(3.237.178.91) 您好!臺灣時間:2021/03/07 01:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊湘均
研究生(外文):YANG, HSIANG-CHUN
論文名稱:探究高職學生運算思維能力之研究
論文名稱(外文):A study of exploring computational thinking of vocational high school students
指導教授:洪敏玲洪敏玲引用關係
指導教授(外文):HUNG, MIN-LING
口試委員:王豐緒鍾啟暘
口試委員(外文):WANG, FENG-HSUCHUNG, CHI-YANG
口試日期:2020-08-02
學位類別:碩士
校院名稱:銘傳大學
系所名稱:教育研究所碩士在職專班
學門:教育學門
學類:綜合教育學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:115
中文關鍵詞:高職科群運算思維個人背景因素思考模式
外文關鍵詞:higher vocational subject groupcomputational thinkingpersonal background factorsthinking style
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在改編並檢驗運算思維量表 (A validity and reliability study of the computational thinking scales (CTS) 對我國高職生樣本的適用性,並了解高職學生運算思維的現況。研究以「個人基本資料」、「運算思維量表」、「電腦自我效能量表」、「電腦學習因應策略」設計問卷,並經由預試與正式施測後,進行統計分析,獲得了良好的建構效度。
本研究之主要研究結果如下:
一、本研究編製「高職生運算思維」量表,經由驗證性因素分析結果,包含「演算法思維」、「創造力」、「合作學習」、「批判思考」和「問題解決」等五個構面。
二、在不同背景變項的高職生上,不同性別、有無修過程式語言、數學會考成績、喜不喜歡電腦課、喜不喜歡推理、以及喜不喜歡科學在運算思維上皆有顯著差異,僅不同上網時間的高職生在運算思維上無顯著差異。最後,本研究根據研究結果對未來研究與實務提出建議。


This research aims to adapt and test the applicability of the computational thinking scale (A validity and reliability study of the computational thinking scales (CTS)) to a sample of vocational students, and to understand the current status of computational thinking of vocational students. The questionnaires were designed based on data, "computational thinking scale," "computer self-efficacy scale," and "computer learning response strategy". After pilot study and formal tests, statistical analysis was performed, and good construct validity was obtained.
The main findings of this study are as follows:
1.This study has developed and validated the Computational Thinking of Higher Vocational Students scale.
Through a confirmatory factor analysis, the Computational Thinking of Higher Vocational Students scale was validated in five dimensions including "computational thinking skills, creativity, cooperative learning, critical thinking and problem solving.
2.This study found that gender made statistical differences in the dimensions of computational thinking scale. This study found that whether students have taken programming, their mathematics test, whether they like computer classes, whether they like reasoning, and whether they like science made statistical differences in the dimensions of computational thinking scale. However, the online time made no significant difference in computational thinking. Finally, this research makes recommendations for future research and practice based on the research results.


論文口試委員審定書
誌 謝
中文摘要 i
英文摘要 ii
目 次 iii
表 次 v
圖 次 vi
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 6
第三節 研究問題 6
第四節 名詞釋義 8
第二章 文獻探討 11
第一節 運算思維的意涵與研究 11
第二節 運算思維的構面 21
第三節 量表發展之相關理論 33
第三章 研究方法 43
第一節 研究架構 43
第二節 研究對象 45
第三節 研究工具 46
第四節 研究步驟 49
第五節 資料處理 53
第四章 研究結果與討論 55
第一節 運算思維量表在我國高職樣本的信度與效度 55
第二節 我國高職生背景與運算思維的關係 73
第三節 討論 77
第五章 研究結論與建議 81
第一節 研究結論 81
第二節 研究建議 82
參考文獻 85
一、 中文部分 85
二 、英文部分 86
附錄 92
附錄一 「高職生運算思維量表」專家效度調查問卷 92
附錄二 探究高職學生運算思維能力之研究問卷 102

參考文獻
一、中文部分
王玉蓮(2017)。設計思考法融入環境教育Scratch課程之設計探究(未出版之碩士論文)。國立清華大學人力資源與數位學習科技研究所。
王佳煌、潘中道、郭俊賢、黃瑋瑩(譯)(2002)。當代社會研究法:質化與量化途徑。臺北市:學富文化。(W. Lawerence Neuman, 2000)
吳明隆(2006)。SPSS統計應用學習實務:問卷分析與應用統計。臺北市:知城。
吳舒民(2017)。採用鷹架導引系統提升國小學童運算思維能力之研究(未出版之碩士論文)。國立臺南大學數位學習科技學系數位學習科技碩士在職專班。
李威霖(2016)。情境式運算思維教材之發展與評估(未出版之碩士論文)。國立臺灣師範大學資訊教育研究所。
林育慈、吳正己(2016)。運算思維與中小學資訊科技課程。國家教育研究院教育脈動電子期刊,6。
林群峰(2017)。Kodu遊戲設計教學對國小學童運算思維提昇成效之研究(未出版之碩士論文)。國立高學師範大學工業科技教育學系。
邱皓政(2009)。量化研究與統計分析-SPSS中文視窗版資料分析範例解析 (第三版)。臺北市:五南。
張春興(1994)。教育心理學:三化取向的理論與實踐。臺北市:東華。
教育部(2018)。十二年國民基本教育課程綱要 -- 國民中學暨普通型高級中等學校「科技領域」。臺北市:教育部https://www.naer.edu.tw/ezfiles/0/1000/attach/52/pta_18530_4795935_60115.pdf
教育部(2016)。2016 – 2020 資訊教育總藍圖。臺北市:教育部https://ws.moe.edu.tw/001/Upload/3/relfile/6315/46563/65ebb64a-683c-4f7a-bcf0-325113ddb436.pdf
教育部(2014)。 十二年國民基本教育課程綱要總綱。臺北市:教育部https://www.naer.edu.tw/ezfiles/0/1000/attach/87/pta_18543_581357_62438.pdf
陳威(2007)。建構主義學習理論綜述。哈爾濱學院教育科學學院,哈爾濱150086。
陳佩萱(2017)。不同藝術涉入對於國中生創造力與運算思維影響之研究─以英語STEAM課程為例(未出版之碩士論文)。臺北市立大學教育學系。
陳怡芬、林育慈、翁禎苑(2018)。運算思維導向程式設計教學-以「動手玩音樂」模組化程式設計為例。中等教育,69(2),127–141。
趙碧華、朱美珍(2000)。研究方法:社會工作暨人文學科領域的運用。臺北:學富、雙葉。
翁淑緣(2000)。影響國中學生電腦學習意願之個人特性探討。教育與心理研究,23,147-172。
劉長諺(2018)。視覺化程式學習對於提升高中生運算思維能力之影響(未出版之碩士論文)。國立交通大學資訊科學與工程研究所。
賴婉玥(2018)。以聊天機器人實作培養學生運算思維(未出版之碩士論文)。國立臺灣師範大學資訊教育研究所。
張茵婷(2018)。程式設計課程融入體驗學習之探究(未出版之碩士論文)。 國立臺灣師範大學教育學系課程與教學領導研究所。
二、英文部分
Australian Curriculum, Assessment, Reporting Authority (2013). Draft Australian curriculum technologies. Retrieved from http://consultation.australiancurriculum.edu.au/Static/docs/Technologies/Draft%20Australian%20Curriculum%20Technologies%20-%20February%202013.pdf
Adler, M. J. (1986). A guidebook to learning: for the lifelong pursuit of wisdom. New York: Macmillan.
Akbıyık, C., & Seferoğlu, S. S. (2006). Critical thinking dispositions and academic achievement [in Turkish]. Cukurova University Journal of Faculty of Education, 3(32), 90–99.
Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 Computational Thinking Curriculum Framework: Implications for Teacher Knowledge. Journal of Educational Technology & Society, 19 (3), 47–57.
Apand, J., & Crompton, J. (1993). Residents’ strategies for responding to tourism impacts. Journal of Travel Research, 32 (1), 47-50
Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological Review, 84, 191–215.
Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what is the role of the computer science education community? ACM, 2(1), 48-54.
Bokeoglu, Ç., & Yılmaz, K. (2005). The relationship between attitudes of university students towards critical thinking and research anxieties. Educational Administration: Theory and Practice, 41, 47–67.
Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational researcher, 18(1), 32-42.
Brown, W. (2015). Introduction to algorithmic thinking. Available at: www.cs4fn.com/algoritmicthinking.php.
Churchill, G. A., Jr. (1979). A paradigm for developing better measures of marketing constructs. Journal of Marketing Research, 16 (1), 64-73.
Coller, B., & Scott, M. (2009). Effectiveness of using a video game to teach a course in mechanical engineering. Computers & Education, 53(3), 900-912.
Compeau, D. R. & Higgins, C. A. (1995). Computer self-efficacy: development of a measure and initial test. MIS Quarterly, 19, 189-211.
Computer Science Teachers Association (CSTA) (2011). CSTA K–12 computer science standards. The ACM K-12 Education Task Force. Retrieved from http://www.csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf
Curzon, P. (2015). Computational thinking: Searching to speak. Retrieved from http://teachinglondoncomputing.org/free-workshops/computational-thinking-searching-to-speak/.
Department of Education in England (DOEE) (2013). National curriculum in England: Computing programmes of study. Retrieved from https://www.gov.uk/government/publications/nationl-curriculum-in-england-computing-programmes-of-study
DeVellis, R. F., (2017). Scale development: Theory and applications (Fourth Edition). Thousand Oaks, CA: Sage Publications.
Donnelly, R. (2004). Fostering of creativity within an imaginative curriculum in higher education. The Curriculum Journal, 15(2), 155-166.
Duncan, O. D. (1984). Note on social measurement. New York: Russell
Sage.
Fer, S. (2005). Validity and reliability study of the thinking styles inventory. Educational Sciences Theory & Practice, 5(2), 433–461.
Google (2015). Exploring Computational Thinking. Retrieved from https://www.google.com/edu/resources/programs/exploring-computational-thinking/
Gorsuch, R. L. (1983). Factor analysis. Hillsdale. NJ: Lawrence Erlbaum.
Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill.
Halpern, D. F. (1997). Critical thinking across the curriculum: A brief edition of thought and knowledge. Mahwah, NJ: L. Erlbaum Associates.
ISTE, & CSTA. (2011). Operational definition of computational thinking for K-12 education. Retrieved from http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf.
Johnson, D. W. & Johnson, R. T. (1989). Toward a cooperative effort: A response to Slavin. Educational Leadership, 46 (7), 80-81.
Johnson, D. W., Johnson, R. T., & Smith, K. (2007). The state of cooperative learning in postsecondary and professional settings. Educational Psychology Review, 19(1), 15–29.
Kalelioğlu, F., Gülbahar, Y. & Kukul, V. (2016). A framework for computational thinking based on a systematic research review. Baltic Journal of Modern Computing, 4 (3), 583-596.
Kazimoglu, C., Kiernan, M., Bacon, L., & MacKinnon, L. (2012). A serious game for developing computational thinking and learning introductory computer programming. Social and behavioral sciences, 47, 1991-1999.
Kong, S. C., Chiu, M. M., & Lai, M. (2018). A study of primary school students' interest, collaboration attitude, and programming empowerment in computational thinking education. Computers & Education, 127, 178-189.
Korkmaz, O. (2012). A validity and reliability study of the online cooperative learning attitude scale. Computers & Education, 59, 1162–1169.
Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the Computational Thinking Scales (CTS). Computers in Human Behavior, 72, 558–569.
Kuo, F. R., Chen, N. S., & Hwang, G. J. (2014). A creative thinking approach to enhancing the web-based problem solving performance of university students. Computers & Education, 72, 220-230.
Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., & Werner, L. (2011). Computational thinking for youth in practice. ACM Inroads, 2 (1), 32-37.
Lu, J.J., & Fletcher, G. H. L. (2009). Thinking about computational thinking. ACM SIGCSE Bulletin, 41 (1), 260-264.
Marji, M. (2014). Learn to Program with Scratch: A Visual Introduction to Programming with Games, Art, Science, and Math. No Starch Press.
Merriënboer, J. J. G. (2013). Perspectives on problem solving and instruction. Computers & Education, 64, 153–160.
Mumford, M. D. (2001). Where have we been, where are we going? Taking stock in creativity research. Creativity Research Journal, 15(2/3), 107-120.
Nam, C. W. (2014). The effects of trust and constructive controversy on student achievement and attitude in online cooperative learning environments. Computers in Human Behavior, 37, 237–248.
OECD. (2014). PISA 2012 Results: Creative problem Solving: Students’ skills in tackling real-life problems (Vol. 5). Paris: OECD Publishing. http://dx.doi.org/10.1787/9789264208070-en.
Page, N., & Czuba, C. E. (1999). Empowerment: What is it? Journal of Extension, 37(5), 24–32.
Pajares, F., & Schunk, D. H. (2001). Self-efficacy, self-concept, and academic achievement. In J. Aronson & D. Cordova (Eds.), Psychology of education: Personal and interpersonal forces. New York: Academic Press.
Papert, S. (1972). Teaching children thinking. Innovations in Education and Training International, 9(5), 245–255.
Peker, M. & Mirasyedioğlu, S. (2008). Pre-Service elementary school teachers’ learning styles and attitudes towards mathematics. Eurasia Journal of Mathematics, Science & Technology Education, 4(1), 21–26.
Perkins, D. N., & Simmons, R. (1988). Patterns of misunderstanding: An integrative model for science, math, and programming. Review of Educational Research, 58(3), 303–326.
Psycharis, S. (2013). Exploring the effects of the computational experiment approach to the epistemic beliefs, the motivation, the use of modeling indicators and conceptual understanding in three different computational learning environments. Journal of Education and Training Studies, 1 (1), 69-87.
Selby, C. C. (2014). How can the teaching of programming be used to enhance computational thinking skills? University of Southampton, Southampton, UK.
Settle, A. (2011, October). Computational thinking in a game design course.
InProceedings of the 2011 conference on Information technology education (pp. 61-66). ACM.
Slavin, R. E. (1980). Effects of student teams and peer touring on academic achievement and time on-task. Journal of Experimental Education, 48, 252-57.
Soylu, Y., & Soylu, C. (2006). The role of problem solving in mathematics lessons for success. Inonu University Educational Journal, 7(11), 97–111.
Sternberg, R. J., & Wagner, R. K. (1992). Thinking styles inventory. Unpublished test. Yale University.
Torrance, E. P. (1966). Torrance tests of creativity. Princeton, NJ: Personnel Press.
Vangrieken, K., Dochy, F., Rases, E., & Kyndt, E. (2015). Teacher collaboration: A systematic review. Educational Research Review, 15, 17–40.
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education & Technology, 25(1), 127–147.
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49 (3), 33–35.
Yıldız. G. (2010). Relationships between mathematics achievement, metacognitive strategies, thinking styles and mathematics self-concepts of 7th grade primary school students. Published doctoral dissertation. Technical University Institute of Educational Sciences, Istanbul, Turkey.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔