跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/25 01:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張清堯
研究生(外文):CHANG, CHING-YAO
論文名稱:微奈米尺寸效應對原子力顯微鏡掃描樣本精度的影響及簡諧探針設計
論文名稱(外文):Micro/nano Size-dependent Effect on the Accuracy of AFM Scanning a Sample and the Design of Harmonic AFM Probe
指導教授:林水木林水木引用關係
指導教授(外文):LIN, SHUEEI-MUH
口試委員:陳朝光李森墉廖慶聰王文榮
口試委員(外文):CHEN, CHA`O-KUANGLEE, SEN-YUNGLIAUH, CHIHNG-TSUNGWANG, WEN-RONG
口試日期:2021-01-08
學位類別:博士
校院名稱:崑山科技大學
系所名稱:機械與能源工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:100
中文關鍵詞:原子力顯微鏡尺寸效應探針設計解析法修正耦合應力理論簡諧頻率整數倍關係
外文關鍵詞:AFMsize-dependencydesign of probeanalytical methodmodified couple stress theoryharmonic frequencyinteger multiples relation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:82
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
原子力顯微鏡在多模態激發情形下之探針反應,對於量測奈米尺寸形貌和表面性質是非常有效率的,基於修正耦合應力理論為基礎,推導受到雙模激發、凡德瓦力及尺寸效應參數影響之原子力顯微鏡探針的數學模型,研究得到的結果如下:(1)尺寸效應參數越大、相互作用距離越小,頻移越大。(2)採用越小相互作用距離,頻移越明顯,雖變化微量的距離,就會產生明顯的頻移,可提高量測精度。(3)雙模共振的反應頻譜與單模共振有顯著的不同。(4)具有不同尺寸效應參數的兩個系統的自然頻率關係。
另以修正偶應力理論為基礎,推導原子力顯微鏡非均質探針的數學模型,得到一種解析方法滿足整數倍頻率關係之原子力顯微鏡探針的設計,得到兩個相似性條件中,即使有尺寸效應影響,仍可保持整數倍頻率關係,並發現自然頻率、等效彈性常數和幾何參數之間的關係,特定頻率和等效彈性常數可以經由關係式調整探針參數來獲得。研究得到有關特定頻率和等效彈性常數的探針尺寸設計方法,如下:(1)如探針厚度固定且不同探針的寬度斜率相同,則它們的無因次頻率整數倍關係是相同的,且該現象與尺寸效應無關。(2)根據推導之公式,可得到探針的原始厚度和長度,進而求得特定頻率。(3)根據推導之公式和原始厚度和長度,可得到原始寬度,進而求得特定的等效彈性常數。
We presented a mathematical model of AFM probe subjected to multimode excitation based on the modified couple stress theory. We proposed the semianalytical solution of the system. We investigated the response spectrum and transient behavior of AFM probe subjected to multimode excitations. It is very helpful to predict the surface properties and nanotopography based on the response of multimodes excitation. The effects of the interacting distance, size parameter, and root excitation on the frequency shift and response spectrum are investigated. We discovered the resonant frequency relation of the two systems with different size parameters and expressed in a formula. The natural frequencies determined by the semianalytical method and those predicted via the formula are extremely consistent.
We derived the mathematical model of an AFM nonuniform probe in the modified couple stress theory here. The analytical method is suggested to design the configuration of the AFM probe satisfactory the integer-multiples relation among frequencies. The changful cross-section of the probe is adjusted to adaptation the specific requirement. One invents two resemblance conditions such that the integer-multiples relation is retentive in spite of the size-dependency parameter. In addition, the relations among the geometry parameters, the effective spring constant and the natural frequencies are discovered. The spring constant and specific frequencies can be received by adjusting the probe parameters via the relations.
中文摘要 i
ABSTRACTii
誌謝 iv
表目錄 vii
圖目錄 viii
符號說明 ix
一、緒論 1
1.1前言 1
1.2原子力顯微鏡簡介 6
1.3凡德瓦力簡介 11
1.4研究動機及目的 13
二、基本理論與研究方法 28
2.1以修正耦合應力理論為基礎受到多模態激發的動態系統 28
2.1.1統御方程式和邊界條件 28
2.1.2解析法 31
2.1.3瞬態反應的數值結果及討論 40
2.2預測自然頻率 53
2.2.1具有尺寸效應的系統 53
2.2.2無尺寸效應的傳統系統 54
2.2.3自然頻率與尺寸效應參數之間的關係 56
三、簡諧探針設計方法 59
3.1以修正耦合應力理論為基礎的數學模型 59
3.2解析法 60
3.2.1分離變數法 60
3.2.2頻率方程 61
3.2.3使用修正Frobenius方法求精確的基本解 61
3.2.4原子力顯微鏡簡諧探針和尺寸效應 65
3.3共振頻率與尺寸效應參數之間的關係 67
3.3.1修正耦合應力理論中的統御方程式和邊界條件 67
3.3.2傳統理論中的統御方程式和邊界條件 69
3.3.3共振頻率與尺寸相關參數之間的關係 69
3.3.4整數倍關係的數值驗證 70
四、結論與建議 80
4.1結論 80
4.2未來研究建議 81
參考文獻 82
附錄A:無探針尖端質量系統之模態 87
附錄B:有探針尖端質量系統之頻率方程式 92
附錄C:標準基本解多項式 93
附錄D:Frobenius 解法 100
[1] F. J. Giessibl, “Advances in atomic force microscopy,” Reviews of Modern Physics, vol. 75, no. 3, pp. 949–983, 2003.
[2]S.-M. Lin, “Analytical solutions of the frequency shifts of several modes in dynamic force microscopy subjected to AC electrostatic force,” IEEE Transactions on Nanotechnology, vol. 6, no. 4, pp. 404–412, 2007.
[3]S.-M. Lin and C.-C. Lin, “Phase shifts and energy dissipations of severalmodes of AFM:Minimizing topography and dissipation measurement errors,” Precision Engineering, vol. 33, no. 4, pp. 371–377, 2009.
[4] S.-M. Lin, C.-T. Liauh, W.-R. Wang, and S.-H. Ho, “Analytical solutions of the first three frequency shifts of AFM non-uniform probe subjected to the Lennard-Jones force,” Ultramicroscopy,vol. 106, no. 6, pp. 508–515, 2006.
[5] S.M. Lin, “Energy dissipation and frequency shift of a dynamic force microscopy with structural damping,” Ultramicroscopy,vol. 106, no. 6, pp. 516–524, 2006.
[6] S. M. Lin, C. T. Liauh, W. R. Wang, and S. H. Ho, “Analytical solutions of the frequency shifts of several modes in AFM scanning an inclined surface, subjected to the Lennard-Jones force,” International Journal of Solids and Structures, vol. 44, no.3-4, pp. 799–810, 2007.
[7] D. Kiracofe and A. Raman, “On eigenmodes, stiffness, and sensitivity of atomic force microscope cantilevers in air versus liquids,” Journal of Applied Physics, vol. 107, pp. 033506–033515, 2010.
[8] S. Santos, K. R. Gadelrab, V. Barcons et al., “The additive effect of harmonics on conservative and dissipative interactions,” Journal of Applied Physics, vol. 112, no. 12, pp. 124901–124908, 2012.
[9] A. F. Payam, “Dynamic modeling and sensitivity analysis of dAFM in the transient and steady state motions,” Ultramicroscopy, vol. 169, pp. 55–61, 2016.
[10] S. Santos, K. Gadelrab, J. Font, and M. Chiesa, “Single-cycle atomic force microscope force reconstruction: resolving timedependent interactions,” New Journal of Physics, vol. 15, article 083034, 2013.
[11] D. R. Sahoo, A. Sebastian, and M. V. Salapaka, “Harnessing the transient signals in atomic force microscopy,” International Journal of Robust and Nonlinear Control, vol. 15, no. 16, pp. 805–820, 2005.
[12] P. I. Chang, P. Huang, J. Maeng, and S. B. Andersson, “Local raster scanning for high-speed imaging of biopolymers in atomic force microscopy,” Review of Scientific Instruments, vol. 82, no. 6, article 063703, 2011.
[13]Á. S. Paulo and R. García, “Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy,” Physical Review B: Condensed Matter and Materials Physics, vol. 64, article 193411, 2001.
[14]B. Anczykowski, B. Gotsmann, H. Fuchs, J. P. Cleveland, and V.B. Elings, “Howtomeasure energy dissipation in dynamicmode atomic force microscopy,” Applied Surface Science, vol. 140, no.3-4, pp. 376–382, 1999.
[15]R. Garcia, C. J. Gómez, N. F. Martinez et al., “Identification of nanoscale dissipation processes by dynamic atomic force microscopy,” Physical Review Letters, vol. 97, article 016103, 2006.
[16]S. M. Lin, C. L. Tsai, and H. C. Lee,“Effects of size dependency and axial deformation on the dynamic behavior of an AFM subjected to van der Waals force based on the modified couple stress theory,”Precision Engineering, vol. 56, pp. 203–210, 2019.
[17]J. R. Lozano and R. Garcia,“Theory of multifrequency atomic force microscopy,”Physical Review Letters, vol. 100, article 076102, 2008.
[18]N. F. Martinez, S. Patil, J. R. Lozano, and R. Garcia,“Enhanced compositional sensitivity in atomic force microscopy by the excitation of the first two flexural modes,”Applied Physics Letters, vol. 89, article 153115, 2006.
[19]M. D. Aksoy and A. Atalar,“Force spectroscopy using bimodal frequency modulation atomic force microscopy,”Physical Review B: Condensed Matter and Materials Physics, vol. 83, article 075416, 2011.
[20] S.M. Lin and W.R. Wang,“Frequency shifts and analysis of AFM accompanying with coupled flexural-torsional motions,” International Journal of Solids and Structures, vol. 46, no. 24, pp. 4231–4241, 2009.
[21] Z. Li, T. Shi, and Q. Xia,“An optimized harmonic probe with tailored resonant mode for multifrequency atomic force microscopy,” Advances in Mechanical Engineering, vol. 10, no. 11, pp. 1–7, 2018.
[22] Y. Hou, C. Ma, W. Wang, and Y. Chen,“Binary coded cantilevers for enhancing multi-harmonic atomic force microscopy,” Sensors and Actuators A, vol. 300, pp. 111668, 2019.
[23] F. Gramazio, M. Lorenzoni, F. Perez-Murano, L. Evangelio, and J. Fraxedas, “Quantification of nanomechanical properties of surfaces by higher harmonic monitoring in amplitude modulated AFM imaging,”Ultramicroscopy, vol. 187, pp. 20–25, 2018.
[24] H. Li, Y. Chen, and L. Dai,“Concentrated-mass cantilever enhances multiple harmonics in tapping-mode atomic force microscopy,” Applied Physics Letters, vol. 92, no. 15, pp. 151903, 2008.
[25] W. Zhang, Y. Chen, and J. Chu,“Cantilever optimization for applications in enhanced harmonic atomic force microscopy,”Sensors and Actuators A, vol. 255, pp. 54–60, 2017.
[26] B. Zhu, S. Zimmermann, X. Zhang, and S. Fatikow,“A systematic method for developing harmonic cantilevers for atomic force microscopy,”Journal of Mechanical Design, vol. 139, pp. 012303,2017.
[27] J. Cai, Q. Xia, Y. Luo, L. Zhang, and M.Y. Wang,“A variablewidth harmonic probe for multifrequency atomic force microscopy,” Applied Physics Letters, vol. 106, no. 7, pp. 071901, 2015.
[28] R. Sriramshankar and G. Jayanth,“Design and evaluation of torsional probes for multifrequency atomic force microscopy,”IEEE/ASME Transactions on Mechatronics, vol. 20, no. 4, pp. 1843–1853, 2015.
[29]D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, and P. Tong,“Experiments and theory in strain gradient elasticity,”Journal of the Mechanics and Physics of Solids, vol. 51, no. 8, pp. 1477–1508, 2003.
[30]A.W.McFarland and J. S. Colton,“Role of material microstructure in plate stiffnesswith relevance to microcantilever sensors,”Journal of Micromechanics and Microengineering, vol. 15, no. 5, pp. 1060–1067, 2005.
[31]Q. Ma and D. R. Clarke,“Size dependent hardness of silver single crystals,” Journal of Materials Research, vol. 10, no. 4, pp. 853–863, 1995.
[32]J. S. St‥olken and A. G. Evans,“A microbend test method for measuring the plasticity length scale,”Acta Materialia, vol. 46, no. 14, pp. 5109–5115, 1998.
[33]R. D. Mindlin and H. F. Tiersten, “Effects of couple-stresses in linear elasticity,”Archive for Rational Mechanics and Analysis, vol. 11, no. 1, pp. 415–448, 1962.
[34]R. A. Toupin,“Elastic materials with couple-stresses,”Archive for Rational Mechanics and Analysis, vol. 11, pp. 385–414, 1962.
[35]Y. T. Beni and M. Abadyan,“Use of strain gradient theory for modeling the size-dependent pull-in of rotational nano-mirror in the presence of molecular force,”International Journal of Modern Physics B, vol. 27, no. 18,Article ID 1350083, 2013.
[36]K. Kiani,“Vibration analysis of elastically restrained doublewalled carbon nanotubes on elastic foundation subjected to axial load using nonlocal shear deformable beam theories,”International Journal of Mechanical Sciences, vol. 68, pp. 16–34, 2013.
[37]R. Ansari, K.Hosseini, A.Darvizeh, and B.Daneshian,“Asixthorder compact finite difference method for non-classical vibration analysis of nanobeams including surface stress effects,”Applied Mathematics and Computation, vol. 219, no. 10, pp. 4977–4991, 2013.
[38]F. Yang, A. C. M. Chong, D. C. C. Lam, and P. Tong,“Couple stress based strain gradient theory for elasticity,”International Journal of Solids and Structures, vol. 39, no. 10, pp. 2731–2743, 2002.
[39]S. K. Park and X.L. Gao,“Bernoulli-Euler beam model based on a modified couple stress theory,”Journal of Micromechanics and Microengineering, vol. 16, no. 11, pp. 2355–2359, 2006.
[40]S. Kong, S. Zhou, Z.Nie, and K.Wang,“The size-dependent natural frequency of Bernoulli-Euler micro-beams,”International Journal of Engineering Science, vol. 46, no. 5, pp. 427–437, 2008.
[41]M. Asghari, M. T. Ahmadian, M. H. Kahrobaiyan, and M. Rahaeifard,“On the size-dependent behavior of functionally graded micro-beams,”Materials and Corrosion, vol. 31,no. 5, pp. 2324–2329, 2010.
[42]N. Togun and S. M. Bağdatlı,“Investigation of the size effect in euler-bernoulli nano-beam using the modified couple stress theory,”Celal Bayar University Journal Of Science, vol. 13, no. 4, pp. 893–899, 2017.
[43]R. A. Alashti and A. H. Abolghasemi,“A size-dependent bernoulli-euler beam formulation based on a new model of couple stress theory,”International Journal of Engineering, vol.27, no. 6, pp. 951–960, 2014.
[44]S. T. Pourashraf, R. Gholami, and M. A. Sahman SIAshrafi,“Size-dependent resonant frequency and flexural sensitivity of atomic force microscope micro-cantilevers based on the modified strain gradient theory,”International Journal of Optomechatronics,vol. 9, no. 2, pp. 111–130, 2015.
[45]S.M. Lin, W.R. Wang, and S.Y. Lee,“The dynamic analysis of non-uniformly pretwisted timoshenko beams with elastic boundary conditions,”International Journal of Mechanical Sciences, vol. 43, no. 10, pp. 2385–2405, 2001.
[46]J. S. Rao,“Advanced Theory of Vibration,”John Wiley & Sons (Asia), 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top