqbal, M. (2019). Ethanol production from molasses: Environmental and socioeconomic prospects in Pakistan: Feasibility and economic analysis. Environmental Technology & Innovation, 14, 100317.
Beccari, M., Bertin, L., Dionisi, D., Fava, F., Lampis, S., Majone, M., ... & Villano, M. (2009). Exploiting olive oil mill effluents as a renewable resource for production of biodegradable polymers through a combined anaerobic–aerobic process. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 84(6), 901-908.
Bengtsson, S., Werker, A., Christensson, M., & Welander, T. (2008). Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bioresource technology, 99(3), 509-516.
Bengtsson, S., Werker, A., Christensson, M., & Welander, T. (2008). Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bioresource technology, 99(3), 509-516.
Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. A. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging.
Carvalho, G., Oehmen, A., Albuquerque, M. G., & Reis, M. A. (2014). The relationship between mixed microbial culture composition and PHA production performance from fermented molasses. New biotechnology, 31(4), 257-263.
Chua, A. S., Takabatake, H., Satoh, H., & Mino, T. (2003). Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: effect of pH, sludge retention time (SRT), and acetate concentration in influent. Water Research, 37(15), 3602-3611.
Coats, E. R., Loge, F. J., Wolcott, M. P., Englund, K., & McDonald, A. G. (2007). Synthesis of polyhydroxyalkanoates in municipal wastewater treatment. Water Environment Research, 79(12), 2396-2403.
Davidson, P. M., & Branden, A. L. (1981). Antimicrobial activity of non-halogenated phenolic compounds. Journal of Food Protection, 44(8), 623-632.
del Oso, M. S., Mauricio-Iglesias, M., & Hospido, A. (2021). Evaluation and optimization of the environmental performance of PHA downstream processing. Chemical Engineering Journal, 412, 127687.
Edbeib, M. F., Wahab, R. A., & Huyop, F. (2016). Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments. World Journal of Microbiology and Biotechnology, 32(8), 1-23.
Fernández-Dacosta, C., Posada, J. A., Kleerebezem, R., Cuellar, M. C., & Ramirez, A. (2015). Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: techno-economic analysis and ex-ante environmental assessment. Bioresource technology, 185, 368-377.
Gahlawat, G., & Soni, S. K. (2017). Valorization of waste glycerol for the production of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus necator and extraction in a sustainable manner. Bioresource technology, 243, 492-501.
Geerdink, R. B., van den Hurk, R. S., & Epema, O. J. (2017). Chemical oxygen demand: Historical perspectives and future challenges. Analytica Chimica Acta, 961, 1-11.
Gholami, A., Mohkam, M., Rasoul-Amini, S., & Ghasemi, Y. (2016). Industrial production of polyhydroxyalkanoates by bacteria: opportunities and challenges. Minerva Biotechnol, 28(1), 59-74.
Ghosh, S., & Chakraborty, S. (2020). Production of polyhydroxyalkanoates (PHA) from aerobic granules of refinery sludge and Micrococcus aloeverae strain SG002 cultivated in oily wastewater. International Biodeterioration & Biodegradation, 155, 105091.
Guerra-Blanco, P., Cortes, O., Poznyak, T., Chairez, I., & García-Peña, E. I. (2018). Polyhydroxyalkanoates (PHA) production by photoheterotrophic microbial consortia: effect of culture conditions over microbial population and biopolymer yield and composition. European Polymer Journal, 98, 94-104.
Gunjal, K., OWUSU-MANUI, M., RAMASWAM, H., & Amankwah, F. (1999). A financial feasibility study. Canadian Agricultural Engineering, 41(4).
Gurieff, N., & Lant, P. (2007). Comparative life cycle assessment and financial analysis of mixed culture polyhydroxyalkanoate production. Bioresource Technology, 98(17), 3393-3403.
Jacquel, N., Lo, C. W., Wei, Y. H., Wu, H. S., & Wang, S. S. (2008). Isolation and purification of bacterial poly (3-hydroxyalkanoates). Biochemical Engineering Journal, 39(1), 15-27.
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., ... & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771.
Jiang, Y., Mikova, G., Kleerebezem, R., van der Wielen, L. A., & Cuellar, M. C. (2015). Feasibility study of an alkaline-based chemical treatment for the purification of polyhydroxybutyrate produced by a mixed enriched culture. Amb Express, 5(1), 1-13.
Koller, M., Niebelschütz, H., & Braunegg, G. (2013). Strategies for recovery and purification of poly [(R)‐3‐hydroxyalkanoates](PHA) biopolyesters from surrounding biomass. Engineering in life sciences, 13(6), 549-562.
Kopp, J. F. (1979). Methods for Chemical Analysis of Water and Wastes. 1978. Environmental Monitoring and Support Laboratory, Office of Research and Development, US Environmental Protection Agency.
Kourmentza, C., & Kornaros, M. (2016). Biotransformation of volatile fatty acids to polyhydroxyalkanoates by employing mixed microbial consortia: The effect of pH and carbon source. Bioresource technology, 222, 388-398.
Kumar, M., Sundaram, S., Gnansounou, E., Larroche, C., & Thakur, I. S. (2018). Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review. Bioresource technology, 247, 1059-1068.
Li, J., Kong, C., Duan, Q., Luo, T., Mei, Z., & Lei, Y. (2015). Mass flow and energy balance plus economic analysis of a full-scale biogas plant in the rice–wine–pig system. Bioresource technology, 193, 62-67.
Lin, R., Cheng, J., Ding, L., & Murphy, J. D. (2018). Improved efficiency of anaerobic digestion through direct interspecies electron transfer at mesophilic and thermophilic temperature ranges. Chemical Engineering Journal, 350, 681-691.
Lorini, L., Martinelli, A., Pavan, P., Majone, M., & Valentino, F. (2021). Downstream processing and characterization of polyhydroxyalkanoates (PHAs) produced by mixed microbial culture (MMC) and organic urban waste as substrate. Biomass Conversion and Biorefinery, 11, 693-703.
Mannina, G., Presti, D., Montiel-Jarillo, G., & Suárez-Ojeda, M. E. (2019). Bioplastic recovery from wastewater: a new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures. Bioresource technology, 282, 361-369.
Mitra, R., Xu, T., Xiang, H., & Han, J. (2020). Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microbial cell factories, 19, 1-30.
Perez-Rivero, C., López-Gómez, J. P., & Roy, I. (2019). A sustainable approach for the downstream processing of bacterial polyhydroxyalkanoates: State-of-the-art and latest developments. Biochemical Engineering Journal, 150, 107283.
Rao, Y., Gammon, S. T., Sutton, M. N., Zacharias, N. M., Bhattacharya, P., & Piwnica-Worms, D. (2021). Excess exogenous pyruvate inhibits lactate dehydrogenase activity in live cells in an MCT1-dependent manner. Journal of Biological Chemistry, 297(1).
Sabapathy, P. C., Devaraj, S., Meixner, K., Anburajan, P., Kathirvel, P., Ravikumar, Y., ... & Qi, X. (2020). Recent developments in Polyhydroxyalkanoates (PHAs) production–A review. Bioresource technology, 306, 123132.
Salehizadeh, H., & Van Loosdrecht, M. C. M. (2004). Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnology advances, 22(3), 261-279.
Shaddady, A., & Moore, T. (2019). Investigation of the effects of financial regulation and supervision on bank stability: The application of CAMELS-DEA to quantile regressions. Journal of International Financial Markets, Institutions and Money, 58, 96-116.
Shahzad, K., Narodoslawsky, M., Sagir, M., Ali, N., Ali, S., Rashid, M. I., ... & Koller, M. (2017). Techno-economic feasibility of waste biorefinery: Using slaughtering waste streams as starting material for biopolyester production. Waste Management, 67, 73-85.
Sharma, V., Sehgal, R., & Gupta, R. (2021). Polyhydroxyalkanoate (PHA): Properties and modifications. Polymer, 212, 123161.
Third, K. A., Newland, M., & Cord‐Ruwisch, R. (2003). The effect of dissolved oxygen on PHB accumulation in activated sludge cultures. Biotechnology and Bioengineering, 82(2), 238-250.
Tu, W., Zhang, D., & Wang, H. (2019). Polyhydroxyalkanoates (PHA) production from fermented thermal-hydrolyzed sludge by mixed microbial cultures: the link between phosphorus and PHA yields. Waste Management, 96, 149-157.
Valentino, F., Lorini, L., Gottardo, M., Pavan, P., & Majone, M. (2020). Effect of the temperature in a mixed culture pilot scale aerobic process for food waste and sewage sludge conversion into polyhydroxyalkanoates. Journal of Biotechnology, 323, 54-61.
Valentino, F., Martinelli, A., Lorini, L., Palocci, C., Majone, M., Gottardo, M., ... & Cecchi, F. (2016). Pilot-scale performance of PHA production from municipal solid waste using mixed microbial cultures (MMC). New Biotechnology, (33), S39-S40.
Villano, M., Beccari, M., Dionisi, D., Lampis, S., Miccheli, A., Vallini, G., & Majone, M. (2010). Effect of pH on the production of bacterial polyhydroxyalkanoates by mixed cultures enriched under periodic feeding. Process Biochemistry, 45(5), 714-723.
Wang, X., Carvalho, G., Reis, M. A., & Oehmen, A. (2018). Metabolic modeling of the substrate competition among multiple VFAs for PHA production by mixed microbial cultures. Journal of biotechnology, 280, 62-69.
Wang, X., Oehmen, A., Carvalho, G., & Reis, M. A. (2020). Community profile governs substrate competition in polyhydroxyalkanoate (PHA)-producing mixed cultures. New Biotechnology, 58, 32-37.
Wang, X., Oehmen, A., Freitas, E. B., Carvalho, G., & Reis, M. A. (2017). The link of feast-phase dissolved oxygen (DO) with substrate competition and microbial selection in PHA production. Water research, 112, 269-278.
Youssef, N. H., Savage-Ashlock, K. N., McCully, A. L., Luedtke, B., Shaw, E. I., Hoff, W. D., & Elshahed, M. S. (2014). Trehalose/2-sulfotrehalose biosynthesis and glycine-betaine uptake are widely spread mechanisms for osmoadaptation in the Halobacteriales. The ISME journal, 8(3), 636-649.
Zhang, Y., Wusiman, A., Liu, X., Wan, C., Lee, D. J., & Tay, J. (2018). Polyhydroxyalkanoates (PHA) production from phenol in an acclimated consortium: batch study and impacts of operational conditions. Journal of biotechnology, 267, 36-44.
Zhang, Z., Tsai, S. L., & Chang, T. (2017). New evidence of interest rate pass-through in Taiwan: A nonlinear autoregressive distributed lag model. Global Economic Review, 46(2), 129-142.

電子全文 電子全文(網際網路公開日期:20270101)
第一頁 上一頁 下一頁 最後一頁 top