|
[1]. T. DIRAZ, “Galvanizleme Teknolojisi Teknolojik Kar ıla tırma: SDG’nin Avantajları ve Limitleri”, MetalSan, 2018, pp.24-30. [2]. ASTM International, “Standard Test Method for Weight [Mass] of Coating on Iron and Steel Articles with Zinc or Zinc-Alloy Coatings”, ASTM A190, 2017. [3]. T. Prosek, et al., “Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions”, Corrosion Science, vol.50, 2008, pp.2216-2231. [4]. R.P. Edavan, et al., “Corrosion resistance of painted zinc alloy coated steels”, Corrosion Science, vol.51, 2009, pp.2429-2442. [5]. R. Marder, “The metallurgy of zinc-coated steel”, Materials Science, vol.45, 2000, pp.191-271. [6]. J.W. Lee, et al., “Mechanistic study on the cut-edge corrosion behaviors of Zn-Al-Mg alloy coated steel sheets in chloride containing environments,” Corrosion Science, 2019, vol.160, pp.108-170. [7]. E. Almeida, et al., “Lap-joint corrosion of automotive coated materials in chloride media. Part 1-Electrogalvanized steel,” Surface and Coatings Technology, Vol.124, 2000, pp.169–179. [8]. ASTM International, “Standard Specification for Steel Sheet, Zinc-5 % Aluminum Alloy-Coated by the Hot-Dip Process”, ASTM A875, 2017. [9]. M.S. Azevedo, et al., “Corrosion mechanisms of Zn(Mg, Al) coated steel in accelerated tests and natural exposure: 1. The role of electrolyte composition in the nature of corrosion products and relative corrosion rate”, Corrosion Science, Vol.90, 2015, pp.472–481. [10]. O. de Rincón, et al., “Evaluating Zn, Al and Al–Zn coatings on carbon steel in a special atmosphere”, Construction and Building Materials, vol.23, 2009, pp.1465-1471. [11]. ASTM International, “Standard Specification for Steel Sheet, 55% Aluminum-Zinc Alloy-Coated by the Hot-Dip Process”, ASTM A792, 2017. [12]. ASTM International, “Standard Specification for Steel Sheet, Zinc-Aluminum-Magnesium Alloy-Coated by the Hot-Dip Process”, ASTM A1046, 2017. [13]. Australia Standard, “Steel sheet and strip—Hot-dip zinc-coated or aluminium/zinc-coated”, AS 1397, 2001. [14]. European Standards, “Continuously hot-dip coated steel flat products - Technical delivery conditions”, EN 10346, 2009. [15]. JIS, “Hot-dip zinc-aluminium-magnesium alloy-coated steel and strip”, JIS G3323, 2012. [16]. Y. MORIMOTO, et al., “Excellent Corrosion-resistant Zn-Al-Mg-Si Alloy Hot-dip Galvanized Steel Sheet “SUPER DYMA”” , NIPPON STEEL TECHNICAL REPORT, Vol.87, 2003, pp.24-26. [17]. 新日鐵住金株式會社,SuperDyma®超級原材料編,2013。 [18]. 洪志忠,抗指紋熱浸鍍鋁鋅及鍍鋁鋅鋼板特性研究,2016。 [19]. X. Zhang, et al., “Atmospheric corrosion of Galfan coatings on steel in chloride-rich environments”, Corrosion Science, vol.73, 2013, pp.62-71. [20]. T. Liu, et al., “Effect of fluxes on wettability between the molten Galfan alloy and Q235 steel matrix”, Surface & Coatings Technology, 2018,Vol.337, pp.270–278. [21]. GalvInfoNote, “Zinc-5% Aluminum Alloy-Coated Steel Sheet”, 2011. [22]. G.T. Van Rooyen, et al., “Properties of a 55 % AluminiumZinc Coating on Steel Sheeting”, 2016. [23]. Bluescope, “Development of aluminium/zinc/magnesium Alloy-Coating for next Generation ZINCALUME® Steel with Activate® technology”, Corrosion Technical Bulletin, Vol.6, 2019, pp.1–4. [24]. R. Mathew, et al., “Microstructural refinement of aluminium-zinc-silicon coated steels”, Surface & Coatings Technology, Vol.306, 2016, pp.490–496. [25]. L. Yang, et al., “Corrosion behaviour of superplastic Zn–Al alloys in simulated acid rain”, Corrosion Science, vol.59, 2012, pp.229-237. [26]. 廖啟民,鋁合金的腐蝕與防治,1991。 [27]. T. Prosek, et al., “Effect of the microstructure of Zn-Al and Zn-Al-Mg model alloys on corrosion stability”, Corrosion Science, Vol.110, 2016, pp.71–81. [28]. M.S. Azevedo, et al., “Corrosion mechanisms of Zn(Mg,Al) coated steel: 2. The effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes”, Corrosion Science, vol.90, 2015, pp.482-490. [29]. N. Lebozec, et al., “Effect of carbon dioxide on the atmospheric corrosion of Zn–Mg–Al coated steel”, Corrosion Science, Vol.74, 2013, pp.379–386. [30]. T. Prosek, et al., “Composition of corrosion products formed on Zn–Mg, Zn–Al and Zn–Al–Mg coatings in model atmospheric conditions”, Corrosion Science, vol.86, 2014, pp.231-238. [31]. T. Ishikawa, et al., “Air permeability of the artificially synthesized Zn–Al–Mg alloy rusts”, Corrosion Science, vol.49, 2007, pp.2547-2556. [32]. S. Li, et al., “The effects of RE and Si on the microstructure and corrosion resistance of Zn–6Al–3Mg hot dip coating”, Applied Surface Science, vol.357, 2015, pp.2004-2012. [33]. C. Yao, et al., “Effect of Mg content on microstructure and corrosion behavior of hot dipped Zn-Al-Mg coatings”, Journal of Alloys and Compounds, vol.670, 2016, pp.239-248. [34]. J. Elvins, et al., “The effect of magnesium additions on the microstructure and cut edge corrosion resistance of zinc aluminium alloy galvanised steel”,Corrosion Science, vol.50, 2008, pp.1650-1658. [35]. M.S Azevedo, et al., “Corrosion mechanisms of Zn(Mg,Al) coated steel: The effect of HCO3- and NH4+ ions on the intrinsic reactivity of the coating”, Electrochimica Acta, vol.153, 2015, pp.159-169 [36]. M. Uranaka, et al., “Corrosion resistance of hot-dip Zn-6%Al-3%Mg alloy coated steel sheet used in automotive parts”, Metallurgical Science and Technology, vol.30-1, 2012, pp.29-37. [37]. M. Dutta, et al., “Morphology and properties of hot dip Zn–Mg and Zn–Mg–Al alloy coatings on steel sheet”, Surface and Coatings Technology, vol.205, 2010, pp.2578-2584. [38]. N. C. Hosking, et al., “Corrosion resistance of zinc–magnesium coated steel”, Corrosion Science, vol.49, 2007, pp.3669-3695. [39]. B. Gao, et al., “The Corrosion Mechanism of Zn-5%Al-0.3%Mg Coating”, AMR., vol.189-193, 2011, pp.1284-1287. [40]. P. Volovitch, et al., “Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn–Al–Mg coatings on steel”, Corrosion Science, vol.53, 2011, pp.2437-2445. [41]. J. Duchoslav, et al., “Nanoscopic view on the initial stages of corrosion of hot dip galvanized Zn–Mg–Al coatings”, Corrosion Science, vol.83, 2014, pp.327-334. [42]. A. Takeuchi, et al., “Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element”, Materials Transactions, vol.46, 2005, pp.2817-2829. [43]. P. Volovitch, et al., “Understanding corrosion via corrosion product characterization: I. Case study of the role of Mg alloying in Zn–Mg coating on steel”, Corrosion Science, Vol.51, 2009, pp.1251-1262. [44]. J. Ma, et al., “Effects of acidity and alkalinity on corrosion behaviour of Al-Zn-Mg based anode alloy”, Journal of Power Sources, Vol.226, 2013, pp.156-161. [45]. T. Prosek, et al., “Coil-coated Zn–Mg and Zn–Al–Mg: Effect of climatic parameters on the corrosion at cut edges”, Progress in Organic Coatings, Vol.83, 2015, Pages26-35. [46]. E.A. Sacco, et al., “Effect of the plastic deformation on the electrochemical behavior of metal coated steel sheets”, Surface and Coatings Technology, 2003, Vol.168, pp.115-122. [47]. ISO, “Corrosion of metals and alloy-Crrosivity of atmosphere-Cassification”, ISO 9223, 1992. [48]. ISO, “Corrosion of metals and alloy-Crrosivity of atmosphere-Cassification, determination and estimation”, ISO 9223, 2012. [49]. Treuttel et Würtz, “Archives des decouvertes et des inventions Nouvelles”, 1840, pp.264. [50]. Bethlehem Steel Corporation, “Non-ferrous metal coated products and method of production thereof”, CA899729, 1972. [51]. Inland Steel Company, “Zn-Al hot-dip coated ferrous sheet”, US4029478A, 1977. [52]. G. Reumont, et al., “Thermodynamic Assessment of the Fe-Zn System”, Journal of Phase Equilibria, Vol.21, 2000, pp.371–378. [53]. Y. Tang, et al., “Thermodynamic modeling of the Fe−Zn system using exponential temperature dependence for the excess gibbs energy,” Journal of Miningand Metallurgy, Vol.47, 2011, pp.1-10. [54]. R. KAINUMA, et al., “Reactive Diffusion between Solid Fe and Liquid Zn at 723 K”, ISIJ International, Vol.47, 2007, pp.740-744. [55]. L. Zhu, et al., “Phase equilibria and diffusion coefficients in the Fe-Zn binary system”, Materials and Design, Vol.188, 2020, pp.108-437. [56]. J.H. Kang, et al., “Fe-Zn reaction and its influence on microcracks during hot tensile deformation of galvanized 22MnB5 steel”, Surface & Coatings Technology, Vol.357, 2019, pp.1069-1075. [57]. W.J. Smith, et al., “Hot Dip Coatings”, 2017, pp.1-19. [58]. Y. Yan, et al., “Effects of Zn concentration and heat treatment on the microstructure, mechanical properties and corrosion behavior of as-extruded Mg-Zn alloys produced by powder metallurgy”, Journal of Alloys and Compounds, Vol.693, 2017, pp.1277-1289. [59]. J. Elvins, et al., “Microstructural changes in zinc aluminium alloy galvanising as a function of processing parameters and their influence on corrosion”, Corrosion Science, vol.47, 2005, pp.2740-2759. [60]. N. Takata, et al., “Morphology and formation of FeeAl intermetallic layers on iron hot-dipped in AleMgeSi alloy melt”, Intermetallics, Vol.54, 2014, pp.136-142. [61]. N. Takata, et al., “Crystallography of Fe2Al5 phase at the interface between solid Fe and liquid Al”, Intermetallics, Vol.67, 2015, pp.1-11. [62]. F.C. Yin, et al., “Effect of Si on growth kinetics of intermetallic compounds during reaction between solid iron and molten aluminum”, Transactions of Nonferrous Metals Society of China, Vol.23, 2013, pp.556-561. [63]. S. Li, et al., “Effects of magnesium on the microstructure and corrosion resistance of Zn–55Al–1.6Si coating”, Construction and Building Materials, vol.71, 2014, pp.124-131. [64]. W. Liu, et al., “Influence of alloyed magnesium on the microstructure and long-term corrosion behavior of hot-dip Al–Zn–Si coating in NaCl solution”, Corrosion Science, vol.104, 2016, pp.217-226. [65]. F. Sommer, et al., “On the Entropy of Mixing”, Journal of Alloys and Compounds, Vol. 325, 2001, pp.118-128. [66]. Brophy, et al., “Zam-Tech-Brochure”, 2013, pp.1-6. [67]. S. Schuerz, et al., “Corrosion behaviour of Zn-Al-Mg coated steel sheet in sodium chloride-containing environment”, Corrosion Science, Vol.51, 2009, pp.2355-2363. [68]. M. Richetta, et al., “Surface spectroscopy and structural analysis of nanostructured multifunctional (Zn, Al) layered double hydroxides”, Surface and Interface Analysis, vol.48, 2016, pp.1-5. [69]. J. I. Velasco, et al., “Layered double hydroxides (LDHs) as functional fi llers in polymer nanocomposites”, Woodhead Publishing Limited, 2012, pp.91-130. [70]. E. Diler, et al., “Chemistry of corrosion products of Zn and MgZn pure phases under atmospheric conditions”, Corrosion Science, vol.65, 2012, pp.178-186. [71]. X. Su, et al., “Thermodynamic analysis and experimental study on the oxidation of the Zn-Al-Mg coating baths”, Applied Surface Science, vol.396, 2017, pp.154-160. [72]. T.N. Vu, et al., “The effect of pH on the selective dissolution of Zn and Al from Zn–Al coatings on steel”, Corrosion Science, vol.67, 2013, pp.42-49. [73]. ASTM International, “Standard Practice for Operating Salt Spray (Fog) Apparatus”, ASTM B117, 2017. [74]. CNS,鹽水噴霧試驗法, CNS 8886, 2002. [75]. ISO, “Corrosion tests in artificial atmospheres-Salt spray tests”, International Organization for Standardization”, ISO 9227, 2006. [76]. ASTM International, “Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution”, ASTM G48, 2016. [77]. 柯賢正,腐蝕及其防制,2014。 [78]. ASTM International, “Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron-, Nickel-, or Cobalt-Based Alloys”, ASTM G61-68, 2003. [79]. JIS, “Method of pitting potential measurement for stainless steels”, JIS G0577, 2005. [80]. 交通部運輸研究所,2019年臺灣大氣腐蝕劣化因子調查研究資料年報,2020。 [81]. 蘇映瑾,鋁及鎂添加對熱浸鍍(鋅-X wt.%鋁 +Y wt.%鎂=9.0 wt.%)合金顯微組織及各項性質影響之研究,2020。 [82]. ASTM International, “Standard Specification for Molybdenum and Molybdenum Alloy Plate, Sheet, Strip, and Foil”, ASTM B386, 1997.
|