跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 05:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳汶誌
研究生(外文):CHEN, WEN-CHIH
論文名稱:新冠肺炎疫情下探討網路直播型態因素對消費者參與之影響
論文名稱(外文):Exploring the Factors Influenceing Consumer Engagement in Livestream Platform Type under the COVID-19 Pandemic
指導教授:顏嘉惠顏嘉惠引用關係
指導教授(外文):YEN, CHIA-HUI
口試委員:吳徐哲張俊民
口試委員(外文):WU, HSU-CHECHANG, CHUN-MING
口試日期:2021-05-14
學位類別:碩士
校院名稱:銘傳大學
系所名稱:國際企業學系碩士在職專班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:69
中文關鍵詞:新冠肺炎知覺易用知覺互動訊息可信產品價值消費者參與
外文關鍵詞:COVID-19Perceived easy to usePerceptual interactivityMessage credibilityPerceived valueConsumer engagement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:79
  • 收藏至我的研究室書目清單書目收藏:1
新冠肺炎疫情從2019年年底中國武漢華南海鮮市場是發源地開始,疫情的傳播速度快,在2020年2月中國大陸已超過80個城市陸續宣布封城,2021年5月已蔓延美歐至全世界。在疫情的影響下產生對對於全球經濟有明顯衝擊,你我的工作型態、甚至生活中的食衣住行育樂模式,也是產生變化。也讓零接觸經濟進而加速宅經濟的發展。因此,本研究希望藉由探究新冠肺炎疫情影響下不同直播線影音平台及直播主競爭情形,提供既有直播平台或是直播主,與消費者市場競爭態勢。
本研究試圖探討消費者參與之因素,以知覺易用、知覺互動與訊息可信為基礎,對產品價值相對影響,以瞭解消費者是否會影響消費者參與之意圖。研究模型是基於整理相關文獻提出,利用網路發放問卷進行共蒐集310份有效樣本。並透過SmartPLS 2.0 進行資料分析,經問卷調查所得之資料,透過分析與歸納結果以驗證本研究模型與假說。
研究結果顯示在「整體」直播型態,知覺易用性、知覺互動性和性訊息可信度會影響消費者對產品價值的認知,透過產品價值與新冠肺炎疫情影響下也有顯著對消費者參與有正向影響,並將直播型態為「看」及「聽」的型態進行分析與歸納,發現在直播「聽」的型態知覺易用性對消費者對產品價值無顯著的影響。

The new crown pneumonia epidemic began at the end of 2019 when the South China Seafood Market in Wuhan, China, was the birthplace. The epidemic spread quickly. In February 2020, more than 80 cities in mainland China announced the closure of cities. In May 2021, it has spread to the United States and Europe to the whole country. world. Under the influence of the epidemic, it has had a significant impact on the global economy. The work style of you and me, and even the mode of food, clothing, housing, transportation and entertainment in life has also changed. It also allows the zero-touch economy to accelerate the development of the housing economy. Therefore, this study hopes to explore the competitive situation of different live streaming audio-visual platforms and live broadcast hosts under the influence of the new crown pneumonia epidemic, and provide existing live broadcast platforms or live broadcast hosts to compete with the consumer market.
This research attempts to explore the factors of consumer participation, based on perceptual ease of use, perceptual interaction, and credibility of information, and the relative impact on product value, in order to understand whether consumers will affect consumers’ intention to participate. The research model is proposed based on collating relevant documents, and a total of 310 valid samples were collected by using the Internet to issue questionnaires. Data analysis is carried out through SmartPLS 2.0, and the data obtained through questionnaire surveys are analyzed and summarized to verify the model and hypothesis of this research.
The research results show that in the “holistic” live broadcast format, perceived ease of use, perceptual interactivity, and credibility of sexual information will affect consumers’ perceptions of product value. There is also significant participation in consumers through product value and the impact of the new crown pneumonia epidemic. It has a positive impact, and analyzes and summarizes the live broadcast types as "watch" and "listen". It is found that the perceived ease of use in the live broadcast has no significant impact on the value of the product.

目錄 I
圖目錄 I I I
表目錄 IV
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 6
第三節 研究範圍與步驟 7
第貳章 文獻探討 8
第一節 知覺易用性 8
第二節 知覺互動性 12
第三節 訊息可信度 14
第四節 知覺價值 16
第五節 新冠肺炎疫情影響 20
第六節 消費者參與 21
第參章 研究設計與方法 23
第一節 研究架構 23
第二節 研究假說 24
第三節 研究變數操作型定義 26
第四節 問卷設計 27
第肆章 研究分析與結果 29
第一節 資料分析方法 29
第二節 測量模式檢定 33
第三節 路徑分析與假說檢定 38
第伍章 結論與建議 44
第一節 研究發現 44
第二節 研究意涵與實務意涵 46
第三節 研究限制 48
參考文獻 49
一、中文部分 49
二、英文部分 53
附錄一 : 研究問卷 59

一、中文部分
1.王小惠、林建均、吳聿畬,2010。你「播客」了嗎?線上音樂新媒體之初探性研究,第六屆,國際電腦音樂與音訊技術暨新媒體研討會論文集。
2.王姿惠,2019。社群媒體中的顧客投入行為:前因與後果變數之探討,中興大學企業管理學系碩士論文。
3.王春熙、盧正宗、何慧信、吳佳容,2019。探討Facebook網路直播對非計畫性購買行為之影響,當代商管論叢,4(1),60-83。
4.王純華,2020。探討Instagram上品牌擬人化貼文及自我概念品牌投入對消費行為之影響,中央大學企業管理學系碩士論文。
5.王維菁、馬綺韓、陳釗偉,2013。網際網路時代的社會運動:以台灣環境運動組織為例,資訊社會研究,(25),1-22。
6.江允中,2018。直播主技巧與直播效益的關係:商品類型與直播者性別、學歷及年資的交叉分析,健行科技大學企業管理系碩士論文。
7.江宜庭,2017。探討O2O電子商務中影響消費者滿意度與忠誠度之因素,臺北科技大學經營管理研究所碩士論文。
8.余宛諭,2015。產品屬性、品牌形象、網路口碑、知覺品質與知覺價值對穿戴式裝置購買意願影響之研究,世新大學資訊管理學研究所碩士論文。
9.余勝揚,2020。型冠狀病毒肺炎疫情下消費者行為決策探討,臺灣大學國際企業學研究所碩士論文。
10.吳佳霏,2020。COVID-19疫情下的文化科技新商機,臺灣經濟研究月刊,43(8),106-112。
11.吳柏羲,2017。自媒體產業鏈漸成熟 內容專業化成發展焦點,財團法人資訊工業策進會,取自https://www.iii.org.tw/Focus/FocusDtl.aspx?fm_sqno=12&f_sqno=b3juQcBLxXMvii+MdAu7jw__。
12.吳翠松,2016。電子時代的現場表演: 不同世代閱聽人 [現場感] 初探,資訊社會研究,61-103。
13.呂淑琴,2021。新冠肺炎疫情下,消費者購買決策與消費行為之研究—以桃園市蘆竹區公立國小教師為例,開南大學觀光運輸學院研究所碩士論文。
14.邱迎瑄,2018。線上直播觀賞行為之研究-以電子競技賽事直播平台為例,崑山科技大學國際商務與金融研究所碩士論文。
15.侯又慈,2013。以科技接受模式探討高屏區國小音樂教師對電子白板使用意願之研究,屏東教育大學音樂學系碩士論文。
16.胡少武,2012。知覺APP有用性與知覺APP易用性影響消費者購買行為之研究,成功大學高階管理碩士在職專班碩士論文。
17.張育瑋,2021。台灣旅行社不可抗力旅遊危機應變策略之研究–以新冠肺炎為例,高雄餐旅大學觀光研究所碩士論文。
18.張榮忠,2019。以科技接受模式探討水性跑道產品使用的相對優勢、相容性、知覺有用性和知覺易用性對採用意圖的影響效果:以採用態度為中介變數,東海大學高階經營管理碩士在職專班碩士論文。
19.張錦特、蘇姵芹、何蕙萍、蘇百勝,2009。以修正科技接受模式探討語音留言板互動功能之使用意願,電子商務學報,11(3),469-487。
20.莊堡凱,2021。新冠肺炎疫情期間新媒體使用對於用餐行為意圖之影響,銘傳大學觀光事業學系研究所碩士論文。
21.陳素雯、李明錡,2019。應用資訊採用模式探討社群網站之廣告效果,全國計算機會議。
22.陳啟雄、鍾雄秀,2020。從新冠疫情看客家電視台定位與功能:資訊傳播與文創觀點.,休閒研究,10(1),1-21。
23.創市際市場研究顧問,2017。台灣直播市場『台灣網友直播看什麼?』調查,創市際®市場研究顧問公司,取自 https://www.ixresearch.com/news/news_07_06_17?utm_source=feedburner&utm_medium=email&utm_campaign=Feed%3A+ixresearch%2FXCfN+%28InsightXplorer+%E5%89%B5%E5%B8%82%E9%9A%9B%E9%9B%BB%E5%AD%90%E5%A0%B1%29。
24.彭國芳、陳家珮、謝翠娟,2018。臉書直播拍賣之賣場滿意度與購買意願之研究,第十六屆,管理學術研討會。
25.黃勝淋,2017。重返集體狂歡的年代?探索 Live 實況直播的意涵-以遊戲實況為例,政治大學傳播學院傳播碩士學位學程碩士論文。
26.黃麒文,2019。以資訊接受模式探討科技信任對消費者網路口碑採用意圖與購買意願之影響:以YouTube為例,臺北科技大學經營管理系碩士論文。
27.楊宜臻,2021。新冠疫情期間的美國媒體中的台灣形象研究,政治大學傳播學院傳播碩士學位學程研究所碩士論文。
28.楊豐兆、林利餘,2020。影響消費者使用穿戴式裝置的知覺價值、滿意度與採用意願之前因,管理資訊計算,9(1),81-98。
29.資策會 FIND,2017。【直播大調查系列一】網友最愛 Facebook、Youtube、17 直播,資策會產業情報研究所,取自https://mic.iii.org.tw/news.aspx?id=475。
30.資策會FIND,2017。3 年成長3倍!跨螢行為成王道逾74%民眾邊看電視、邊滑手機資策會FIND:36.7%女性喜愛邊看電視邊購物40.2%男性熱衷邊看電視邊打電動,資策會創研所,取自http://www.iii.org.tw/Press/NewsDtl.aspx?fm_sqno=14&nsp_sqno=1923。
31.熊震宇,2014。以理性行為理論、擴充科技接受模型探討從眾行為 對 APP 遊戲使用行為之影響 以 Candy Crush 為例,成功大學工程管理碩士在職專班碩士論文。
32.劉慶隆,2015。Facebook之口碑訊息長度與按讚數量對社會議題參與意願之影響,中山大學公共事務管理研究所碩士論文。
33.潘玲娟,2009。Podcast(播客)的興起對傳統廣播的影響,復興崗學報,(94),105-122。
34.蔡文仁,2016。網站和消費者的互動性對購買意願的影響之研究,東方學報,(36),145-168。
35.蔡念中,2014。數位科技與生活脈絡中之人際親密關係建構-¬從沙發洋芋到低頭族-「宅」的數位時代重定義與人際關係探索,科技部研究計劃(編號:NSC99-2632-H-128-001-MY2)。
36.蔡翼擎、張美思、林昆佑、林佳宜、郭俐綺、劉雅甄、陳暘明,2018。探討台灣實況直播平台建構競爭優勢之關鍵決策因子,管理資訊計算,7(1),46-60。
37.鄭宗宜,2017。消費者人格特質、知覺有用性與知覺易用性對金融科技服務使用意圖影響之研究,臺北大學企業管理學系碩士論文。
38.蕭雯方,2016。遊戲化設計對知覺互動性、流暢體驗和顧客滿意度的影響研究—以行動點餐服務為例,臺灣科技大學設計研究所碩士論文。
39.賴明弘、張峻維,2016。網路影音直播平台的使用者行為探討:從知曉到持續使用,中科大學報,3(1),31-47。
40.龍裕鴻,2016。我播故我在:網路影音直播主之對話性探討,中山大學行銷傳播管理研究所碩士論文。
41.謝忠政,2011。影響再購意願因素之探討-以涉入為干擾變數並以隱形眼鏡為例,高雄應用科技大學企業管理系碩士在職專班碩士論文。
42.韓小芸、田甜、孫本綸,2016。旅遊虛擬社群成員“感知–認同-契合行為”模式的實證研究,旅遊學刊,31(8),61-70。
43.顏慧明、封睿豪,2019。網購消費者對賣家商品知覺價值、從眾行為、網站特性與購買意願之研究-以台灣快時尚服飾為例,樹德科技大學學報,21(1),1-21。
44.魏久峰、陳泳廷,2018。探究電商網紅直播新商機的影響因素,第20屆,科際整合管理研討會。
二、英文部分
1.Abdullah, S., Osman, A., Salahuddin, S. N., Romle, A. R., and Lim, Y. J., 2016. Factors Influencing Online Shopping Behavior: The Mediating Role of Purchase Intention, Procedia Economics and Finance, 35(5), 401-410.
2.Adams, J.S., 1965. Inequity in Social Exchange, in Berkowitz, L. (Eds.), Advances in Experimental Social Psychology, Academic Press, New York, 2, 267-299.
3.Ashley, C., and Tuten, T., 2015. Creative Strategies in Social Media Marketing: An Exploratory Study of Branded Social Content and Consumer Engagement, Psychology and Marketing, 32(1), 15-27.
4.Biswas, A., 1992. The Moderating Role of Brand Familiarity in Reference Price Perception, Journal of Business Research, 25(3), 251-262.
5.Bourdeau, L., Chebat, J., and Couturier, C., 2002. Internet Consumer Value of University Students: E-mail V.S. Web Users, Journal of Retailing and Consumer Services, 9(2), 61-69.
6.Broekhuizen, T., and Hoffmann, A., 2012. Interactivity Perceptions and Online Newspaper Preference, Journal of Interactive Advertising, 12(2), 29-43.
7.Chen, C. F., and Chao, W. H., 2011. Habitual or Reasoned? Using the Theory of Planned Behavior, Technology Acceptance Model and Habit to Examine Switching Intentions toward Public Transit, Transportation Research Part F, 14(2), 128-137.
8.Chiang, C. T., Wei, C. F., Parker, K. R., and Davey, B., 2017. Exploring the Drivers of Customer Engagement Behaviours in Social Network Brand Communities: Towards A Customer-learning Model, Journal of Marketing Management, 33(17-18), 1443-1464.
9.Chin, W. W., 1998. The Partial Least Squares Approach to Structural Equation Modeling, Modern Methods for Business Research, 295(2), 295-336.
10.Davis F. D., 1986. A Technology Acceptance Model for Empirically Testing New End-user Information Systems: Theory and Results, Doctoral Dissertation,MIT Sloan School of Management, Cambridge, MA.
11.Davis, F. D., Bagozzi, R. P., and Warshaw, P. R., 1989. User Acceptance of Computer Technology: A Comparison of Two Theoretical Models, Management Science, 35(8), 982-1003.
12.Dodds, W. B., Monroe, K. B., and Grewal, D., 1991. The Effects of Price, Brand, and Store Information on Buyer’s Product Evaluations, Journal of Marketing Research, 28(3), 307-319.
13.Dubinsky, A. J., and, Zhan, C., 2003. A Conceptual Model of Perceived Customer Value in E-commerce: A Preliminary Investigation, Psychology and Marketing, 20(4), 323-374.
14.Egea, J. M. O., and González, M. V. R., 2011.Explaining Physicians’ Acceptance of Ehcr Systems: An Extension of TAM with Trust and Risk Factors, Computers in Human Behavior, 27(1), 319-332.
15.Flint, J. D., Woodruff, R. B., and Gardial, S. F., 2002. Exploring the Phenomenon of Customers' Desired Value Change in A Business-to-business Context, Journal of Marketing, 66(4), 102-117.
16.Fornell, C., and Larcker, D. F., 1981. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error, Journal of Marketing Research, 18(1), 39-50.
17.Freling, T. H., Crosno, J. L., and Henard, D. H., 2011. Brand Personality Appeal: Con-ceptualization and Empirical Validation, Journal of the Academy of Marketing Science, 39(3), 392-406.
18.Ganesan, S., and Hess, R., 1997. Dimensions and Levels of Trust: Implications for Commitment to A Relationgship, Marketing Letters, 8(4), 439-448.
19.Gunther, A. C., 1992. Biased Press or Biased Public: Attitudes Toward Media Coverage of Social Groups, Public Opinion Quarterly, 56(2), 147-167.
20.Hair, J.F., Anderson, R.E., Tatham, R.L. and Black, W.C., 1998. Multivariate Data Analysis, 5th ed. Englewood Cliffs, New Jersey:Prentice-Hall.
21.Heeter, C., 2000. Interactivity in the Context of Designed Experiences, Journal of Interactive Advertising, 1(1), 3-14.
22.Hoffman, D. L., and Novak, T. P., 1996. Marketing in Hypermedia Computer-mediated Environments: Conceptual Foundations, The Journal of Marketing, 60(3), 50-68.
23.Hollebeek, L. D., 2011. Demystifying Customer Brand Engagement: Exploring the Loyalty Nexus, Journal of Marketing Management, 27(7-8), 785-807.
24.Hovland, C. 1., and Weiss, W., 1951. The Intluence of Source Credibility on Communication Effectiveness, Public Opinion Quarterly, 15(4), 635-650.
25.Hovland, C. I., and Janis, I. L., 1953. Communication and Persuasion: Psychological Studies of Opinion Change, New Haven, CT: Yale University Press.
26.Hu, M., Zhang, M., and Wang, Y., 2017. Why do Audiences Choose to Keep Watching on Live Video Streaming Platforms? An Explanation of Dual Identification Framework. Computers in Human Behavior, 75, 594-606.
27.Kaltcheva, V. D., Rohm, A., and Milne, G. R., 2013. A Mixed-method Approach to Examining Brand-consumer Interactions Driven by Social Media, Journal of Research in Interactive Marketing, 7(4), 295-311.
28.Keaveney, S. M., 1992. Conceptualization and Operationalization of Retail Store Image: A Case of Rival Middle-level Theories, Journal of the Academy of Marketing Science, 20(2), 165-175.
29.Kiecker, P., and Cowles, D., 2001.Interpersonal Communication and Personal Influence on the Internet: A Famework for Examining, Internet Applications in Euro Marketing, 25(8), 65-71.
30.Liebermann, Y., and Flint-Goor, A., 1996. Message Strategy by Product-class Type: A Matching Model, International Journal of Marketing Research, 13(3), 237-249.
31.Liu, F., Zhao, X., Chau, P. Y., and Tang, Q., 2015. Roles of Perceived Value and Individual Differences in the Acceptance of Mobile Coupon Applications, Internet Research, 25(3), 471-495.
32.Locke, E. A., 1991. The Motivation Sequence, The Motivation Hub, and the Motivation Core, Organizational Behavior and Human Decision Processes, 50(2), 288-299.
33.Mathieson, K., Peacock, E., and Chin, W. W., 2001. Extending the Technology Acceptance Model: The Influence of Perceived User Resources, Acm Sigmis Database, 32(3), 86-112.
34.Miller, D. W., Pearson, R. A., Pearson, A. W., and Salisbury, W. D., 2001. Perceived Security and World Wide Web Purchase Intention, Industrial Management and Data Systems, 101(4), 165-177.
35.Monroe, K. B., and Krishnan, R., 2005. The Effect of Price-comparison Advertising on Buyers' Perceptions of Acquisition Value, Transaction Value, and Behavioral Intentions, Journal of Marketing, 62(2), 46-59.
36.Moon, J. W., and Kim, Y. G., 2001. Extending the TAM for World Wide Web Context, Information and Management, 38(4), 217-230.
37.Murray, K. B., and Schlacter, J. L., 1990.The Impact of Services Versus Goods on Consumers' Assessment of Perceived Risk and Variability, Journal of the Academy of Marketing Science, 18(1), 51-65.
38.Newhagen, J. E., Cordes, J. W., and Levy, M. R., 1995. Nightly at NBC.Com: Audience Scope and the Perception of Interactivity in Viewer Mail on the Internet, Journal of Communication, 21(2), 164-175.
39.Novak, T. P., Hoffman, D. L., and Yung, Y. F., 1997. Measuring the Flow Experience Among Web Users, Manuscript, Vanderbilt University.
40.Ohanian, R., 1991. The Impact of Celebrity Spokespersons’ Perceived Image on Consumers’ Intention to Purchase, Journal of Advertising Research, 19(3), 39-53.
41.Parasuraman, A., and Grewal, D., 2000. The Impact of Technology on the Quality-value- loyalty Chain: A Research Agenda, Journal of the Academy of Marketing Science, 28(1), 168-174.
42.Ringle, C. M., Wende, S., and Will, A. S., 2005. Hamburg: Smart PLS, SmartPLS 2.0. M3, Retrived from http://www.smartpls.de.
43.Shih, H. P., 2004. Extended Technology Acceptance Model of Internet Utilization Behavior, Information and Management, 41(6), 719-729.
44.Shingles, R. D., 1981. Black Consciousness and Political Participation: The Missing Link, American Political Science Review, 75(1), 76-91.
45.Siegal, W. S., and Sussman, S. W., 2003. Informational Influence in Organizations: An Integrated Approach to Knowledge Adoption, Information Systems Research, 14(1), 47-65.
46.Sweeney, J. C., and Soutar, G., 2001. Consumer Perceived Value: The Development of Multiple Item Scale, Journal of Retailing, 77(2), 203-220.
47.Taylor, S., and Todd, P., 1995. Understanding Information Technology Usage: A Test of Competing Models, Information Systems Research, 6(2), 144-176.
48.Tseng, S., and Fogg, B. J., 1999. Credibility and Computing Technology, Communication of the Academy, 42(5), 39-44.
49.Vivek, S. D., 2009. A Scale of Consumer Engagement, Doctoral Dissertation, The University of Alabama Tuscaloosa.
50.Wang, E. S. T., 2015. Effect of Food Service-brand Equity on Consumer-perceived Food Value, Physical Risk, and Brand Preference, British Food Journal, 117(2), 553-564.
51.Weber, M. M., and Kantamneni, S. P., 2002. POS and EDI in Retailing: An Examination of Underlying Benefits and Barriers, Supply Chain Management: An International Journal, 7(5), 311-317.
52.West, D., 1994. Validating A Scale for The Measurement of Credibility: A Covariance Structure Modeling Approach, Journalism Quarterly, 71(1), 159-168.
53.Wing, V., Armstrong, J. S., and Kotler, P. G., 1999. Principals of Marketing, 2nd ed, New York: Prentice Hall.
54.Wittink, D. R., McLaughlin, E. W., and Sirohi, N., 1998. A Model of Customer Perceptions and Store Loyalty Intentions for A Supermarket Retailer, Journal of Retailing, 74(2), 223-245.
55.Wold, H., 1974. Causal Flows with Latent Variables: Partings of the Ways in the Light of NIPALS Modelling, European Economic Review, 5(1), 67-86.
56.Wood, R., and Bandura, A., 1989. Social Cognitive Theory of Organizational Management, Academy of Management Review, 14(3), 361-384.
57.Wu, G., 2006. Conceptualizing and Measuring the Perceived Interactivity of Websites, Journal of Current Issues and Research in Advertising, 28(1), 87-104.
58.Zarantonello, L., Schmitt, B. H., and Brakus, J., 2014. The Current State and Future of Brand Experience, Journal of Brand Management, 21(9), 727-733.
59.Zeithaml, V. A., 1998. Consumer Perceptions of Price Quality and Value: A Means-end Model and Synthesize of Evidence, Journal of Marketing, 52(3), 2-22.
60.Zhao, L., and Lu, Y., 2012. Enhancing Perceived Interactivity through Network Externalities: An Empirical Study on Micro-blogging Service Satisfaction and Continuance Intention Vanderbilt University, Decision Support Systems, 53(4), 825-834.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 以理性行為理論、擴充科技接受模型探討從眾行為 對 APP 遊戲使用行為之影響 以 Candy Crush 為例
2. 以科技接受模式探討高屏區國小音樂教師對電子白板使用意願之研究
3. 探討O2O電子商務中影響消費者滿意度與忠誠度之因素
4. 影響再購意願因素之探討-以涉入為干擾變數並以隱形眼鏡為例
5. 我播故我在:網路影音直播主之對話性探討
6. 產品屬性、品牌形象、網路口碑、知覺品質與知覺價值對穿戴式裝置購買意願影響之研究
7. 消費者人格特質、知覺有用性與知覺易用性對金融科技服務使用意圖影響之研究
8. 知覺APP有用性與知覺APP易用性影響消費者購買行為之研究
9. 線上直播觀賞行為之研究 - 以電子競技賽事直播平台為例
10. 以資訊接受模式探討科技信任對消費者網路口碑採用意圖與購買意願之影響:以YouTube為例
11. 以科技接受模式探討水性跑道產品使用的相對優勢、相容性、知覺有用性和知覺易用性對採用意圖的影響效果:以採用態度為中介變數
12. 重返集體狂歡的年代?探索Live實況直播的意涵-以遊戲實況為例
13. Facebook之口碑訊息長度與按讚數量對社會議題參與意願之影響
14. 遊戲化設計對知覺互動性、流暢體驗和顧客滿意度的影響研究—以行動點餐服務為例
15. 直播主技巧與直播效益的關係:商品類型與直播者性別、學歷及年資的交叉分析
 
無相關期刊
 
無相關點閱論文