跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 13:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊智軒
研究生(外文):Chih-Hsuan Chuang
論文名稱:不同鎂鋁含量熱浸鍍鋅產品在酸性環境下耐蝕性質影響之研究
論文名稱(外文):Study of the effects of the magnesium and aluminum additions on the corrosion resistance of the hot-dip galvanized products under the acidic environment
指導教授:王惠森陳厚光
指導教授(外文):Huei-Sen WangHou-Guang Chen
口試委員:林勝志
口試委員(外文):Sheng-Chin Lin
口試日期:2021-07-27
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:88
中文關鍵詞:噴霧浸泡電化學
外文關鍵詞:GIZAMSuperDymaCASSSparyImmersionElectrochemistry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以三種未經表面處理、不同鍍層厚度且不同鎂鋁含量之熱浸鍍鋅產品(包含有:GI(Zn)、ZAM(6.0 wt.%鋁-3.0 wt.%鎂-鋅)及SuperDyma(11.0 wt.%鋁-3.0 wt.%鎂-鋅))在酸性CASS溶液中,分別以噴霧、浸泡及電化學等方法進行腐蝕測試,測試後針對其鍍層表面進行顯微組織、腐蝕產物、耐蝕特性等進行比較分析,藉以完整了解上述三種熱浸鍍產品在CASS酸性溶液環境之腐蝕形成機構及腐蝕動力學。
本研究耐蝕性比較分析的手法包含有不考慮鍍層厚度的產品耐蝕性優劣及考慮鍍層厚度的鍍層耐蝕速率。每個分析手法又包含三個面向,其中面向A是指開始生成特定腐蝕產物的時間及定義產生第一點特定腐蝕產物平均消耗鍍層量(鍍層厚度(μm)/產生起始特定腐蝕產物天數(D));面向B是產生特定腐蝕產物占比的時間及產生特定腐蝕產物占比每天鍍層平均消耗速率;面向C是綜合考慮面向A及面向B。
在不同腐蝕測試方法及三個面向分析結果顯示,無論是CASS噴霧測試或CASS浸泡測試,SuperDyma由於鍍層較厚因此在產品耐蝕性優劣表現較佳;而ZAM本身耐蝕性質優良,因此在鍍層耐蝕速率時表現較佳;而電化學測試為本研究三種測試方試中最為嚴苛,且測試完成時間較為短暫,因此所有產品在實驗結果中並無明顯之鑑別度。因此,熱浸鍍鋅產品不建議採CASS電解液進行電化學測試。
In the study, three hot-dip galvanized products (including GI (Zn)、ZAM (6.0 wt.%Al-3.0 wt.%Mg-Zn) and SuperDyma (11.0 wt.%Al-3.0 wt.%Mg-Zn)), with different coating thicknesses, different the magnesium and aluminum additions and without surface treatment, are corrosion tested by using Spary, Immersion, and Electrochemistry test methods under the acidic CASS solution. After the tests, the microstructure, corrosion products and corrosion resistance characteristics of the coating surface are analyzed and compared in order to understand the corrosion formation mechanism and corrosion kinetics under the acidic CASS solution.
In the study, methods for comparative analysis of the product corrosion resistance include: product corrosion resistance without considering coating thickness, and corrosion resistance considering the coating thickness. Each analysis method contains three observation aspects, “aspect A” refers to the time when the specific corrosion products initially form and average consumption of the coating amount when the initial point of the specific corrosion product forms(coating thickness (μm)/ time to form the initial specific corrosion product); “aspect B”is time to form the proportion of the specific corrosion product, and the average consumption rate of the coating when the proportion of the specific corrosion products is produced. “aspect C” is a comprehensive consideration of “aspect A” and “aspect B”.
Based on the above test methods and three aspects, the results show, regardless of CASS Spary test or CASS Immersion test, SuperDyma has good performance on the product corrosion resistance, due to its thicker coating; However, considering the corrosion rate of the coating , ZAM has better performance on the corrosion resistance; The electrochemical test using CASS electrolyte is the most severe approach for three products in this study. Although the test completion time is shorter, all the products have no obvious difference in their electrochemical test results. Therefore, the use of CASS electrolyte for electrochemical testing of hot-dip galvanized products is not recommended.
摘要 I
Abstract II
致謝 IV
總目錄 V
圖目錄 VII
表目錄 X
第一章 前言 1
第二章 文獻回顧 3
2-1 連續式熱浸鍍鋅發展 3
2-2 合金成分對於連續式熱浸鍍鋅之影響 4
2-2-1 添加鋁的機制 4
2-2-2 添加鎂的機制 11
2-3 腐蝕測試方式及種類 14
2-3-1 鹽霧測試 16
2-3-2 浸泡測試 16
2-3-3 電化學測試 16
2-4 目前台灣環境與政策之影響 18
2-5 酸性環境對於連續式熱浸鍍鋅影響 18
第三章 實驗步驟 25
3-1 實驗步驟及流程 25
3-2 材料性質分析、檢測設備與軟體介紹 27
3-2-1 掃描式電子顯微鏡 27
3-2-2 多功能X光繞射儀 28
3-2-3 手提式酸鹼度測定儀 29
3-2-4 恆電位儀 30
3-2-5 噴霧試驗機 31
3-2-6 恆溫水槽 32
3-2-7 腐蝕產物之影像分析 34
第四章 結果與討論 37
4-1 腐蝕測試前之現有產品觀察 37
4-2 腐蝕測試後之現有產品觀察 40
4-2-1 CASS噴霧測試 40
4-2-1-1 CASS噴霧測試之巨觀觀察 40
4-2-1-2 CASS噴霧測試之顯微組織觀察 43
4-2-1-3 CASS噴霧測試之腐蝕動力學分析 47
4-2-2 CASS浸泡測試 54
4-2-2-1 CASS浸泡測試之巨觀觀察 54
4-2-2-2 CASS浸泡測試之腐蝕動力學分析 58
4-2-3 綜合CASS噴霧測試與CASS浸泡測試之交叉分析 60
4-2-4 CASS電化學測試 63
第五章 結論 64
第六章 參考文獻 66
[1]. T. DIRAZ, “Galvanizleme Teknolojisi Teknolojik Kar ıla tırma: SDG’nin Avantajları ve Limitleri”, MetalSan, 2018, pp.24-30.
[2]. ASTM International, “Standard Test Method for Weight [Mass] of Coating on Iron and Steel Articles with Zinc or Zinc-Alloy Coatings”, ASTM A190, 2017.
[3]. T. Prosek, et al., “Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions”, Corrosion Science, vol.50, 2008, pp.2216-2231.
[4]. R.P. Edavan, et al., “Corrosion resistance of painted zinc alloy coated steels”, Corrosion Science, vol.51, 2009, pp.2429-2442.
[5]. R. Marder, “The metallurgy of zinc-coated steel”, Materials Science, vol.45, 2000, pp.191-271.
[6]. J.W. Lee, et al., “Mechanistic study on the cut-edge corrosion behaviors of Zn-Al-Mg alloy coated steel sheets in chloride containing environments,” Corrosion Science, 2019, vol.160, pp.108-170.
[7]. E. Almeida, et al., “Lap-joint corrosion of automotive coated materials in chloride media. Part 1-Electrogalvanized steel,” Surface and Coatings Technology, Vol.124, 2000, pp.169–179.
[8]. ASTM International, “Standard Specification for Steel Sheet, Zinc-5 % Aluminum Alloy-Coated by the Hot-Dip Process”, ASTM A875, 2017.
[9]. M.S. Azevedo, et al., “Corrosion mechanisms of Zn(Mg, Al) coated steel in accelerated tests and natural exposure: 1. The role of electrolyte composition in the nature of corrosion products and relative corrosion rate”, Corrosion Science, Vol.90, 2015, pp.472–481.
[10]. O. de Rincón, et al., “Evaluating Zn, Al and Al–Zn coatings on carbon steel in a special atmosphere”, Construction and Building Materials, vol.23, 2009, pp.1465-1471.
[11]. ASTM International, “Standard Specification for Steel Sheet, 55% Aluminum-Zinc Alloy-Coated by the Hot-Dip Process”, ASTM A792, 2017.
[12]. ASTM International, “Standard Specification for Steel Sheet, Zinc-Aluminum-Magnesium Alloy-Coated by the Hot-Dip Process”, ASTM A1046, 2017.
[13]. Australia Standard, “Steel sheet and strip—Hot-dip zinc-coated or aluminium/zinc-coated”, AS 1397, 2001.
[14]. European Standards, “Continuously hot-dip coated steel flat products - Technical delivery conditions”, EN 10346, 2009.
[15]. JIS, “Hot-dip zinc-aluminium-magnesium alloy-coated steel and strip”, JIS G3323, 2012.
[16]. Y. MORIMOTO, et al., “Excellent Corrosion-resistant Zn-Al-Mg-Si Alloy Hot-dip Galvanized Steel Sheet “SUPER DYMA”” , NIPPON STEEL TECHNICAL REPORT, Vol.87, 2003, pp.24-26.
[17]. 新日鐵住金株式會社,SuperDyma®超級原材料編,2013。
[18]. 洪志忠,抗指紋熱浸鍍鋁鋅及鍍鋁鋅鋼板特性研究,2016。
[19]. X. Zhang, et al., “Atmospheric corrosion of Galfan coatings on steel in chloride-rich environments”, Corrosion Science, vol.73, 2013, pp.62-71.
[20]. T. Liu, et al., “Effect of fluxes on wettability between the molten Galfan alloy and Q235 steel matrix”, Surface & Coatings Technology, 2018,Vol.337, pp.270–278.
[21]. GalvInfoNote, “Zinc-5% Aluminum Alloy-Coated Steel Sheet”, 2011.
[22]. G.T. Van Rooyen, et al., “Properties of a 55 % AluminiumZinc Coating on Steel Sheeting”, 2016.
[23]. Bluescope, “Development of aluminium/zinc/magnesium Alloy-Coating for next Generation ZINCALUME® Steel with Activate® technology”, Corrosion Technical Bulletin, Vol.6, 2019, pp.1–4.
[24]. R. Mathew, et al., “Microstructural refinement of aluminium-zinc-silicon coated steels”, Surface & Coatings Technology, Vol.306, 2016, pp.490–496.
[25]. L. Yang, et al., “Corrosion behaviour of superplastic Zn–Al alloys in simulated acid rain”, Corrosion Science, vol.59, 2012, pp.229-237.
[26]. 廖啟民,鋁合金的腐蝕與防治,1991。
[27]. T. Prosek, et al., “Effect of the microstructure of Zn-Al and Zn-Al-Mg model alloys on corrosion stability”, Corrosion Science, Vol.110, 2016, pp.71–81.
[28]. M.S. Azevedo, et al., “Corrosion mechanisms of Zn(Mg,Al) coated steel: 2. The effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes”, Corrosion Science, vol.90, 2015, pp.482-490.
[29]. N. Lebozec, et al., “Effect of carbon dioxide on the atmospheric corrosion of Zn–Mg–Al coated steel”, Corrosion Science, Vol.74, 2013, pp.379–386.
[30]. T. Prosek, et al., “Composition of corrosion products formed on Zn–Mg, Zn–Al and Zn–Al–Mg coatings in model atmospheric conditions”, Corrosion Science, vol.86, 2014, pp.231-238.
[31]. T. Ishikawa, et al., “Air permeability of the artificially synthesized Zn–Al–Mg alloy rusts”, Corrosion Science, vol.49, 2007, pp.2547-2556.
[32]. S. Li, et al., “The effects of RE and Si on the microstructure and corrosion resistance of Zn–6Al–3Mg hot dip coating”, Applied Surface Science, vol.357, 2015, pp.2004-2012.
[33]. C. Yao, et al., “Effect of Mg content on microstructure and corrosion behavior of hot dipped Zn-Al-Mg coatings”, Journal of Alloys and Compounds, vol.670, 2016, pp.239-248.
[34]. J. Elvins, et al., “The effect of magnesium additions on the microstructure and cut edge corrosion resistance of zinc aluminium alloy galvanised steel”,Corrosion Science, vol.50, 2008, pp.1650-1658.
[35]. M.S Azevedo, et al., “Corrosion mechanisms of Zn(Mg,Al) coated steel: The effect of HCO3- and NH4+ ions on the intrinsic reactivity of the coating”, Electrochimica Acta, vol.153, 2015, pp.159-169
[36]. M. Uranaka, et al., “Corrosion resistance of hot-dip Zn-6%Al-3%Mg alloy coated steel sheet used in automotive parts”, Metallurgical Science and Technology, vol.30-1, 2012, pp.29-37.
[37]. M. Dutta, et al., “Morphology and properties of hot dip Zn–Mg and Zn–Mg–Al alloy coatings on steel sheet”, Surface and Coatings Technology, vol.205, 2010, pp.2578-2584.
[38]. N. C. Hosking, et al., “Corrosion resistance of zinc–magnesium coated steel”, Corrosion Science, vol.49, 2007, pp.3669-3695.
[39]. B. Gao, et al., “The Corrosion Mechanism of Zn-5%Al-0.3%Mg Coating”, AMR., vol.189-193, 2011, pp.1284-1287.
[40]. P. Volovitch, et al., “Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn–Al–Mg coatings on steel”, Corrosion Science, vol.53, 2011, pp.2437-2445.
[41]. J. Duchoslav, et al., “Nanoscopic view on the initial stages of corrosion of hot dip galvanized Zn–Mg–Al coatings”, Corrosion Science, vol.83, 2014, pp.327-334.
[42]. A. Takeuchi, et al., “Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element”, Materials Transactions, vol.46, 2005, pp.2817-2829.
[43]. P. Volovitch, et al., “Understanding corrosion via corrosion product characterization: I. Case study of the role of Mg alloying in Zn–Mg coating on steel”, Corrosion Science, Vol.51, 2009, pp.1251-1262.
[44]. J. Ma, et al., “Effects of acidity and alkalinity on corrosion behaviour of Al-Zn-Mg based anode alloy”, Journal of Power Sources, Vol.226, 2013, pp.156-161.
[45]. T. Prosek, et al., “Coil-coated Zn–Mg and Zn–Al–Mg: Effect of climatic parameters on the corrosion at cut edges”, Progress in Organic Coatings, Vol.83, 2015, Pages26-35.
[46]. E.A. Sacco, et al., “Effect of the plastic deformation on the electrochemical behavior of metal coated steel sheets”, Surface and Coatings Technology, 2003, Vol.168, pp.115-122.
[47]. ISO, “Corrosion of metals and alloy-Crrosivity of atmosphere-Cassification”, ISO 9223, 1992.
[48]. ISO, “Corrosion of metals and alloy-Crrosivity of atmosphere-Cassification, determination and estimation”, ISO 9223, 2012.
[49]. Treuttel et Würtz, “Archives des decouvertes et des inventions Nouvelles”, 1840, pp.264.
[50]. Bethlehem Steel Corporation, “Non-ferrous metal coated products and method of production thereof”, CA899729, 1972.
[51]. Inland Steel Company, “Zn-Al hot-dip coated ferrous sheet”, US4029478A, 1977.
[52]. G. Reumont, et al., “Thermodynamic Assessment of the Fe-Zn System”, Journal of Phase Equilibria, Vol.21, 2000, pp.371–378.
[53]. Y. Tang, et al., “Thermodynamic modeling of the Fe−Zn system using exponential temperature dependence for the excess gibbs energy,” Journal of Miningand Metallurgy, Vol.47, 2011, pp.1-10.
[54]. R. KAINUMA, et al., “Reactive Diffusion between Solid Fe and Liquid Zn at 723 K”, ISIJ International, Vol.47, 2007, pp.740-744.
[55]. L. Zhu, et al., “Phase equilibria and diffusion coefficients in the Fe-Zn binary system”, Materials and Design, Vol.188, 2020, pp.108-437.
[56]. J.H. Kang, et al., “Fe-Zn reaction and its influence on microcracks during hot tensile deformation of galvanized 22MnB5 steel”, Surface & Coatings Technology, Vol.357, 2019, pp.1069-1075.
[57]. W.J. Smith, et al., “Hot Dip Coatings”, 2017, pp.1-19.
[58]. Y. Yan, et al., “Effects of Zn concentration and heat treatment on the microstructure, mechanical properties and corrosion behavior of as-extruded Mg-Zn alloys produced by powder metallurgy”, Journal of Alloys and Compounds, Vol.693, 2017, pp.1277-1289.
[59]. J. Elvins, et al., “Microstructural changes in zinc aluminium alloy galvanising as a function of processing parameters and their influence on corrosion”, Corrosion Science, vol.47, 2005, pp.2740-2759.
[60]. N. Takata, et al., “Morphology and formation of FeeAl intermetallic layers on iron hot-dipped in AleMgeSi alloy melt”, Intermetallics, Vol.54, 2014, pp.136-142.
[61]. N. Takata, et al., “Crystallography of Fe2Al5 phase at the interface between solid Fe and liquid Al”, Intermetallics, Vol.67, 2015, pp.1-11.
[62]. F.C. Yin, et al., “Effect of Si on growth kinetics of intermetallic compounds during reaction between solid iron and molten aluminum”, Transactions of Nonferrous Metals Society of China, Vol.23, 2013, pp.556-561.
[63]. S. Li, et al., “Effects of magnesium on the microstructure and corrosion resistance of Zn–55Al–1.6Si coating”, Construction and Building Materials, vol.71, 2014, pp.124-131.
[64]. W. Liu, et al., “Influence of alloyed magnesium on the microstructure and long-term corrosion behavior of hot-dip Al–Zn–Si coating in NaCl solution”, Corrosion Science, vol.104, 2016, pp.217-226.
[65]. F. Sommer, et al., “On the Entropy of Mixing”, Journal of Alloys and Compounds, Vol. 325, 2001, pp.118-128.
[66]. Brophy, et al., “Zam-Tech-Brochure”, 2013, pp.1-6.
[67]. S. Schuerz, et al., “Corrosion behaviour of Zn-Al-Mg coated steel sheet in sodium chloride-containing environment”, Corrosion Science, Vol.51, 2009, pp.2355-2363.
[68]. M. Richetta, et al., “Surface spectroscopy and structural analysis of nanostructured multifunctional (Zn, Al) layered double hydroxides”, Surface and Interface Analysis, vol.48, 2016, pp.1-5.
[69]. J. I. Velasco, et al., “Layered double hydroxides (LDHs) as functional fi llers in polymer nanocomposites”, Woodhead Publishing Limited, 2012, pp.91-130.
[70]. E. Diler, et al., “Chemistry of corrosion products of Zn and MgZn pure phases under atmospheric conditions”, Corrosion Science, vol.65, 2012, pp.178-186.
[71]. X. Su, et al., “Thermodynamic analysis and experimental study on the oxidation of the Zn-Al-Mg coating baths”, Applied Surface Science, vol.396, 2017, pp.154-160.
[72]. T.N. Vu, et al., “The effect of pH on the selective dissolution of Zn and Al from Zn–Al coatings on steel”, Corrosion Science, vol.67, 2013, pp.42-49.
[73]. ASTM International, “Standard Practice for Operating Salt Spray (Fog) Apparatus”, ASTM B117, 2017.
[74]. CNS,鹽水噴霧試驗法, CNS 8886, 2002.
[75]. ISO, “Corrosion tests in artificial atmospheres-Salt spray tests”, International Organization for Standardization”, ISO 9227, 2006.
[76]. ASTM International, “Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution”, ASTM G48, 2016.
[77]. 柯賢正,腐蝕及其防制,2014。
[78]. ASTM International, “Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron-, Nickel-, or Cobalt-Based Alloys”, ASTM G61-68, 2003.
[79]. JIS, “Method of pitting potential measurement for stainless steels”, JIS G0577, 2005.
[80]. 交通部運輸研究所,2019年臺灣大氣腐蝕劣化因子調查研究資料年報,2020。
[81]. 蘇映瑾,鋁及鎂添加對熱浸鍍(鋅-X wt.%鋁 +Y wt.%鎂=9.0 wt.%)合金顯微組織及各項性質影響之研究,2020。
[82]. ASTM International, “Standard Specification for Molybdenum and Molybdenum Alloy Plate, Sheet, Strip, and Foil”, ASTM B386, 1997.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top