跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/11 08:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉松哲
研究生(外文):LIU, SONG-JHE
論文名稱:光阻微影製程優化研究–以玻璃蓋板為例
論文名稱(外文):Optimization of Photo-Lithography by Spray Coating - Glass Cover Lens
指導教授:任志宏任志宏引用關係
指導教授(外文):JEN, CHIH-HUNG
口試委員:任志宏林國平楊哲奇
口試委員(外文):JEN, CHIH-HUNGLIN, GUO-PINGYANG, CHE-CHI
口試日期:2020-12-19
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:資訊管理系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:65
中文關鍵詞:光阻劑光刻膠3D 玻璃蓋板均勻性噴塗微影製程
外文關鍵詞:Photoresists Coating3D Glass Cover LensUniformitySpray CoatingLithography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:358
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
玻璃材料因其外觀及物理特性隨 5G 服務的普及化趨勢,在近年內大幅增長, 尤其是在 ICT ( Information Communication Technology) 相關移動通訊產品上。 然 而在已經熱壓成型的 3D 玻璃材料上做出精細的圖像卻一直是傳統平面印刷、移印 等製程無法徹底克服的技術難題。

微影製程能夠將極精細的線路, 圖案製作在玻璃及矽晶圓等的平面材料上,也 能被用來製作微機電結構 (micron 等級)。 其關鍵製程中的光阻塗佈均勻性及塗 膜的厚度對於微影製程圖像轉移效果的精細度及外觀有絕對的關係。 此研究以多 軸往復直接噴塗方將光阻劑塗佈於手機用的玻璃保護蓋板,接著進行曝光顯影製 程以完成將特定圖像移轉到大尺寸且非平面結構的玻璃材料上之目的。

經多次實驗數據顯示塗膜均勻度 %1σ 可達 6%以下, 光阻厚度差異 δ方 面(取樣長度為 800 mm x 800mm),可降低至 + - 300 nm 範圍。 此外,針對光 阻劑塗佈 T.E. 塗著效率問題, 對於同面積的噴塗區域在相同膜厚下,直接噴塗可 達 T.E. 40%以上。接著以 DOE 實驗方法設計 3k 因子實驗,最終反映曲面法優化參 數並且進行 Cpk 製程能力驗證,結果判定為 C 級。
Glass materials have grown substantially in recent years due to their appearance and physical characteristics following the popularization of 5G services, especially in ICT (Information Communication Technology) related mobile communication products. However, its faces many technical difficulties trying to convert fine graphics or images onto 3D glass materials by traditional means of screen printing or pad printing processes which are mostly suitable for planar substrates.

lithography processes can make extremely fine lines and patterns on flat materials such as glass and silicon wafers, and can also be used to make micro-electromechanical structures at micron level or sub-nanosized level . The uniformity of photoresist coating and the thickness control of the coated film are the key processes which have an absolute relationship with the fineness and appearance of the image transfer effect of the lithography process. In this research, the photoresist is applied to the glass protective cover of the mobile phone by multi-axis reciprocating direct spraying method, and then the exposure and development process is carried out to complete the purpose of transferring the specific image to the large-size and non-planar glass material.

Data from field experiments shows that the uniformity of the coating film %1σ can reach 6% or less, and the thickness difference of the photoresist δ (effective area is 800 mm x 800mm) can be reduced to +-300 nm. In addition, for photoresist coating T.E.(Transfer Efficiency) of 4 axle direct spraying can reach more than 40% T.E. for spraying areas of the same area with the same film thickness. 3k factor design of DOE experiment method were applied for screening viable factors which affect most of film thickness control, and finally RSM(Response Surface Method) were applied to obtain optimized parameters to verify the Cpk process capability. The result is judged to be C level.
摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言-玻璃蓋板產業現況 1
1.2 研究動機 – 解決玻璃蓋板的圖形化問題 4
1.3 研究問題 5
1.4 目標研究結果 5
1.5 研究限制與範圍 5
第二章 文獻探討 6
2.1 微影技術介紹 6
2.2 旋轉塗佈與狹縫式塗佈Slit Coater適用性探討 7
2.3 乾膜塗佈適用性探討 8
2.4 電著E.D.塗佈適用性探討 8
2.5 軟式微影塗佈適用性探討 9
2.6 直接光阻噴塗法-立體微結構適用性探討 10
2.7 直接光阻噴塗法-較大立體結構適用性探討 11
2.8 文獻探討總結 11
第三章 研究方法 12
3.1 實驗流程規劃 13
3.2 光阻噴塗設備設計考慮要因及設計對策 13
3.3 光阻噴塗機台設計 15
3.3.1 噴塗機台功能設計 15
3.3.2 噴塗機台流體控制設計 16
3.3.3 光阻塗佈噴塗動作方式 17
3.3.4 研究相關實驗設備 18
3.4 DOE(Design of Experiments)設計法 18
3.4.1 2k 因子設計流程 19
3.4.2 2k因子設計公式 20
3.4.3 2k因子設計加入中心點的設計 20
3.4.4 3k因子設計公式 21
3.4.5 實驗設計總結表 22
3.4.6 實驗設計因子水準設計 22
第四章 結果與分析 24
4.1 實驗流程說明 24
4.2 最佳子集迴歸 26
4.3 3k DOE實驗設計 30
4.3.1 3k全因子實驗參數配置 30
4.3.2 3k全因子實驗結果分析(一) -主效應與交互作用 31
4.3.3 3k全因子實驗結果分析(二) -迴歸模型 34
4.3.4 DOE 3k全因子實驗數據殘差分析 38
4.4 中央合成設計與反應曲面法 38
4.4.1 中央合成設計 38
4.4.2 CCD實驗配置及結果 41
4.4.3 RSM迴歸模型分析 42
4.4.4 最佳化參數設計 50
4.5 Cpk製程能力指標測試 54
4.5.1 Cpk概述 54
4.5.2 檢測方式及Cpk驗證結果 55
第五章 結論與建議 60
5.1 結論 60
5.2 未來研究建議 61
參考文獻 63

1.王平陽. (2019a). 5G和3D玻璃-東吳證券研究所 2019. 東吳證券研究報告, 藍思科技 (Vol. 11, Issues 2019, Nov.)。
2.王平陽. (2019b). 5G推動換機潮來臨,產業鏈多環節機遇將至.,東吳證券研究所, 1-56。
3.任書明,、劉再進,、宮汝華,、李青. (2018). 3D曲面玻璃市場發展趨勢預測. 全國性建材科技期刊, 4(319), 44–48。
4.吳美觀. (2019). 5G手機打響外殼材料之爭|天下雜誌. 中時電子報. https://www.cw.com.tw/article/article.action?id=5093780。
5.張東生、謝志光、沈瑞程. (2007). 創造多贏 領先全球 - 台灣半導體零組件通路商的變遷與學習. 產業管理評論, 2(1), 20–30。
6.李易庭、陳澤生 (2014).運用實驗設計法探討製程因子 -- 以 CNC 加工機為例 A Study of the Use of Experimental Design Process Factors for CNC. 管理資訊計算, 3(1), 219–229. https://doi.org/10.6285/MIC.3(1)S.18。
7.林研詩 (2020) ,產業技術評析. ,經濟部技術處,取自: https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=229。
8.林薏茹 (2019).,蔡力行:2022年5G將帶來逾1.2兆元半導體商機〈半導體協會年會〉. Anue鉅亨 - 台股新聞. https://news.cnyes.com/news/id/4403561。
9.王莉、楊明輝、張力新(2017), 蓝思科技深度報告-3D玻璃東吳證券研究所5G和3D玻璃-東吳證券研究所 2017. 021, 1–13。
10.中商產業研究院(2019),2019年中國3D玻璃市場現狀及未來前景研究報告. ,取自: https://big5.askci.com/news/chanye/20190110/1815321140050.shtml。
11.DIGITIMES 智慧應用 (2019),3D玻璃上陣高機能定位新角色 ,取自: https://www.digitimes.com.tw/iot/article.asp?cat=158&cat1=20&id=0000566965_tuslsim15gdp8v6jb8m6u。
12.葉錦清 (2020). 2019 年半導體設備回顧與展望. 機械工業雜誌, 442, 31–35.
13.詹文男、蘇孟宗、劉柏立、柯秀民、張奇. (2019). 智能時代台灣 5G 推動與相關產業發展策略建議,財團法人中技社(CTCI Foundation) ,ISBN:978-986-98284-9-9,69-72。
14. 艾邦高分子(2019), OLED逐漸普及,2020年3D玻璃終於迎來大爆發 – 艾邦CMPE 2021艾邦智造中國5G終端加工產業鏈展覽會(8月23-25日). Retrieved November 7, 2020, 取自: https://www.cmpe360.com/p/106928。
15.Arnold, M., Voigt, A., Haas, S., Schwenzer, F., Schwenzer, G., Reuter, D., Gruetzner, G., & Geßner, T. (2017). Spray-coatable negative photoresist for high topography MEMS applications. Journal of Micromechanics and Microengineering, 27(3), 035016. https://doi.org/10.1088/1361-6439/aa5bcb.
16.AU - Yun, J., AU - Kim, J., & AU - Lee, J.-H. (2017). Fabrication of Fine Electrodes on the Tip of Hypodermic Needle Using Photoresist Spray Coating and Flexible Photomask for Biomedical Applications. JoVE, 129, e56622. https://doi.org/doi:10.3791/56622.
17.Car, C. (2020). Press Releases : Success with 5G Communications Using " Vehicle ... Press Releases News & Notices Success with 5G Communications Using " Vehicle Glass Mounted Antenna " for Press Releases : Success with 5G Communications Using " Vehicle ... 2–6.
18.Everything You Need to Know About 5G - IEEE Spectrum. (2017). https://spectrum.ieee.org/video/telecom/wireless/everything-you-need-to-know-about-5g.
19.Hirai, Y., & Tanaka, Y. (2002). Application of nano-imprint lithography. Journal of Photopolymer Science and Technology, 15(3), 475–480. https://doi.org/10.2494/photopolymer.15.475.
20.Hou, Y. Q., Mo, L. X., Zhai, Q. Bin, & Li, L. H. (2015). 奈米銀線合成技術及其在薄膜太陽電池的應用 Synthesis. Applied Mechanics and Materials, 731, 593–596. https://doi.org/10.4028/www.scientific.net/amm.731.593.
21.Johnson, R. T., & Montgomery, D. C. (2010). Designing experiments for nonlinear models - An introduction. Quality and Reliability Engineering International, 26(5), 431–441. https://doi.org/10.1002/qre.1063.
22.Joyce, R., Yadav, S., Sharma, A. K., Panwar, D. K., Bhatia, R. R., Varghese, S., & Akhtar, J. (2016). Pattern transfer of microstructures between deeply etched surface for MEMS applications. Materials Science in Semiconductor Processing, 56(September), 373–380. https://doi.org/10.1016/j.mssp.2016.09.022.
23.Linden, J., Thanner, C., Schaaf, B., Wolff, S., Lägel, B., & Oesterschulze, E. (2011). Spray coating of PMMA for pattern transfer via electron beam lithography on surfaces with high topography. Microelectronic Engineering, 88(8), 2030–2032. https://doi.org/10.1016/j.mee.2010.12.106.
24.Lorenz, H., Despont, M., Fahrni, N., LaBianca, N., Renaud, P., & Vettiger, P. (1997). SU-8: a low-cost negative resist for MEMS. Journal of Micromechanics and Microengineering, 7(3), 121–124. https://doi.org/10.1088/0960-1317/7/3/010.
25.NTT DOCOMO, AGC, E. J. (2018). Pioneering use of glass-mounted antenna for 5G connected vehicles - Ericsson. https://www.ericsson.com/en/news/2018/7/glass-mounted-antenna-for-5g-connected-vehicles.
26.Pham, Nga P., Burghartz, J. N., & Sarro, P. M. (2005). Spray coating of photoresist for pattern transfer on high topography surfaces. Journal of Micromechanics and Microengineering, 15(4), 691–697. https://doi.org/10.1088/0960-1317/15/4/003.
27.Pham, Nga P., Scholtes, T. L., Klerk, R., Wieder, B., Sarro, P. M., & Burghartz, J. N. (2014). Direct Spray Coating of Photoresist for MEMS applications. Micromachining and Microfabrication Process Technology VII, 4557(October 2014), 312–319. https://doi.org/10.1117/12.442960.
28.Pham, Nga Phuong, Boellaard, E., Burghartz, J. N., & Sarro, P. M. (2004). Photoresist coating methods for the integration of novel 3-D RF microstructures. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, IEEE, 13(3), 491–499. https://doi.org/10.1109/JMEMS.2004.828728.
29.Qin, D., Xia, Y., & Whitesides, G. M. (2010). Soft lithography for micro- and nanoscale patterning. Nature Protocols, 5(3), 491–502. https://doi.org/10.1038/nprot.2009.234.
30.Yang, L., Wei, J., Ma, Z., Song, P., & Ma, J. (2019). The Fabrication of Micro / Nano Structures by Laser Machining. MDPI,Nanomaterials 2019, 9(1789). https://doi.org/10.3390/nano9121789.
31.Yun, J., Kim, J., & Lee, J.-H. (2017). Fabrication of Fine Electrodes on the Tip of Hypodermic Needle Using Photoresist Spray Coating and Flexible Photomask for Biomedical Applications. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 129. https://doi.org/10.3791/56622.
32.Zhang, B., Gorelchenko, P., & Hu, G. (2016). A study of 3D cover glass design that improves handheld device drop reliability. Journal of the Society for Information Display, 24(12), 721–725. https://doi.org/10.1002/jsid.504.
33.維基百科(2020),工藝能力指數, 取自: https://en.wikipedia.org/wiki/Process_capability_index.
34.維基百科(2020),豐田生產方式 , 取自: https://zh.wikipedia.org/wiki/豐田生產方式.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top