|
[1]Dayan E. (2006), Wind energy in buildings: power generation from wind in the urban environment e where it is needed most. Refocus 2006;7(2):33e8. [2]Bertényi T., McIntosh S., Babinskyz H. (2007), Hybrid potential flow-streamtube method for modelling VAWT-flow field interactions. AIAA paper 2007-1369, 45th AIAA aerospace sciences meeting and exhibit, 8e11 January 2007, Reno, Nevada. [3]Islam M., Ting D.S.-K., Fartaj A. (2008), Aerodynamic models for Darrieus-type straightbladed vertical axis wind turbines. Renewable and Sustainable Energy Reviews 2008;12:1087e109. [4]Ferreira C.J.S., Dixon K., Hofemann C., van Kuik G., van Bussel G. (2009), The VAWT in skew: stereo-PIV and vortex modeling. AIAA paper 2009-1219, 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 5e8 January 2009, Orlando, Florida. [5]Ferreira C.S., van Kuik G., van Bussel G., Scarano F. (2009), Visualization by PIV of dynamic stall on a vertical axis wind turbine. Experiments in Fluids 2009;46: 97e108. [6]Howell R., Qin N., Edwards J., Durrani N. (2010), Wind tunnel and numerical study of a small vertical axis wind turbine. Renewable Energy 2010; 35 : 412 - 22. [7]Kjellin J., Bülow F., Eriksson S., Deglaire P., Leijon M., Bernhoff H. (2011), Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine. Renewable Energy 2011;36(11):3050e3. [8]S.V.Patankar andD. B.Spalding.(1972), A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transf. 1972. [9]Chaichana T., Chaitep S. (2010), Wind power potential and characteristic analysis of Chiang Mai, Thailand. Mechanical Science and Technology 2010;24:1475–9. [10]Noll R.B., Ham N.D. (1982), Effects of dynamic stall on SWECS. Journal of Solar Energy Engineering May 1982;104:96e101. [11]Cardona J.L. (1984), Flow curvature and dynamic stall simulated with an aerodynamic free-vortex model for VAWT. Wind Engineering 1984;8(3):135e43. [12]Laneville A., Vittecoq P. (1986), Dynamic stall: the case of the vertical axis wind turbine. Journal of Solar Energy Engineering May 1986;108:141e5. [13]Klimas P.C. (1980), Vertical-axis wind turbine aerodynamic performance prediction methods. In: Proceedings of the vertical-axis wind turbine (VAWT), Albuquerque, NM; April 1980. pp. 215e32. [14]Paraschivoiu I. (1987), Double-multiple streamtube model for studying vertical-axis wind turbines. AIAA Journal of Propulsion 1987;4(4):370e7. [15]Goude A. (2012), Fluid Mechanics of Vertical Axis Turbines:Simulation and Model Development, Acta Universitatis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 998. 2012. [16]Müller G., Jentsch M.F., Stoddart E. (2009), Vertical axis resistance type wind turbines for use in buildings. Renewable Energy 2009;34:1407e12. [17]Vandenberghe D., Dick E. (1987), Optimum pitch control for vertical axis wind turbines. Wind Engineering 1987;11(5):237e47. [18]Lazauskas L. (1992), Three pitch control systems for vertical axis wind turbines compared. Wind Engineering 1992;16(5):269e82. [19]Wilhelm J.P., Panther C., Pertl F.A. (2009), Momentum analytical model of a circulation controlled vertical axis wind turbine. Paper No. ES2009-90352. pp. 1009e17. doi:10.1115/ES2009-90352. ASME 2009 3rd international conference on energy sustainability collocated with the heat transfer and InterPACK09 conferences (ES2009), vol. 2, ISBN: 978-0-7918-4890-6, July 19e23 2009, San Francisco, California, USA. Paraschivoiu I. Double-multiple streamtube model for Darrieus wind turbines. Second DOE/NASA wind turbines dynamics workshop, NASA CP-2186, Cleveland, OH, February 1981. pp. 19e25. [20]ITDG. (2006), Wind Electricity Generation. Available at /http://www.itdg.orgS. 2006. [21]PSIGATE. (2006), Physical Sciences Information Gateway. Available at/http://www.psigate.ac.uk/newsite/physics_timeline.htmlS. 2006. [22]Vogel J. (2005), Wind: a hard-blowing history. The Environmental Magazine, Jan–Feb 2005. [23]Lunde P. (1980), Windmills: from Jiddah to Yorkshire. January/February. Vol. 31 (1), 1980. [24]Loth JL. (1985), Aerodynamic tower shake force analysis for VAWT. Journal of Solar Energy Engineering 1985;107:45–50. [25]Homicz G.F. (1989), VAWT stochastic loads produced by atmospheric turbulence. Journal of Solar Energy Engineering 1989;111:358–67. [26]Bishop J.D.K., Amaratunga G.A.J. (2008), Evaluation of small wind turbines in distributed arrangement as sustainable wind energy option for Barbados. Energy Conversion and Management 2008;49:1652–61. [27]Islam M., Fartaj A., Ting D.S.K. (2004), Current utilization and future prospects of emerging renewable energy applications in Canada. Renewable and Sustainable Energy Reviews 2004;8:493–519. [28]Menter, F.R.(1994), Two-Equation Eddy-Viscosity Turbulence Modles for Engineering Application, AIAA Journal, vol. 32, 1994, pp.1598-1605,. [29]Ajedegba J. O., (2008), Effects of Blade Configuration on Flow Distribution and Power Output of a Zephyr Vertical Axis Wind Turbine, MS Thesis, University of Ontario Institute of Technology 2008. [30]Kirke B. K., and Lazauskas L., (2011), Limitations of Fixed Pitch Darrieus Hydrokinetic Turbine and the Challenge of Variable Pitch, Renewable Energy, Vol. 36, Issue 3, 2011, pp. 893-897. [31]Savonius S.J. (1931), The S-Rotor and its applications. Mech Eng 1931;53(5):333–8. [32]Kirke B.K. (1998), Evaluation of self-starting vertical axis wind turbines for stand-alone applications. PhD thesis, Griffith University, Australia, 1998. [33]Gorelov D.N., Krivospitsky V.P. (2008), Prospects for development of wind turbines with orthogonal rotor. Thermophysics and Aeromechanics 2008;15:153–7. [34]Mohamed M.H., Janiga G., Pap E., Thevenin D. (2011), Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade. Energy Conversion and Management 2011;52:236–42. [35]Darrieus G.J.M. (1931), Turbine Having its rotating shaft transverse to the flow of the current. US Patent No.1835081, 1931. [36]Gorelov D.N. (2009), Analogy between a flapping wing and a wind turbine with a vertical axis of revolution. Applied Mechanics and Technical Physics 2009;50:297–9. [37]Eriksson S., Bernhoff H., Leijon M. (2008), Evaluation of different turbine concepts for wind power. Renewable and Sustainable Energy Reviews 2008;12:1419–34. [38]Marini M., Massardo A., Satta A. (1992), Performance of vertical axis wind turbines with different shapes. Journal of Wind Engineering and Industrial Aerodynamics 1992;39:83–93. [39]Shienbein L.A., Malcolm D.J. (1983), Design performance and economics of 50-kW and 500-kW vertical axis wind turbines. Journal of Solar Energy Engineering 1983;105:418–25. [40]Rosen A., Abramovich H. (1985), Investigation of the structural behavior of the blades of a Darrieus wind turbine. Journal of Sound and Vibration 1985;100:493–509. [41]Bergeles G., Michos A., Athanassiadis N. (1991), Velocity vector and turbulence in the symmetry plane of a Darrieus wind generator. Journal of Wind Engineering and Industrial Aerodynamics 1991;37:87–101. [42]Brahimi M.T., Paraschivoiu I. (1995), Darrieus rotor aerodynamics in turbulent flow. Journal of Solar Energy Engineering 1995;117:128–37. [43]Wakui T., Tanzawa Y., Hashizume T., Outa E., Usui A. (2000), Optimum method of operating the wind turbine-generator systems matching the wind condition and wind turbine type. World Renewable Energy Congress 2000;VI:2348–51. [44]Kirke B.K. (1998), Evaluation of self-starting vertical axis wind turbines for stand-alone applications. PhD thesis,Griffith University, Australia, 1998. [45]Drees H.M. (1978), The cycloturbine and its potential for broad application. In: Proceedings of 2nd international symposium on wind energy systems, Amsterdam, October 3–6, 1978.pp. E7-81–8. [46]Grylls W., Dale B., Sarre P.E. (1978), A theoretical and experimental investigation into the variable pitch vertical axis wind turbine. In: Proceedings of 2nd international symposium on wind energy systems, Amsterdam, October 3–6, 1978. pp. E9-101–18. [47]Vandenberghe D., Dick E. (1987), A free vortex simulation method for the straight bladed vertical axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics 1987;26:307–24. [48]Islam M., Amin M.R., Ting D.S.K., Fartaj A. (2007), Aerodynamic factors affecting performance of straight-bladed vertical axis wind turbines. In: ASME international mechanical engineering congress and exposition, vol. 6. 2007. pp. 331–41. [49]Graham IV H.Z., Panther C., Hubbell M., Wilhelm J.P., Angle II GM, Smith JE. (2009), Airfoil selection for a straight bladed circulation controlled vertical axis wind turbine. In: ASME 2009 3rd international conference on energy sustainability, vol. 1. 2009. pp. 579–84. [50]Takao M., Kuma H., Maeda T., Kamada Y., Oki M., Minoda A. (2009), A straight-bladed vertical axis wind turbine with a directed guide vane row effect of guide vane geometry on the performance. Journal of Thermal Science 2009;18: 54–7. [51]Wilhelm J.P., Panther C., Pertl F.A., Smith J.E. (2009), Momentum analytical model of a circulation controlled vertical axis wind turbine. In: ASME 3rd international conference on energy sustainability, vol. 2. 2009. pp. 1009–17. [52]Corke T.C., He C., Patel M.P. (2004), Plasma flaps and slats: an application of weakly ionized plasma actuators. AIAA paper 2004-2127, 2nd AIAA flow control conference, Portland, Oregon, 2004. [53]Post M., Corke T. (2006), Separation control using plasma actuators: dynamic stall vortex control on oscillating airfoil. AIAA Journal 2006;44(12):3125e35. [54]Greenblatt D., Wygnanski I. (2000), Control of separation by periodic excitation. Progress in Aerospace Sciences 2000;37(7):487e545. [55]Greenblatt D., Göksel B., Rechenberg I., Schüle C., Romann D., Paschereit. (2008), Dielectric barrier discharge flow control at very low flight Reynolds numbers. AIAA Journal 2008;46(6):1528e41. [56]Bachmann M., Utehs S., Vey S., Paschereit C.O., Greenblatt D. (2009), Plasma-based active flow control on low Reynolds number airfoils. In: 49th Israel annual conference on aerospace sciences, 4e5 March 4, Tel Aviv, Haifa, 2009. [57]Ponta F.L., Seminara J.J., Otero A.D. (2007), On the aerodynamics of variable-geometry oval-trajectory Darrieus wind turbines. Renewable Energy 2007;32:35–56. [58]Debnath B.K., Biswas A., Gupta R. (2009), Computational fluid dynamics analysis of a combined three-bucket Savonius and three-bladed Darrieus rotor at various overlap. Journal of Renewable and Sustainable Energy 2009;1:1–13. [59]Gavalda J., Massons J., Diaz F. (1990), Solar Wind Technology 1990;7:457. [60]Gupta R., Biswas A. (2010), Computational fluid dynamics analysis of a twisted threebladed H-Darrieus rotor. Renewable and Sustainable Energy 2010;2:1–15. [61]Fujisawa N., Takeuchi M. (1999), Flow visualization and PIV measurement of flow field around s Darrieus rotor in dynamic stall visualization. Journal of Visualization 1999;1:379–86. [62]Beckwith T.G., Marangoni R.D., Leinhard V JH. (2007), Mechanical measurements. Sixth ed. India: Pearson Education 2007. [63]Chung S.K., Kim S.K. (2008), Digital particle image velocimetry studies of nasal airflow. Respiratory Physiology and Neurobiology 2008;163:111–20. [64]Debnath B.K., Biswas A., Gupta R. (2009), Computational fluid dynamics analysis of a combined three-bucket Savonius and three-bladed Darrieus rotor at various overlap. Journal of Renewable and Sustainable Energy 2009;1:1–13. [65]Wang S., Ingham D.B., Ma L., Pourkashanian M., Tao Z. (2010), Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Computers and Fluids 2010;39:1529–41. [66]Ferreira C.S., Kuik G.V., Bussel G.V., Scarano F. (2009), Visualization by PIV of dynamic stall on a vertical axis wind turbine. Experiments in Fluids 2009;46:97–108. [67]Suzen, Y. B., and Huang, P. G.(2006), Simulations of Flow Separation Control using Plasma Actuators, 44th AIAA Aerospace Sciences Meeting and Exhibit 9 - 12 January 2006, Reno, Nevada, 2006, pp. 1–9. [68]Greenblatt D. (2010) ,Active control of leading-edge dynamic stall. International Journal of Flow Control 2010;2(1):21e38. [69]Greenblatt D., Wygnanski I. (2001), Dynamic stall control by periodic excitation. Part 1: NACA 0015 parametric study. AIAA Journal of Aircraft 2001;38(3):430e8. [70]Sasson B., Greenblatt D. (2010), Blowing and pulsed blowing flow control performance prediction on a vertical axis wind turbine. In: 50th Israel annual conference on aerospace sciences; February 2010. [71]Sasson B., Greenblatt D. (2011), Effect of leading-edge slot blowing on a vertical axis wind turbine. AIAA Journal, 49(9):1932-1942 ,September 2011. [72]Dayan, E.(2006), Wind energy in buildings, Refocus, vol. 7, 2006, pp. 33–38. [73]Bertényi, T., McIntosh, S. C., and Babinsky, H.(2007), Hybrid Potential Flow-Streamtube Method for Modelling VAWT-Flowfield Interactions, 45th AIAA Aerospace Sciences Meeting and Exhibit 2007. [74]Islam, M., Ting, D. S. K., and Fartaj, A.(2008), Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines, Renewable and Sustainable Energy Reviews, vol. 12, 2008, pp. 1087–1109. [75]Ferreira, C., Dixon, K., Hofemann, C., Kuik, G. van Bussel, G. J. W.(2009), The VAWT in Skew : Stereo-PIV and Vortex Modeling, New Horizons, 2009, pp. 1–25. [76]Simão Ferreira, C., VanKuik, G., VanBussel, G., andScarano, F.(2009), Visualization by PIV of dynamic stall on a vertical axis wind turbine, Experiments in Fluids, vol. 46, 2009, pp. 97–108. [77]Howell, R., Qin, N., Edwards, J., andDurrani, N.(2010), Wind tunnel and numerical study of a small vertical axis wind turbine, Renewable Energy, vol. 35, 2010, pp. 412–422. [78]Kjellin, J., Bülow, F., Eriksson, S., Deglaire, P., Leijon, M., andBernhoff, H.(2011), Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine, Renewable Energy, vol. 36, 2011, pp. 3050–3053. [79]Ferreira, C. S., vanBussel, G., Scarano, F., andvanKuik, G.(2007), 2D PIV Visualization of Dynamic Stall on a Vertical Axis Wind Turbine, 45th AIAA Aerospace Sciences Meeting, 2007, pp. 1–16. [80]Ham ND. Noll RB.(1982), Effects of dynamic stall on SWECS, Journal of Solar Energy Engineering, vol. 104, 1982, pp. 96–101. [81]Cardona, J. L.(1984), Flow curvature and dynamic stall simulated with an aerodynamic free-vortex model for VAWT, Wind Engineering, vol. 8, 1984, pp. 135–143. [82]Laneville, A., and Vittecoq, P.(1986), Dynamic Stall: The Case of the Vertical Axis Wind Turbine, Journal of Solar Energy Engineering, vol. 108, 1986, pp. 140. [83]PC, K.(1980), Vertical-axis wind turbine aerodynamic performance prediction methods, Albuquerque, NM; 1980. [84]I., P.(1988), Double-Multiple Streamtube Model for Studying VAWT’s, Journal of Propulsion and Power, vol. 4, 1988, pp. 370–378. [85]Little, J., Nishihara, M., Adamovich, I., and Samimy, M.(2010), High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator, Experiments in Fluids, vol. 48, 2010, pp. 521–537. [86]薛懷甯.(2011), 電漿致動器最佳化及其於三角翼上應用之研究, 國立成功大學航太所 2011. [87]Roth, J. R., Sherman, D. M., andWilkinson, S. P.(1998), Boundary Layer Flow Control with a One Atmosphere Uniform Glow Discharge Surface Plasma, 36th AIAA Aerospace Sciences Meeting and Exhibit 1998, pp. 1–28. [88]Roth, J. R., Sin, H., Chandra, R., Madhan, M., and Wilkinson, S. P.(2003), Flow re-attachement and acceleration by paraelectric and peristaltic electrohydrodynamic(EHD) effects, AIAA-Paper 2003. [89]Labergue, A., Leger, L., Moreau, E., and Touchard, G.(2005), Effect of a plasma actuator on an airflow along an inclined wall: P.I.V. and wall pressure measurements, Journal of Electrostatics, vol. 63, 2005, pp. 961–967. [90]Léger, L., Moreau, E., Artana, G., andTouchard, G.(2001), Influence of a DC corona discharge on the airflow along an inclined flat plate, Journal of Electrostatics, vol. 51–52, 2001, pp. 300–306. [91]Artana, G., D’Adamo, J., Leger, L., Moreau, E., Touchard, G., Léger, L., Moreau, E., andTouchard, G.(2002), Flow control with electrohydrodynamic actuators, AIAA Journal, vol. 40, 2002, pp. 1773–1779. [92]Moreau, E., Léger, L., and Touchard, G.(2006), Effect of a DC surface-corona discharge on a flat plate boundary layer for air flow velocity up to 25 m/s, Journal of Electrostatics, vol. 64, 2006, pp. 215–225. [93]Léger, L., Moreau, E., andTouchard, G. G.(2002), Effect of a DC corona electrical discharge on the airflow along a flat plate, IEEE Transactions on Industry Applications, vol. 38, 2002, pp. 1478–1485. [94]Cavalieri D.(1995), On the experimental design for instability analysis on a cone at Mach 3.5 and 6.0 using a corona discharge perturbation method, 1995. [95]Corke, T. C., Dame, N., Cavalieri, D. A., and Matlis, E. H.(2002), Boundary-Layer Instability on Sharp Cone at Mach 3.5 with Controlled Input, AIAA Journal, vol. 40, 2002, pp. 1015–1018. [96]Corke TC, M. E.(2000), Phased plasma arrays for unsteady flow control, AIAA-Paper 2000. [97]Fridman, A. C. and A. G.(2005), Non-thermal Atmospheric Pressure Discharge, Appl. Phys., vol. 38, 2005, pp. 1–24. [98]Laurentie, J. C., Jolibois, J., and Moreau, E.(2009), Surface dielectric barrier discharge: Effect of encapsulation of the grounded electrode on the electromechanical characteristics of the plasma actuator, Journal of Electrostatics, vol. 67, 2009, pp. 93–98. [99]Post, M. L., and Corke, T. C.(2004), Separation Control on HIgh Angle of Attack Airfoil Using Plasma Actuators, AIAA Journal, vol. 42, 2004, pp. 2177–2184. [100]Massines, F., Rabehi, A., Decomps, P., Gadri, R.Ben, Ségur, P., and Mayoux, C.(1998), Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier, Journal of Applied Physics, vol. 83, 1998, pp. 2950. [101]Paulus, M., Stals, L., Rude, U., and Rauschenbach, B.(1999), Two-dimensional simulation of plasma-based ion implantation, Journal of Applied Physics, vol. 85, 1999, pp. 761–766. [102]Roth, J. R., Sherman, D. M., and Wilkinson, S. P.(2000), Electrohydrodynamic Flow Control with a Glow-Discharge Surface Plasma, AIAA Journal, vol. 38, 2000, pp. 1166–1172. [103]Landau, L. D., Lifshitz, E. M., and King, A. L.(1961), Electrodynamics of Continuous Media, American Journal of Physics, vol. 29, 1961, pp. 647–648. [104]Enloe, C. L., McLaughlin, T. E., VanDyken, R. D., Kachner, K. D., Jumper, E. J., Corke, T. C., Post, M., and Haddad, O.(2004), Mechanisms and Responses of a Dielectric Barrier Plasma Actuator: Geometric Effects, AIAA Journal, vol. 42, 2004, pp. 595–604. [105]Shyy, W., Jayaraman, B., and Andersson, A.(2002), Modeling of glow discharge-induced fluid dynamics, Journal of Applied Physics, vol. 92, 2002, pp. 6434–6443. [106]Orlov, D. M.(2006), Modelling and Simulation of Single Dielectric Barrier Discharge Plasma Actuators, Graduate Program in Aerospace and Mechanical Engineering 2006. [107]Singh, K. P., andRoy, S.(2008), Force approximation for a plasma actuator operating in atmospheric air, Journal of Applied Physics, vol. 103, 2008. [108]Suzen, Y. B., and Huang, P. G.(2006), Simulations of Flow Separation Control using Plasma Actuators, 44th AIAA Aerospace Sciences Meeting and Exhibit 9 - 12 January 2006, Reno, Nevada, 2006, pp. 1–9. [109]Post, M. L., and Corke, T. C.(2004), Separation Control on HIgh Angle of Attack Airfoil Using Plasma Actuators, AIAA Journal, vol. 42, 2004, pp. 2177–2184. [110]Porter, C., Baughn, J., and McLaughlin, T.(2006), Temporal force measurements on an aerodynamic plasma actuator, AIAA paper 2006, pp. 1–15. [111]Abe, T., and Takagaki, M.(2009), Momentum Coupling and Flow Induction in a DBD Plasma Actuator, AIAA 40th Plasmadynamics and Lasers Conference 2009, p. 8. [112]Hoskinson, A., Hershkowitz, N., and Ashpis, D.(2009), Comparisons of force measurement methods for DBD plasma actuators in quiescent air, AIAA paper 2009, p. 2009. [113]Thomas, F. O., Corke, T. C., Iqbal, M., Kozlov, A., and Schatzman, D.(2009), Optimization of Dielectric Barrier Discharge Plasma Actuators for Active Aerodynamic Flow Control, AIAA Journal, vol. 47, 2009, pp. 2169–2178. [114]Whalley, R., and Choi, K.(2010), Turbulent boundary layer control by DBD plasma: a spanwise travelling wave, AIAA paper 2010, p. 4840. [115]Guo, S., Burman, D., Poon, D., Mamunuru, M., Simon, T., Ernie, D., and Kortshagen, U.(2009), Separation Control Using DBD Plasma Actuators : Designs for Thrust Enhancement, Fluid Dynamics 2009, pp. 1–10. [116]Greenblatt, D., and Wygnanski, I. J.(2000), Control of flow separation by periodic excitation, Progress in Aerospace Sciences, vol. 36, 2000, pp. 487–545. [117]He, C., Corke, T. C., and Patel, M. P.(2009), Plasma Flaps and Slats: An Application of Weakly Ionized Plasma Actuators, Journal of Aircraft, vol. 46, 2009, pp. 864–873. [118]Post, M. L., and Corke, T. C.(2006), Separation Control Using Plasma Actuators: Dynamic Stall Vortex Control on Oscillating Airfoil, AIAA Journal, vol. 44, 2006, pp. 3125–3135. [119]Katz, J. and Plotkin, A. (2000). Low-Speed Aerodynamics - 2nd Edition. Cambridge Aerospace Series (No. 13). Cambridge University Press 2000. [120]Burton, T., Sharpe, D., Jenkins, N., and Bossanyi, E. (2001). Wind Energy Handbook. John Wiley and Sons 2001. [121]Glauert, H. (1947). The elements of airfoil and airscrew theory. Cambridge University Press, 2nd edition edition 1947. [122]Templin, R. (1974). Aerodynamic performance theory of the NRC vertical-axis wind turbine. Technical Report LTR-LA-160, National Research Council of Canada 1974. [123]Paraschivoiu, I., Saeed, F., and Desobry, V. (2002). Prediction capabilities in vertical-axis wind turbine aerodynamics. In The World Wind Energy Conference and Exhibition 2002. [124]Sharpe, D. (1984). Refinements and developments of the multiple stream tube theory for the aerodynamic performance of vertical axis wind turbines. In Proceedings of the Sixth BWEA Wind Energy Conference 1984, pages 148–159. [125]Biswas, S., Sreedhar, B., and Singh, Y. (1995). New analytical model for the aerodynamic performance analysis of vertical axis wind turbines. Wind Engineering 1995, 19(2):107–119. [126]Tzong-Hann Shieh. Study of Influencing Characteristics on Boundary-Layer Separation Controlled by Using DBD Plasma Actuator with Modified Model, International Journal of Heat and Mass Transfer, Vol. 113, pp. 1212-1233, Oct. 2017.
|