跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 17:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭長鑫
研究生(外文):HSIAO, CHARNG-CHIN
論文名稱:電漿制動器對小型垂直軸風力發電 機氣動力特性研究
論文名稱(外文):Study of Plasma-Actuator on Aerodynamic Characteristics for Small Vertical Axial Wind Turbine
指導教授:謝宗翰謝宗翰引用關係
指導教授(外文):SHIEH,TZONG-HANN
口試委員:謝宗翰葉俊良方俊馬原懷李育佐
口試委員(外文):SHIEH,TZONG-HANNYEH, CHUN-LIANGFANG, JIUNNMA, YEN-HUAILI, YU-TSO
口試日期:2020-12-24
學位類別:博士
校院名稱:逢甲大學
系所名稱:機械與航空工程博士學位學程
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:123
中文關鍵詞:垂直軸風力發電機(VAWT)計算流體力學(CFD)Darrieus風力發電機DBD電漿致動器
外文關鍵詞:VAWTCFDDarrieus wind turbineDBD Plasma-Actuator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
誌謝 I
摘要 II
ABSTRACT III
圖目錄 VIII
表目錄 XIX
符號說明 XX
第一章前言 1
1.1 研究背景 1
1.2 風力發電機發展歷史背景 2
1.3 文獻回顧 4
1.3.1 阻力型風力發電機 4
1.3.2 升力型風力發電機 5
1.3.3 風力發電機流場特性模擬 13
1.4 研究動機與目的 14
第二章基礎理論 16
2.1 垂直軸風力發電機氣動力參數 16
2.1.1 尖端速度比 16
2.1.2 葉片切向力系數 16
2.1.3 葉片正向力系數 16
2.1.4 葉片徑向力系數 16
2.1.5 葉片表面作用力系數 17
2.1.6 扭矩係數 17
2.2 風力發電機座標系統與作用力 17
2.2.1 葉片局部攻角 17
2.2.2 葉片相對流速 18
2.2.3 切向力與正向力變化關係 18
2.2.4 逕向力變化關係 19
2.3 二維垂直軸風力發電機空氣動力 20
2.4 三維垂直軸風力發電機空氣動力 21
第三章 計算方法 22
3.1 統御方程式 22
3.2 SIMPLE演算法 22
3.3 雙方程K˗Ω SST紊流模型 25
3.4 電漿致動器模型 28
第四章 物理模型與計算網格 31
4.1 物理模型 31
4.1.1 二維模型和三維模型(垂直軸風力發電機) 31
4.1.2 電漿致動器(DBD)構型 32
4.1.3 三維模型(Darrieus) 33
4.2 計算網格 35
4.2.1 二維模型(垂直軸風力發電機) 35
4.2.2 三維網格(垂直軸風力發電機) 37
4.2.3 三維網格(Darrieus) 38
4.3 邊界條件 39
4.4 計算條件 40
第五章 介電質放電二維垂直軸風力發電機與討論 41
5.1 扭矩係數受電漿流的影響情形 41
5.1.1 尖速比2.5,介電質位置P3,1~5葉片 41
5.1.2 尖速比2.5,介電質位置P1、P2、P3,3~5葉片 42
5.1.3 尖速比2.5,介電質位置P3,3、5葉片 45
5.2 壓力場及渦度場受電漿流的影響情形 47
5.3 切向力受電漿流的影響情形 51
第六章 二維垂直軸風力發電機與三維垂直軸風力發電機結果與討論 53
6.1 二維與三維單葉片風力發電機 53
6.1.1 扭矩係數 53
6.1.2 作用力情形 54
6.1.3 壓力場探討 55
6.1.4 渦流場探討 56
6.2 二維與三維三葉片風力發電機 58
6.2.1 扭矩係數 58
6.2.2 作用力情形 59
6.2.3 壓力場探討 60
6.2.4 渦流場探討 62
第七章 三維垂直軸及蛋型轉子風力發電機比較 64
7.1 單葉片垂直軸風力發電機與三葉片垂直軸風力發電機比較 64
7.1.1 扭矩係數 64
7.1.2 作用力情形 65
7.1.3 壓力場探討 67
7.1.4 渦流場探討 69
7.1.5 葉片流線分布與三維渦產生情形 71
7.2 三葉片垂直軸風力發電機與與三葉片DARRIEUS轉子風力發電機比較 72
7.2.1 扭矩係數 72
7.2.2 作用力情形 73
7.2.3 壓力場探討 75
7.2.4渦流場探討 77
7.2.5葉片流線分布與三維渦產生情形 79
7.3尖速比2.5下不同構型的三葉片DARRIEUS轉子風力發電機比較 80
7.3.1扭矩係數 80
7.3.2作用力情形 81
7.3.3壓力場探討 83
7.3.4渦流場探討 85
7.3.5葉片流線分布與三維渦產生情形 87
第八章 結論與未來展望 89
結論 89
未來展望 90
參考文獻 91


[1]Dayan E. (2006), Wind energy in buildings: power generation from wind in the urban environment e where it is needed most. Refocus 2006;7(2):33e8.
[2]Bertényi T., McIntosh S., Babinskyz H. (2007), Hybrid potential flow-streamtube method for modelling VAWT-flow field interactions. AIAA paper 2007-1369, 45th AIAA aerospace sciences meeting and exhibit, 8e11 January 2007, Reno, Nevada.
[3]Islam M., Ting D.S.-K., Fartaj A. (2008), Aerodynamic models for Darrieus-type straightbladed vertical axis wind turbines. Renewable and Sustainable Energy Reviews 2008;12:1087e109.
[4]Ferreira C.J.S., Dixon K., Hofemann C., van Kuik G., van Bussel G. (2009), The VAWT in skew: stereo-PIV and vortex modeling. AIAA paper 2009-1219, 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 5e8 January 2009, Orlando, Florida.
[5]Ferreira C.S., van Kuik G., van Bussel G., Scarano F. (2009), Visualization by PIV of dynamic stall on a vertical axis wind turbine. Experiments in Fluids 2009;46: 97e108.
[6]Howell R., Qin N., Edwards J., Durrani N. (2010), Wind tunnel and numerical study of a small vertical axis wind turbine. Renewable Energy 2010; 35 : 412 - 22.
[7]Kjellin J., Bülow F., Eriksson S., Deglaire P., Leijon M., Bernhoff H. (2011), Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine. Renewable Energy 2011;36(11):3050e3.
[8]S.V.Patankar andD. B.Spalding.(1972), A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transf. 1972.
[9]Chaichana T., Chaitep S. (2010), Wind power potential and characteristic analysis of Chiang Mai, Thailand. Mechanical Science and Technology 2010;24:1475–9.
[10]Noll R.B., Ham N.D. (1982), Effects of dynamic stall on SWECS. Journal of Solar Energy Engineering May 1982;104:96e101.
[11]Cardona J.L. (1984), Flow curvature and dynamic stall simulated with an aerodynamic free-vortex model for VAWT. Wind Engineering 1984;8(3):135e43.
[12]Laneville A., Vittecoq P. (1986), Dynamic stall: the case of the vertical axis wind turbine. Journal of Solar Energy Engineering May 1986;108:141e5.
[13]Klimas P.C. (1980), Vertical-axis wind turbine aerodynamic performance prediction methods. In: Proceedings of the vertical-axis wind turbine (VAWT), Albuquerque, NM; April 1980. pp. 215e32.
[14]Paraschivoiu I. (1987), Double-multiple streamtube model for studying vertical-axis wind turbines. AIAA Journal of Propulsion 1987;4(4):370e7.
[15]Goude A. (2012), Fluid Mechanics of Vertical Axis Turbines:Simulation and Model Development, Acta Universitatis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 998. 2012.
[16]Müller G., Jentsch M.F., Stoddart E. (2009), Vertical axis resistance type wind turbines for use in buildings. Renewable Energy 2009;34:1407e12.
[17]Vandenberghe D., Dick E. (1987), Optimum pitch control for vertical axis wind turbines. Wind Engineering 1987;11(5):237e47.
[18]Lazauskas L. (1992), Three pitch control systems for vertical axis wind turbines compared. Wind Engineering 1992;16(5):269e82.
[19]Wilhelm J.P., Panther C., Pertl F.A. (2009), Momentum analytical model of a circulation controlled vertical axis wind turbine. Paper No. ES2009-90352. pp. 1009e17. doi:10.1115/ES2009-90352. ASME 2009 3rd international conference on energy sustainability collocated with the heat transfer and InterPACK09 conferences (ES2009), vol. 2, ISBN: 978-0-7918-4890-6, July 19e23 2009, San Francisco, California, USA. Paraschivoiu I. Double-multiple streamtube model for Darrieus wind turbines. Second DOE/NASA wind turbines dynamics workshop, NASA CP-2186, Cleveland, OH, February 1981. pp. 19e25.
[20]ITDG. (2006), Wind Electricity Generation. Available at /http://www.itdg.orgS. 2006.
[21]PSIGATE. (2006), Physical Sciences Information Gateway. Available at/http://www.psigate.ac.uk/newsite/physics_timeline.htmlS. 2006.
[22]Vogel J. (2005), Wind: a hard-blowing history. The Environmental Magazine, Jan–Feb 2005.
[23]Lunde P. (1980), Windmills: from Jiddah to Yorkshire. January/February. Vol. 31 (1), 1980.
[24]Loth JL. (1985), Aerodynamic tower shake force analysis for VAWT. Journal of Solar Energy Engineering 1985;107:45–50.
[25]Homicz G.F. (1989), VAWT stochastic loads produced by atmospheric turbulence. Journal of Solar Energy Engineering 1989;111:358–67.
[26]Bishop J.D.K., Amaratunga G.A.J. (2008), Evaluation of small wind turbines in distributed arrangement as sustainable wind energy option for Barbados. Energy Conversion and Management 2008;49:1652–61.
[27]Islam M., Fartaj A., Ting D.S.K. (2004), Current utilization and future prospects of emerging renewable energy applications in Canada. Renewable and Sustainable Energy Reviews 2004;8:493–519.
[28]Menter, F.R.(1994), Two-Equation Eddy-Viscosity Turbulence Modles for Engineering Application, AIAA Journal, vol. 32, 1994, pp.1598-1605,.
[29]Ajedegba J. O., (2008), Effects of Blade Configuration on Flow Distribution and Power Output of a Zephyr Vertical Axis Wind Turbine, MS Thesis, University of Ontario Institute of Technology 2008.
[30]Kirke B. K., and Lazauskas L., (2011), Limitations of Fixed Pitch Darrieus Hydrokinetic Turbine and the Challenge of Variable Pitch, Renewable Energy, Vol. 36, Issue 3, 2011, pp. 893-897.
[31]Savonius S.J. (1931), The S-Rotor and its applications. Mech Eng 1931;53(5):333–8.
[32]Kirke B.K. (1998), Evaluation of self-starting vertical axis wind turbines for stand-alone applications. PhD thesis, Griffith University, Australia, 1998.
[33]Gorelov D.N., Krivospitsky V.P. (2008), Prospects for development of wind turbines with orthogonal rotor. Thermophysics and Aeromechanics 2008;15:153–7.
[34]Mohamed M.H., Janiga G., Pap E., Thevenin D. (2011), Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade. Energy Conversion and Management 2011;52:236–42.
[35]Darrieus G.J.M. (1931), Turbine Having its rotating shaft transverse to the flow of the current. US Patent No.1835081, 1931.
[36]Gorelov D.N. (2009), Analogy between a flapping wing and a wind turbine with a vertical axis of revolution. Applied Mechanics and Technical Physics 2009;50:297–9.
[37]Eriksson S., Bernhoff H., Leijon M. (2008), Evaluation of different turbine concepts for wind power. Renewable and Sustainable Energy Reviews 2008;12:1419–34.
[38]Marini M., Massardo A., Satta A. (1992), Performance of vertical axis wind turbines with different shapes. Journal of Wind Engineering and Industrial Aerodynamics 1992;39:83–93.
[39]Shienbein L.A., Malcolm D.J. (1983), Design performance and economics of 50-kW and 500-kW vertical axis wind turbines. Journal of Solar Energy Engineering 1983;105:418–25.
[40]Rosen A., Abramovich H. (1985), Investigation of the structural behavior of the blades of a Darrieus wind turbine. Journal of Sound and Vibration 1985;100:493–509.
[41]Bergeles G., Michos A., Athanassiadis N. (1991), Velocity vector and turbulence in the symmetry plane of a Darrieus wind generator. Journal of Wind Engineering and Industrial Aerodynamics 1991;37:87–101.
[42]Brahimi M.T., Paraschivoiu I. (1995), Darrieus rotor aerodynamics in turbulent flow. Journal of Solar Energy Engineering 1995;117:128–37.
[43]Wakui T., Tanzawa Y., Hashizume T., Outa E., Usui A. (2000), Optimum method of operating the wind turbine-generator systems matching the wind condition and wind turbine type. World Renewable Energy Congress 2000;VI:2348–51.
[44]Kirke B.K. (1998), Evaluation of self-starting vertical axis wind turbines for stand-alone applications. PhD thesis,Griffith University, Australia, 1998.
[45]Drees H.M. (1978), The cycloturbine and its potential for broad application. In: Proceedings of 2nd international symposium on wind energy systems, Amsterdam, October 3–6, 1978.pp. E7-81–8.
[46]Grylls W., Dale B., Sarre P.E. (1978), A theoretical and experimental investigation into the variable pitch vertical axis wind turbine. In: Proceedings of 2nd international symposium on wind energy systems, Amsterdam, October 3–6, 1978. pp. E9-101–18.
[47]Vandenberghe D., Dick E. (1987), A free vortex simulation method for the straight bladed vertical axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics 1987;26:307–24.
[48]Islam M., Amin M.R., Ting D.S.K., Fartaj A. (2007), Aerodynamic factors affecting performance of straight-bladed vertical axis wind turbines. In: ASME international mechanical engineering congress and exposition, vol. 6. 2007. pp. 331–41.
[49]Graham IV H.Z., Panther C., Hubbell M., Wilhelm J.P., Angle II GM, Smith JE. (2009), Airfoil selection for a straight bladed circulation controlled vertical axis wind turbine. In: ASME 2009 3rd international conference on energy sustainability, vol. 1. 2009. pp. 579–84.
[50]Takao M., Kuma H., Maeda T., Kamada Y., Oki M., Minoda A. (2009), A straight-bladed vertical axis wind turbine with a directed guide vane row effect of guide vane geometry on the performance. Journal of Thermal Science 2009;18: 54–7.
[51]Wilhelm J.P., Panther C., Pertl F.A., Smith J.E. (2009), Momentum analytical model of a circulation controlled vertical axis wind turbine. In: ASME 3rd international conference on energy sustainability, vol. 2. 2009. pp. 1009–17.
[52]Corke T.C., He C., Patel M.P. (2004), Plasma flaps and slats: an application of weakly ionized plasma actuators. AIAA paper 2004-2127, 2nd AIAA flow control conference, Portland, Oregon, 2004.
[53]Post M., Corke T. (2006), Separation control using plasma actuators: dynamic stall vortex control on oscillating airfoil. AIAA Journal 2006;44(12):3125e35.
[54]Greenblatt D., Wygnanski I. (2000), Control of separation by periodic excitation. Progress in Aerospace Sciences 2000;37(7):487e545.
[55]Greenblatt D., Göksel B., Rechenberg I., Schüle C., Romann D., Paschereit. (2008), Dielectric barrier discharge flow control at very low flight Reynolds numbers. AIAA Journal 2008;46(6):1528e41.
[56]Bachmann M., Utehs S., Vey S., Paschereit C.O., Greenblatt D. (2009), Plasma-based active flow control on low Reynolds number airfoils. In: 49th Israel annual conference on aerospace sciences, 4e5 March 4, Tel Aviv, Haifa, 2009.
[57]Ponta F.L., Seminara J.J., Otero A.D. (2007), On the aerodynamics of variable-geometry oval-trajectory Darrieus wind turbines. Renewable Energy 2007;32:35–56.
[58]Debnath B.K., Biswas A., Gupta R. (2009), Computational fluid dynamics analysis of a combined three-bucket Savonius and three-bladed Darrieus rotor at various overlap. Journal of Renewable and Sustainable Energy 2009;1:1–13.
[59]Gavalda J., Massons J., Diaz F. (1990), Solar Wind Technology 1990;7:457.
[60]Gupta R., Biswas A. (2010), Computational fluid dynamics analysis of a twisted threebladed H-Darrieus rotor. Renewable and Sustainable Energy 2010;2:1–15.
[61]Fujisawa N., Takeuchi M. (1999), Flow visualization and PIV measurement of flow field around s Darrieus rotor in dynamic stall visualization. Journal of Visualization 1999;1:379–86.
[62]Beckwith T.G., Marangoni R.D., Leinhard V JH. (2007), Mechanical measurements. Sixth ed. India: Pearson Education 2007.
[63]Chung S.K., Kim S.K. (2008), Digital particle image velocimetry studies of nasal airflow. Respiratory Physiology and Neurobiology 2008;163:111–20.
[64]Debnath B.K., Biswas A., Gupta R. (2009), Computational fluid dynamics analysis of a combined three-bucket Savonius and three-bladed Darrieus rotor at various overlap. Journal of Renewable and Sustainable Energy 2009;1:1–13.
[65]Wang S., Ingham D.B., Ma L., Pourkashanian M., Tao Z. (2010), Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Computers and Fluids 2010;39:1529–41.
[66]Ferreira C.S., Kuik G.V., Bussel G.V., Scarano F. (2009), Visualization by PIV of dynamic stall on a vertical axis wind turbine. Experiments in Fluids 2009;46:97–108.
[67]Suzen, Y. B., and Huang, P. G.(2006), Simulations of Flow Separation Control using Plasma Actuators, 44th AIAA Aerospace Sciences Meeting and Exhibit 9 - 12 January 2006, Reno, Nevada, 2006, pp. 1–9.
[68]Greenblatt D. (2010) ,Active control of leading-edge dynamic stall. International Journal of Flow Control 2010;2(1):21e38.
[69]Greenblatt D., Wygnanski I. (2001), Dynamic stall control by periodic excitation. Part 1: NACA 0015 parametric study. AIAA Journal of Aircraft 2001;38(3):430e8.
[70]Sasson B., Greenblatt D. (2010), Blowing and pulsed blowing flow control performance prediction on a vertical axis wind turbine. In: 50th Israel annual conference on aerospace sciences; February 2010.
[71]Sasson B., Greenblatt D. (2011), Effect of leading-edge slot blowing on a vertical axis wind turbine. AIAA Journal, 49(9):1932-1942 ,September 2011.
[72]Dayan, E.(2006), Wind energy in buildings, Refocus, vol. 7, 2006, pp. 33–38.
[73]Bertényi, T., McIntosh, S. C., and Babinsky, H.(2007), Hybrid Potential Flow-Streamtube Method for Modelling VAWT-Flowfield Interactions, 45th AIAA Aerospace Sciences Meeting and Exhibit 2007.
[74]Islam, M., Ting, D. S. K., and Fartaj, A.(2008), Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines, Renewable and Sustainable Energy Reviews, vol. 12, 2008, pp. 1087–1109.
[75]Ferreira, C., Dixon, K., Hofemann, C., Kuik, G. van Bussel, G. J. W.(2009), The VAWT in Skew : Stereo-PIV and Vortex Modeling, New Horizons, 2009, pp. 1–25.
[76]Simão Ferreira, C., VanKuik, G., VanBussel, G., andScarano, F.(2009), Visualization by PIV of dynamic stall on a vertical axis wind turbine, Experiments in Fluids, vol. 46, 2009, pp. 97–108.
[77]Howell, R., Qin, N., Edwards, J., andDurrani, N.(2010), Wind tunnel and numerical study of a small vertical axis wind turbine, Renewable Energy, vol. 35, 2010, pp. 412–422.
[78]Kjellin, J., Bülow, F., Eriksson, S., Deglaire, P., Leijon, M., andBernhoff, H.(2011), Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine, Renewable Energy, vol. 36, 2011, pp. 3050–3053.
[79]Ferreira, C. S., vanBussel, G., Scarano, F., andvanKuik, G.(2007), 2D PIV Visualization of Dynamic Stall on a Vertical Axis Wind Turbine, 45th AIAA Aerospace Sciences Meeting, 2007, pp. 1–16.
[80]Ham ND. Noll RB.(1982), Effects of dynamic stall on SWECS, Journal of Solar Energy Engineering, vol. 104, 1982, pp. 96–101.
[81]Cardona, J. L.(1984), Flow curvature and dynamic stall simulated with an aerodynamic free-vortex model for VAWT, Wind Engineering, vol. 8, 1984, pp. 135–143.
[82]Laneville, A., and Vittecoq, P.(1986), Dynamic Stall: The Case of the Vertical Axis Wind Turbine, Journal of Solar Energy Engineering, vol. 108, 1986, pp. 140.
[83]PC, K.(1980), Vertical-axis wind turbine aerodynamic performance prediction methods, Albuquerque, NM; 1980.
[84]I., P.(1988), Double-Multiple Streamtube Model for Studying VAWT’s, Journal of Propulsion and Power, vol. 4, 1988, pp. 370–378.
[85]Little, J., Nishihara, M., Adamovich, I., and Samimy, M.(2010), High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator, Experiments in Fluids, vol. 48, 2010, pp. 521–537.
[86]薛懷甯.(2011), 電漿致動器最佳化及其於三角翼上應用之研究, 國立成功大學航太所 2011.
[87]Roth, J. R., Sherman, D. M., andWilkinson, S. P.(1998), Boundary Layer Flow Control with a One Atmosphere Uniform Glow Discharge Surface Plasma, 36th AIAA Aerospace Sciences Meeting and Exhibit 1998, pp. 1–28.
[88]Roth, J. R., Sin, H., Chandra, R., Madhan, M., and Wilkinson, S. P.(2003), Flow re-attachement and acceleration by paraelectric and peristaltic electrohydrodynamic(EHD) effects, AIAA-Paper 2003.
[89]Labergue, A., Leger, L., Moreau, E., and Touchard, G.(2005), Effect of a plasma actuator on an airflow along an inclined wall: P.I.V. and wall pressure measurements, Journal of Electrostatics, vol. 63, 2005, pp. 961–967.
[90]Léger, L., Moreau, E., Artana, G., andTouchard, G.(2001), Influence of a DC corona discharge on the airflow along an inclined flat plate, Journal of Electrostatics, vol. 51–52, 2001, pp. 300–306.
[91]Artana, G., D’Adamo, J., Leger, L., Moreau, E., Touchard, G., Léger, L., Moreau, E., andTouchard, G.(2002), Flow control with electrohydrodynamic actuators, AIAA Journal, vol. 40, 2002, pp. 1773–1779.
[92]Moreau, E., Léger, L., and Touchard, G.(2006), Effect of a DC surface-corona discharge on a flat plate boundary layer for air flow velocity up to 25 m/s, Journal of Electrostatics, vol. 64, 2006, pp. 215–225.
[93]Léger, L., Moreau, E., andTouchard, G. G.(2002), Effect of a DC corona electrical discharge on the airflow along a flat plate, IEEE Transactions on Industry Applications, vol. 38, 2002, pp. 1478–1485.
[94]Cavalieri D.(1995), On the experimental design for instability analysis on a cone at Mach 3.5 and 6.0 using a corona discharge perturbation method, 1995.
[95]Corke, T. C., Dame, N., Cavalieri, D. A., and Matlis, E. H.(2002), Boundary-Layer Instability on Sharp Cone at Mach 3.5 with Controlled Input, AIAA Journal, vol. 40, 2002, pp. 1015–1018.
[96]Corke TC, M. E.(2000), Phased plasma arrays for unsteady flow control, AIAA-Paper 2000.
[97]Fridman, A. C. and A. G.(2005), Non-thermal Atmospheric Pressure Discharge, Appl. Phys., vol. 38, 2005, pp. 1–24.
[98]Laurentie, J. C., Jolibois, J., and Moreau, E.(2009), Surface dielectric barrier discharge: Effect of encapsulation of the grounded electrode on the electromechanical characteristics of the plasma actuator, Journal of Electrostatics, vol. 67, 2009, pp. 93–98.
[99]Post, M. L., and Corke, T. C.(2004), Separation Control on HIgh Angle of Attack Airfoil Using Plasma Actuators, AIAA Journal, vol. 42, 2004, pp. 2177–2184.
[100]Massines, F., Rabehi, A., Decomps, P., Gadri, R.Ben, Ségur, P., and Mayoux, C.(1998), Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier, Journal of Applied Physics, vol. 83, 1998, pp. 2950.
[101]Paulus, M., Stals, L., Rude, U., and Rauschenbach, B.(1999), Two-dimensional simulation of plasma-based ion implantation, Journal of Applied Physics, vol. 85, 1999, pp. 761–766.
[102]Roth, J. R., Sherman, D. M., and Wilkinson, S. P.(2000), Electrohydrodynamic Flow Control with a Glow-Discharge Surface Plasma, AIAA Journal, vol. 38, 2000, pp. 1166–1172.
[103]Landau, L. D., Lifshitz, E. M., and King, A. L.(1961), Electrodynamics of Continuous Media, American Journal of Physics, vol. 29, 1961, pp. 647–648.
[104]Enloe, C. L., McLaughlin, T. E., VanDyken, R. D., Kachner, K. D., Jumper, E. J., Corke, T. C., Post, M., and Haddad, O.(2004), Mechanisms and Responses of a Dielectric Barrier Plasma Actuator: Geometric Effects, AIAA Journal, vol. 42, 2004, pp. 595–604.
[105]Shyy, W., Jayaraman, B., and Andersson, A.(2002), Modeling of glow discharge-induced fluid dynamics, Journal of Applied Physics, vol. 92, 2002, pp. 6434–6443.
[106]Orlov, D. M.(2006), Modelling and Simulation of Single Dielectric Barrier Discharge Plasma Actuators, Graduate Program in Aerospace and Mechanical Engineering 2006.
[107]Singh, K. P., andRoy, S.(2008), Force approximation for a plasma actuator operating in atmospheric air, Journal of Applied Physics, vol. 103, 2008.
[108]Suzen, Y. B., and Huang, P. G.(2006), Simulations of Flow Separation Control using Plasma Actuators, 44th AIAA Aerospace Sciences Meeting and Exhibit 9 - 12 January 2006, Reno, Nevada, 2006, pp. 1–9.
[109]Post, M. L., and Corke, T. C.(2004), Separation Control on HIgh Angle of Attack Airfoil Using Plasma Actuators, AIAA Journal, vol. 42, 2004, pp. 2177–2184.
[110]Porter, C., Baughn, J., and McLaughlin, T.(2006), Temporal force measurements on an aerodynamic plasma actuator, AIAA paper 2006, pp. 1–15.
[111]Abe, T., and Takagaki, M.(2009), Momentum Coupling and Flow Induction in a DBD Plasma Actuator, AIAA 40th Plasmadynamics and Lasers Conference 2009, p. 8.
[112]Hoskinson, A., Hershkowitz, N., and Ashpis, D.(2009), Comparisons of force measurement methods for DBD plasma actuators in quiescent air, AIAA paper 2009, p. 2009.
[113]Thomas, F. O., Corke, T. C., Iqbal, M., Kozlov, A., and Schatzman, D.(2009), Optimization of Dielectric Barrier Discharge Plasma Actuators for Active Aerodynamic Flow Control, AIAA Journal, vol. 47, 2009, pp. 2169–2178.
[114]Whalley, R., and Choi, K.(2010), Turbulent boundary layer control by DBD plasma: a spanwise travelling wave, AIAA paper 2010, p. 4840.
[115]Guo, S., Burman, D., Poon, D., Mamunuru, M., Simon, T., Ernie, D., and Kortshagen, U.(2009), Separation Control Using DBD Plasma Actuators : Designs for Thrust Enhancement, Fluid Dynamics 2009, pp. 1–10.
[116]Greenblatt, D., and Wygnanski, I. J.(2000), Control of flow separation by periodic excitation, Progress in Aerospace Sciences, vol. 36, 2000, pp. 487–545.
[117]He, C., Corke, T. C., and Patel, M. P.(2009), Plasma Flaps and Slats: An Application of Weakly Ionized Plasma Actuators, Journal of Aircraft, vol. 46, 2009, pp. 864–873.
[118]Post, M. L., and Corke, T. C.(2006), Separation Control Using Plasma Actuators: Dynamic Stall Vortex Control on Oscillating Airfoil, AIAA Journal, vol. 44, 2006, pp. 3125–3135.
[119]Katz, J. and Plotkin, A. (2000). Low-Speed Aerodynamics - 2nd Edition. Cambridge Aerospace Series (No. 13). Cambridge University Press 2000.
[120]Burton, T., Sharpe, D., Jenkins, N., and Bossanyi, E. (2001). Wind Energy Handbook. John Wiley and Sons 2001.
[121]Glauert, H. (1947). The elements of airfoil and airscrew theory. Cambridge University Press, 2nd edition edition 1947.
[122]Templin, R. (1974). Aerodynamic performance theory of the NRC vertical-axis wind turbine. Technical Report LTR-LA-160, National Research Council of Canada 1974.
[123]Paraschivoiu, I., Saeed, F., and Desobry, V. (2002). Prediction capabilities in vertical-axis wind turbine aerodynamics. In The World Wind Energy Conference and Exhibition 2002.
[124]Sharpe, D. (1984). Refinements and developments of the multiple stream tube theory for the aerodynamic performance of vertical axis wind turbines. In Proceedings of the Sixth BWEA Wind Energy Conference 1984, pages 148–159.
[125]Biswas, S., Sreedhar, B., and Singh, Y. (1995). New analytical model for the aerodynamic performance analysis of vertical axis wind turbines. Wind Engineering 1995, 19(2):107–119.
[126]Tzong-Hann Shieh. Study of Influencing Characteristics on Boundary-Layer Separation Controlled by Using DBD Plasma Actuator with Modified Model, International Journal of Heat and Mass Transfer, Vol. 113, pp. 1212-1233, Oct. 2017.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊