|
1.王平陽. (2019a). 5G和3D玻璃-東吳證券研究所 2019. 東吳證券研究報告, 藍思科技 (Vol. 11, Issues 2019, Nov.)。 2.王平陽. (2019b). 5G推動換機潮來臨,產業鏈多環節機遇將至.,東吳證券研究所, 1-56。 3.任書明,、劉再進,、宮汝華,、李青. (2018). 3D曲面玻璃市場發展趨勢預測. 全國性建材科技期刊, 4(319), 44–48。 4.吳美觀. (2019). 5G手機打響外殼材料之爭|天下雜誌. 中時電子報. https://www.cw.com.tw/article/article.action?id=5093780。 5.張東生、謝志光、沈瑞程. (2007). 創造多贏 領先全球 - 台灣半導體零組件通路商的變遷與學習. 產業管理評論, 2(1), 20–30。 6.李易庭、陳澤生 (2014).運用實驗設計法探討製程因子 -- 以 CNC 加工機為例 A Study of the Use of Experimental Design Process Factors for CNC. 管理資訊計算, 3(1), 219–229. https://doi.org/10.6285/MIC.3(1)S.18。 7.林研詩 (2020) ,產業技術評析. ,經濟部技術處,取自: https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=229。 8.林薏茹 (2019).,蔡力行:2022年5G將帶來逾1.2兆元半導體商機〈半導體協會年會〉. Anue鉅亨 - 台股新聞. https://news.cnyes.com/news/id/4403561。 9.王莉、楊明輝、張力新(2017), 蓝思科技深度報告-3D玻璃東吳證券研究所5G和3D玻璃-東吳證券研究所 2017. 021, 1–13。 10.中商產業研究院(2019),2019年中國3D玻璃市場現狀及未來前景研究報告. ,取自: https://big5.askci.com/news/chanye/20190110/1815321140050.shtml。 11.DIGITIMES 智慧應用 (2019),3D玻璃上陣高機能定位新角色 ,取自: https://www.digitimes.com.tw/iot/article.asp?cat=158&cat1=20&id=0000566965_tuslsim15gdp8v6jb8m6u。 12.葉錦清 (2020). 2019 年半導體設備回顧與展望. 機械工業雜誌, 442, 31–35. 13.詹文男、蘇孟宗、劉柏立、柯秀民、張奇. (2019). 智能時代台灣 5G 推動與相關產業發展策略建議,財團法人中技社(CTCI Foundation) ,ISBN:978-986-98284-9-9,69-72。 14. 艾邦高分子(2019), OLED逐漸普及,2020年3D玻璃終於迎來大爆發 – 艾邦CMPE 2021艾邦智造中國5G終端加工產業鏈展覽會(8月23-25日). Retrieved November 7, 2020, 取自: https://www.cmpe360.com/p/106928。 15.Arnold, M., Voigt, A., Haas, S., Schwenzer, F., Schwenzer, G., Reuter, D., Gruetzner, G., & Geßner, T. (2017). Spray-coatable negative photoresist for high topography MEMS applications. Journal of Micromechanics and Microengineering, 27(3), 035016. https://doi.org/10.1088/1361-6439/aa5bcb. 16.AU - Yun, J., AU - Kim, J., & AU - Lee, J.-H. (2017). Fabrication of Fine Electrodes on the Tip of Hypodermic Needle Using Photoresist Spray Coating and Flexible Photomask for Biomedical Applications. JoVE, 129, e56622. https://doi.org/doi:10.3791/56622. 17.Car, C. (2020). Press Releases : Success with 5G Communications Using " Vehicle ... Press Releases News & Notices Success with 5G Communications Using " Vehicle Glass Mounted Antenna " for Press Releases : Success with 5G Communications Using " Vehicle ... 2–6. 18.Everything You Need to Know About 5G - IEEE Spectrum. (2017). https://spectrum.ieee.org/video/telecom/wireless/everything-you-need-to-know-about-5g. 19.Hirai, Y., & Tanaka, Y. (2002). Application of nano-imprint lithography. Journal of Photopolymer Science and Technology, 15(3), 475–480. https://doi.org/10.2494/photopolymer.15.475. 20.Hou, Y. Q., Mo, L. X., Zhai, Q. Bin, & Li, L. H. (2015). 奈米銀線合成技術及其在薄膜太陽電池的應用 Synthesis. Applied Mechanics and Materials, 731, 593–596. https://doi.org/10.4028/www.scientific.net/amm.731.593. 21.Johnson, R. T., & Montgomery, D. C. (2010). Designing experiments for nonlinear models - An introduction. Quality and Reliability Engineering International, 26(5), 431–441. https://doi.org/10.1002/qre.1063. 22.Joyce, R., Yadav, S., Sharma, A. K., Panwar, D. K., Bhatia, R. R., Varghese, S., & Akhtar, J. (2016). Pattern transfer of microstructures between deeply etched surface for MEMS applications. Materials Science in Semiconductor Processing, 56(September), 373–380. https://doi.org/10.1016/j.mssp.2016.09.022. 23.Linden, J., Thanner, C., Schaaf, B., Wolff, S., Lägel, B., & Oesterschulze, E. (2011). Spray coating of PMMA for pattern transfer via electron beam lithography on surfaces with high topography. Microelectronic Engineering, 88(8), 2030–2032. https://doi.org/10.1016/j.mee.2010.12.106. 24.Lorenz, H., Despont, M., Fahrni, N., LaBianca, N., Renaud, P., & Vettiger, P. (1997). SU-8: a low-cost negative resist for MEMS. Journal of Micromechanics and Microengineering, 7(3), 121–124. https://doi.org/10.1088/0960-1317/7/3/010. 25.NTT DOCOMO, AGC, E. J. (2018). Pioneering use of glass-mounted antenna for 5G connected vehicles - Ericsson. https://www.ericsson.com/en/news/2018/7/glass-mounted-antenna-for-5g-connected-vehicles. 26.Pham, Nga P., Burghartz, J. N., & Sarro, P. M. (2005). Spray coating of photoresist for pattern transfer on high topography surfaces. Journal of Micromechanics and Microengineering, 15(4), 691–697. https://doi.org/10.1088/0960-1317/15/4/003. 27.Pham, Nga P., Scholtes, T. L., Klerk, R., Wieder, B., Sarro, P. M., & Burghartz, J. N. (2014). Direct Spray Coating of Photoresist for MEMS applications. Micromachining and Microfabrication Process Technology VII, 4557(October 2014), 312–319. https://doi.org/10.1117/12.442960. 28.Pham, Nga Phuong, Boellaard, E., Burghartz, J. N., & Sarro, P. M. (2004). Photoresist coating methods for the integration of novel 3-D RF microstructures. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, IEEE, 13(3), 491–499. https://doi.org/10.1109/JMEMS.2004.828728. 29.Qin, D., Xia, Y., & Whitesides, G. M. (2010). Soft lithography for micro- and nanoscale patterning. Nature Protocols, 5(3), 491–502. https://doi.org/10.1038/nprot.2009.234. 30.Yang, L., Wei, J., Ma, Z., Song, P., & Ma, J. (2019). The Fabrication of Micro / Nano Structures by Laser Machining. MDPI,Nanomaterials 2019, 9(1789). https://doi.org/10.3390/nano9121789. 31.Yun, J., Kim, J., & Lee, J.-H. (2017). Fabrication of Fine Electrodes on the Tip of Hypodermic Needle Using Photoresist Spray Coating and Flexible Photomask for Biomedical Applications. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 129. https://doi.org/10.3791/56622. 32.Zhang, B., Gorelchenko, P., & Hu, G. (2016). A study of 3D cover glass design that improves handheld device drop reliability. Journal of the Society for Information Display, 24(12), 721–725. https://doi.org/10.1002/jsid.504. 33.維基百科(2020),工藝能力指數, 取自: https://en.wikipedia.org/wiki/Process_capability_index. 34.維基百科(2020),豐田生產方式 , 取自: https://zh.wikipedia.org/wiki/豐田生產方式.
|