跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/23 19:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施丞恩
研究生(外文):SHI,CHENG-EN
論文名稱:低臨界溶液溫度型溫敏離子液體用於正滲透程序進行水回收之研究
論文名稱(外文):Application of LCST-type Ionic Liquid on Forward Osmosis for Water Recovery
指導教授:官文惠官文惠引用關係
指導教授(外文):KUAN,WEN-HUI
口試委員:胡景堯官文惠吳容銘
口試委員(外文):HU,CHING-YAOKUAN,WEN-HUIWu,JUNG-MING
口試日期:2021-07-28
學位類別:碩士
校院名稱:明志科技大學
系所名稱:環境與安全衛生工程系環境工程碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:87
中文關鍵詞:正滲透離子液體低臨界溶液溫度相分離提取液
外文關鍵詞:Forward osmosisIonic liquidLow critical solution temperaturePhase separationDraw solution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
正滲透是利用滲透驅動的薄膜過程,其利用滲透壓梯度將水從進料溶液側驅動穿過半透膜到提取溶液側。而為循環利用正滲透水回收過程,選取低臨界溶液溫度型離子液體,做為正滲透提取液,其中離子液體具有所需的高滲透壓,以及易利用溫度變化達到相分離回收等特性,因此本研究以市售低臨界溶液溫度的離子液體,正辛基三丁基溴[P4448][Br],自行合成,為陽離子氫氧化四丁基膦[P4444]與陰離子均三甲苯磺酸鈉[TMBS]、順丁烯二酸[Mal]兩種作為測試,探討離子液體於不同溫度、混合比例下的特性。並採用自製靜電紡絲薄膜、商售膜,測試離子液體提取液,比較水通量、反向溶質擴散。結果顯示,三種低臨界溶液溫度離子液體能夠有效作為,正滲透提取液,其在重量百分比濃度50%下,進樣為去離子水,[P4448][Br]水通量為3.5LMH,[P4444] [TMBS]4.5LMH,[P4444] [Mal]1.7LMH,且在正滲透後量測總有機碳,其阻擋率為99.5%以上,表示低反向溶質擴散,濃度介於30~40%離子液體時,處理實廠含矽廢水時,能夠達到水通量為,[P4448][Br]1.9LMH,[P4444] [TMBS]2.1LMH,[P4444] [Mal]2.7LMH,且能夠濃縮1.5倍進流矽濃度,在離子液體相分離部分,顯示在30~70wt%離子液體,能有明顯相分離行為產生,而相變溫度方面,[P4448] [Br]為40°C、[P4444] [Mal]為25°C 、[P4444] [TMBS]在50°C,能夠達到相分離含水率最低溫度,並能回收富離子液體層,達到平均為75wt%之離子液體,而富水層之含水率達到90%,能夠依其結果有根據的設計正滲透回收稀釋提取液之步驟。
Forward osmosis is a membrane process driven by osmosis. In order to recycle the forward osmosis water recovery process, a low critical solution temperature(LCST) type ionic liquid is selected as the forward osmosis draw solution. The ionic liquid has required high osmotic pressure and easy to use temperature changes to achieve phase separation and recovery. Therefore, In this study, a commercially available LCST ionic liquid, [P4448] [Br], synthesized by ourselves, is cationic [P4444] and anionic [TMBS]、[Mal] are used as test the characteristics of ionic liquids at different temperatures and mixing ratios,test ionic liquid to compare water flux and reverse solute diffusion. The results show that at a concentration of 50% by weight, the water flux of [P4448][Br] is 3.5LMH, [P4444] [TMBS]4.5LMH, [P4444] [Mal] 1.7LMH, and the total organic carbon measured after forward osmosis, the barrier rate is above 99.5%, indicating low reverse solute diffusion,for silica-containing wastewater from real plants can reach [P4448][Br] 1.9LMH, [P4444] [TMBS]2.1LMH, [P4444] [Mal] 2.7LMH,and feed solution achieve 1.5 times concentration,in the ionic liquid phase separation part, it is displayed at 30~70wt% ionic liquid , can have obvious phase separation behavior, and the phase separation temperature, [P4448] [Br] is 40°C, [P4444] [Mal] is 25°C, and [P4444] [TMBS] reach 50°C.The ionic liquid-rich can be recovered to an average of 75wt% ionic liquid, and the water content of the water-rich reaches 90%. The step of forward osmosis recovery of the diluted extract can be designed according to the results.
目錄
指導教授推薦書 i
口試委員會審定書 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與內容 2
第二章 文獻回顧 3
2.1 薄膜淨水技術 3
2.1.1 正向滲透淨水技術 4
2.1.2 正向滲透技術比較 4
2.1.3 正滲透濃差極化(Concentration polarization, CP) 5
2.1.4 正滲透薄膜製備與結構 7
2.1.5 正滲透薄膜材料 10
2.2 高分子薄膜製備方法 11
2.2.1 靜電紡絲法(Electrospinning) 12
2.2.2 界面聚合法(Interfacial polymerization) 13
2.3 正滲透提取溶液 15
2.3.1 正滲透提取液應用 19
2.3.2 相分離提取液 20
2.4 離子液體(Ionic Liquid,IL) 21
2.4.1 離子液體種類 22
2.4.2 溫敏型離子液體 24
2.4.3 低臨界溶液溫度(LCST)離子液體 25
2.4.4 離子液體與水混合物 26
2.4.5 離子液體配製之提取液特性與應用 27
2.5 高科技廢水特性 29
2.5.1 高科技廢水常用之回收處理技術 30
2.5.2 機械研磨廢水與薄膜處理 32
第三章 材料與方法 33
3.1 研究架構 33
3.2 製膜程序 34
3.2.1 高分子溶液 35
3.2.2 靜電紡絲支撐層 35
3.2.3 界面聚合法緻密層 35
3.3正滲透系統 36
3.3.1 正滲透反應槽 37
3.4離子液體合成 38
3.5數據分析方法與儀器介紹 39
3.5.1 水通量 39
3.5.2 逆向鹽量 39
3.5.3冰點滲透壓計 (全華,OSMOMAT 3000) 39
3.5.4離子層析儀(Thermo Fisher, ICS-5000+ Standard Bore and Microbore System) 40
3.5.5 水分分析儀 (Metrohm,888 Titrando) 42
3.5.6 總有機碳分析儀 (SHIMADZU,TOC-L) 43
3.6相分離現象 43
3.7實驗之藥品 43
3.8高科技廢水水質參數 45
第四章 結果與討論 46
4.1 離子液體特性與分析 46
4.1.1 離子液體相分離溫度 46
4.1.2 離子液體相態 47
4.1.3 離子液體溫度相態變化 48
4.1.4離子液體層含水率 55
4.1.5離子液體溶液之滲透壓 64
4.2 正滲透效能 66
4.2.1靜電紡絲薄膜之正滲透 66
4.2.2 正滲透效能-靜電紡絲PVDF與離子液體混合液 67
4.2.3 正滲透效能-離子液體混合液 68
4.2.4 正滲透效能-離子液體混合液與實廠含矽廢水 70
4.2.5 正滲透後離子液體重複試驗 71
4.3 薄膜特性與分析 73
4.3.1 靜電紡絲薄膜(PVDF) 73
4.3.2 靜電紡絲薄膜(PAN) 74
4.3.3 靜電紡絲薄膜經界面聚合 75
4.3.4 靜電紡絲薄膜正滲透後 77
4.3.5正滲透商售薄膜 78
第五章 結論及建議 79
5.1 結論 79
5.2 建議 79
參考文獻 80
圖目錄
圖 二 1.過濾分離技術範圍(Z.F. Cui, 2010) 3
圖 二 2.正向滲透示意圖(許中俊, 2016) 4
圖 二 3.稀釋和濃縮的內濃差極化現象(McCutcheon & Elimelech, 2006) 6
圖 二 4.靜電紡絲示意圖(Gatford, 2008) 12
圖 二 5.界面聚合法製備複合膜(湯蓓蓓, 2007) 14
圖 二 6.苯三甲酰氯與間苯二胺的聚合反應式(A. Prakash Rao, 1997) 15
圖 二 7.離子液體典型應用(Y. Kohno & H. Ohno, 2012) 21
圖 二 8.LCST(A)、UCST(B)相變行為(Kohno et al., 2015) 25
圖 二 9. 35wt% [P4444]CF3COO與水之相變行為(Kohno et al., 2011) 26
圖 二 10.離子液體與正滲透程序示意圖(Dutta & Nath, 2018) 28
圖 三 1.研究架構圖 33
圖 三 2.製膜程序 34
圖 三 3.薄膜界面聚合示意圖(Khorshidi et al., 2016) 36
圖 三 4.FO系統示意圖 37
圖 三 5.正滲透模具槽體示意圖 37
圖 三 6.反應槽示意圖 38
圖 三 7.離子液體陰陽離子 39
圖 三 8.全自動冰點滲透壓計 40
圖 三 9.離子層析儀儀器原理 41
圖 三 10.線上流洗液產生器原理 42
圖 三 11.Metrohm 888 Titrando 滴定儀 42
圖 四 1.離子液體相分離溫度(Tc) 46
圖 四 2. 0~7min [P4448] [Br]與水混合後於室溫下變化 47
圖 四 3. 0~6min [P4444] [Mal]與水混合後於室溫下變化 48
圖 四 4.0~15min [P4444] [TMBS]與水混合後於室溫下變化 48
圖 四 5. [P4448] [Br]90%、80%溶液 49
圖 四 6. [P4448] [Br]70%溶液 49
圖 四 7. [P4448] [Br]60%溶液 50
圖 四 8. [P4448] [Br]50%溶液 51
圖 四 9. [P4444] [Mal]90%、80%溶液 51
圖 四 10. [P4444] [Mal]70%溶液 52
圖 四 11. [P4444] [Mal]60%溶液 53
圖 四 12.[P4444] [Mal]50%溶液 53
圖 四 13. [P4444] [TMBS]90%、80%溶液 54
圖 四 14. [P4444] [TMBS]70%溶液 54
圖 四 15. [P4444] [TMBS]60%溶液 55
圖 四 16. [P4444] [TMBS]50%溶液 55
圖 四 17.離子液體之滲透壓 65
圖 四 18. PVDF、PAN正滲透效果 66
圖 四 19.離子液體正滲透水通量 69
圖 四 20.正滲透後離子液體重複試驗 72
圖 四 21.正滲透後離子液體回收試驗 72
圖 四 22.15%PVDF薄膜 SEM 73
圖 四 23.15%PVDF紡絲直徑 SEM 74
圖 四 24.8%PVDF薄膜 SEM 74
圖 四 25. PAN薄膜 SEM 75
圖 四 26.PAN薄膜紡絲直徑 SEM 75
圖 四 27.界面聚合後PVDF薄膜 SEM 76
圖 四 28.界面聚合後PAN薄膜 SEM 76
圖 四 29. FO 後PVDF薄膜 SEM 77
圖 四 30. FO 後PAN薄膜 SEM 77
圖 四 31.正滲透商售膜表徵 78
圖 四 32.正滲透後商售膜表徵 78

表目錄
表 二 1.薄膜種類與其特徵 5
表 二 2.正滲透與逆滲透比較 5
表 二 3.薄膜選擇條件 7
表 二 4.近年發展之支撐層及其製備的FO膜性能 8
表 二 5.高分子材料分類(徐又一, 2005) 10
表 二 6.靜電紡絲製程變因(Teo et al., 2007) 13
表 二 7.界面聚合單體、反應皮層(崔绍波 et al., 2006) 14
表 二 8.近年FO提取液之發展 16
表 二 9. FO程序常用提取溶液與其效能 18
表 二 10.離子液體種類特性 22
表 二 11.不同離子與等量水混合後相變行為(Y. Kohno & H. Ohno, 2012) 27
表 二 12.高科技廢水回收處理技術(李晨瑜 et al., 2018) 31
表 三 1.靜電紡絲操作參數 35
表 三 2.晶圓廢水水質參數 45
表 四 1. [P4448] [Br]90%與10%水混合之含水率 56
表 四 2.[P4448] [Br]80%與20%水混合含水率 56
表 四 3.[P4448] [Br]70%與30%水混合含水率 57
表 四 4.[P4448] [Br]60~50%與40~50%水混合含水率 58
表 四 5. [P4448] [Br]40%與60%水混合含水率 59
表 四 6.[P4444] [Mal]90~80%與10~20%水混合含水率 59
表 四 7.[P4444] [Mal]70%/W與30%水混合含水率 60
表 四 8.[P4444] [Mal]60~50%與40~50%水混合含水率 60
表 四 9.[P4444] [Mal]40%與60%水混合含水率 62
表 四 10.[P4444] [TMBS]90~70%與10~30%水混合含水率 62
表 四 11.[P4444] [TMBS]60~50%與40~50%水混合含水率 63
表 四 12. [P4444] [TMBS]40%與60%水混合含水率 64
表 四 13.PVDF、PAN正滲透效果 66
表 四 14.PVDF、PAN正滲透程序後離子濃度 67
表 四 15.PVDF with IL/W 正滲透效果 68
表 四 16.離子液體正滲透TOC、阻擋率 69
表 四 17.正滲透離子液體與晶圓研磨廢水 70


A. Prakash Rao, N. V. D., R. Rangarajan,. (1997). Interfacially synthesized thin film composite RO membranes for seawater desalination. Journal of Membrane Science, Volume 124, Issue 2,, Pages 263-272.
Abdullah, W. N. A. S., Tiandee, S., Lau, W., Aziz, F., & Ismail, A. F. (2020). Potential use of nanofiltration like-forward osmosis membranes for copper ion removal. Chinese Journal of Chemical Engineering, 28(2), 420-428. doi:10.1016/j.cjche.2019.05.016
Achilli, A., Cath, T. Y., & Childress, A. E. (2010). Selection of inorganic-based draw solutions for forward osmosis applications. Journal of Membrane Science, 364(1-2), 233-241. doi:10.1016/j.memsci.2010.08.010
Ajayan, P. M., Schadler, L. S., & Braun, P. V. (2006). Nanocomposite Science and Technology: Wiley.
Bowden, K. S., Achilli, A., & Childress, A. E. (2012). Organic ionic salt draw solutions for osmotic membrane bioreactors. Bioresour Technol, 122, 207-216. doi:10.1016/j.biortech.2012.06.026
Cai, Y., & Hu, X. M. (2016). A critical review on draw solutes development for forward osmosis. Desalination, 391, 16-29. doi:10.1016/j.desal.2016.03.021
Cai, Y., Shen, W., Wei, J., Chong, T. H., Wang, R., Krantz, W. B., Fane, A. G., & Hu, X. (2015). Energy-efficient desalination by forward osmosis using responsive ionic liquid draw solutes. Environmental Science: Water Research & Technology, 1(3), 341-347. doi:10.1039/c4ew00073k
Cui, Y., Ge, Q., Liu, X.-Y., & Chung, T.-S. (2014). Novel forward osmosis process to effectively remove heavy metal ions. Journal of Membrane Science, 467, 188-194. doi:10.1016/j.memsci.2014.05.034
Dutta, S., & Nath, K. (2018). Prospect of ionic liquids and deep eutectic solvents as new generation draw solution in forward osmosis process. Journal of Water Process Engineering, 21, 163-176. doi:10.1016/j.jwpe.2017.12.012
Emadzadeh, D., Lau, W. J., Matsuura, T., Rahbari-Sisakht, M., & Ismail, A. F. (2014). A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination. Chemical Engineering Journal, 237, 70-80. doi:10.1016/j.cej.2013.09.081
Fukaya, Y., Sekikawa, K., Murata, K., Nakamura, N., & Ohno, H. (2007). Miscibility and phase behavior of water-dicarboxylic acid type ionic liquid mixed systems. Chem Commun (Camb)(29), 3089-3091. doi:10.1039/b704992g
Gatford, J. (2008). The New Zealand Institute for Plant and Food Research Ltd.
Ge, Q., Amy, G. L., & Chung, T. S. (2017). Forward osmosis for oily wastewater reclamation: Multi-charged oxalic acid complexes as draw solutes. Water Res, 122, 580-590. doi:10.1016/j.watres.2017.06.025
Ge, Q., Su, J., Amy, G. L., & Chung, T. S. (2012). Exploration of polyelectrolytes as draw solutes in forward osmosis processes. Water Res, 46(4), 1318-1326. doi:10.1016/j.watres.2011.12.043
Gil, E., & Hudson, S. (2004). Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science, 29(12), 1173-1222. doi:10.1016/j.progpolymsci.2004.08.003
Gwak, G., Kim, D. I., & Hong, S. (2018). New industrial application of forward osmosis (FO): Precious metal recovery from printed circuit board (PCB) plant wastewater. Journal of Membrane Science, 552, 234-242. doi:10.1016/j.memsci.2018.02.022
Hamid, M. F., Abdullah, N., Yusof, N., Lau, W. J., Ismail, A. F., Wan Salleh, W. N., Jaafar, J., & Aziz, F. (2021). Innovative polymer-complex draw solution for copper(II) removal using forward osmosis. Journal of Environmental Chemical Engineering, 9(1). doi:10.1016/j.jece.2020.104854
Holding, A. (2016). Ionic Liquids and Electrolytes for Cellulose Dissolution.
Hu, B., Jiang, M., Zhao, S., Ji, X., Shu, Q., Tian, B., He, T., & Zhang, L. (2019). Biogas slurry as draw solution of forward osmosis process to extract clean water from micro-polluted water for hydroponic cultivation. Journal of Membrane Science, 576, 88-95. doi:10.1016/j.memsci.2019.01.029
Inoue, T., & Misono, T. (2009). Cloud point phenomena for POE-type nonionic surfactants in imidazolium-based ionic liquids: effect of anion species of ionic liquids on the cloud point. J Colloid Interface Sci, 337(1), 247-253. doi:10.1016/j.jcis.2009.05.002
Islam, M. S., Sultana, S., McCutcheon, J. R., & Rahaman, M. S. (2019). Treatment of fracking wastewaters via forward osmosis: Evaluation of suitable organic draw solutions. Desalination, 452, 149-158. doi:10.1016/j.desal.2018.11.010
Jazini, F., Karimi, M., & Azari, S. (2021). Tuning the pore features of cellulose acetate/cellulose triacetate membranes via post-casting solvent treatment for forward osmosis. Carbohydr Polym, 255, 117348. doi:10.1016/j.carbpol.2020.117348
John E. Cadotte, M., Minn. (1977). Reverse osmosis membrane.
Ju, C., Park, C., Kim, T., Kang, S., & Kang, H. (2019). Thermo-responsive draw solute for forward osmosis process; poly(ionic liquid) having lower critical solution temperature characteristics. RSC Advances, 9(51), 29493-29501. doi:10.1039/c9ra04020j
Jung, D. H., Lee, J., Kim, D. Y., Lee, Y. G., Park, M., Lee, S., Yang, D. R., & Kim, J. H. (2011). Simulation of forward osmosis membrane process: Effect of membrane orientation and flow direction of feed and draw solutions. Desalination, 277(1-3), 83-91. doi:10.1016/j.desal.2011.04.001
Kamio, E., Takenaka, A., Takahashi, T., & Matsuyama, H. (2019). Fundamental investigation of osmolality, thermo-responsive phase diagram, and water-drawing ability of ionic-liquid-based draw solution for forward osmosis membrane process. Journal of Membrane Science, 570-571, 93-102. doi:10.1016/j.memsci.2018.10.004
Khorshidi, B., Thundat, T., Fleck, B. A., & Sadrzadeh, M. (2016). A Novel Approach Toward Fabrication of High Performance Thin Film Composite Polyamide Membranes. Sci Rep, 6, 22069. doi:10.1038/srep22069
Kim, B., Gwak, G., & Hong, S. (2017). Review on methodology for determining forward osmosis (FO) membrane characteristics: Water permeability (A), solute permeability (B), and structural parameter (S). Desalination, 422, 5-16. doi:10.1016/j.desal.2017.08.006
Kohno, Y., Arai, H., Saita, S., & Ohno, H. (2011). Material design of ionic liquids to show temperature-sensitive LCST-type phase transition after mixing with water. Australian Journal of Chemistry, 64(12). doi:10.1071/ch11278
Kohno, Y., & Ohno, H. (2012). Ionic liquid/water mixtures: from hostility to conciliation. Chem Commun (Camb), 48(57), 7119-7130. doi:10.1039/c2cc31638b
Kohno, Y., & Ohno, H. (2012). Key Factors to Prepare Polyelectrolytes Showing Temperature-Sensitive Lower Critical Solution Temperature-type Phase Transitions in Water. Australian Journal of Chemistry, 65(1). doi:10.1071/ch11378
Kohno, Y., Saita, S., Men, Y., Yuan, J., & Ohno, H. (2015). Thermoresponsive polyelectrolytes derived from ionic liquids. Polymer Chemistry, 6(12), 2163-2178. doi:10.1039/c4py01665c
Kwon, S. J., Park, S.-H., Shin, M. G., Park, M. S., Park, K., Hong, S., Park, H., Park, Y.-I., & Lee, J.-H. (2019). Fabrication of high performance and durable forward osmosis membranes using mussel-inspired polydopamine-modified polyethylene supports. Journal of Membrane Science, 584, 89-99. doi:10.1016/j.memsci.2019.04.074
Lee, J.-Y., Qi, S., Liu, X., Li, Y., Huo, F., & Tang, C. Y. (2014). Synthesis and characterization of silica gel–polyacrylonitrile mixed matrix forward osmosis membranes based on layer-by-layer assembly. Separation and Purification Technology, 124, 207-216. doi:10.1016/j.seppur.2014.01.029
Li, D., Zhang, X., Yao, J., Simon, G. P., & Wang, H. (2011). Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. Chem Commun (Camb), 47(6), 1710-1712. doi:10.1039/c0cc04701e
Liao, Y., Wang, R., Tian, M., Qiu, C., & Fane, A. G. (2013). Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. Journal of Membrane Science, 425-426, 30-39. doi:10.1016/j.memsci.2012.09.023
Ling, M. M., & Chung, T.-S. (2011). Desalination process using super hydrophilic nanoparticles via forward osmosis integrated with ultrafiltration regeneration. Desalination, 278(1-3), 194-202. doi:10.1016/j.desal.2011.05.019
Liu, P.-I., Chung, L.-C., Wang, D. C., Ho, C.-H., Cheng, T.-Y., Xu, H.-X., Huang, M.-S., Liang, T.-M., Chang, M.-C., & Horng, R.-Y. (2019). Insight into the water recovery characteristics of tetrabutylphosphonium hydrogen maleate ionic liquid draw solute in forward osmosis process. Desalination and Water Treatment, 183-189. doi:10.5004/dwt.2019.23329
Liu, X., & Ng, H. Y. (2014). Double-blade casting technique for optimizing substrate membrane in thin-film composite forward osmosis membrane fabrication. Journal of Membrane Science, 469, 112-126. doi:10.1016/j.memsci.2014.06.037
Lu, J., Yan, F., & Texter, J. (2009). Advanced applications of ionic liquids in polymer science. Progress in Polymer Science, 34(5), 431-448. doi:10.1016/j.progpolymsci.2008.12.001
Lutchmiah, K. L., L. ; de Roest, K. ; Harmsen, D.J.H. . (2014). Zwitterions as alternative draw solutions in forward osmosis for application in wastewater reclamation. Journal of Membrane Science, 460, 82-90.
Ma, N., Wei, J., Qi, S., Zhao, Y., Gao, Y., & Tang, C. Y. (2013). Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes. Journal of Membrane Science, 441, 54-62. doi:10.1016/j.memsci.2013.04.004
Mara G. Freire, C. M. S. S. N., Pedro J. Carvalho,Ramesh L. Gardas,Ana M. Fernandes, Isabel M. Marrucho,Luı´s M. N. B. F. Santos,| and Joa˜o A. P. Coutinho*. (2007). Mutual Solubilities of Water and Hydrophobic Ionic Liquids.
McCormick, P., Pellegrino, J., Mantovani, F., & Sarti, G. (2008). Water, salt, and ethanol diffusion through membranes for water recovery by forward (direct) osmosis processes. Journal of Membrane Science, 325(1), 467-478. doi:10.1016/j.memsci.2008.08.011
McCutcheon, J. R., & Elimelech, M. (2006). Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. Journal of Membrane Science, 284(1-2), 237-247. doi:10.1016/j.memsci.2006.07.049
Ming Ming Ling, K. Y. W., and Tai-Shung Chung. (2010). Highly Water-Soluble Magnetic Nanoparticles as Novel Draw Solutes in Forward Osmosis for Water Reuse.
Ngai Yin Yip, A. T., William A. Phillip, Jessica D. Schiffman, and Menachem Elimelech*. (2010). High Performance Thin-Film Composite Forward Osmosis Membrane. Environ. Sci. Technol, 3812-3818.
Nguyen, T. P. N., Yun, E.-T., Kim, I.-C., & Kwon, Y.-N. (2013). Preparation of cellulose triacetate/cellulose acetate (CTA/CA)-based membranes for forward osmosis. Journal of Membrane Science, 433, 49-59. doi:10.1016/j.memsci.2013.01.027
Pan, Z., Guo, H., Yu, H., Wen, G., Qu, F., Huang, T., & He, J. (2021). Sewage sludge ash-based thermo-responsive hydrogel as a novel draw agent towards high performance of water flux and recovery for forward-osmosis. Desalination, 512. doi:10.1016/j.desal.2021.115147
Pardeshi, P. M., Mungray, A. K., & Mungray, A. A. (2017). Polyvinyl chloride and layered double hydroxide composite as a novel substrate material for the forward osmosis membrane. Desalination, 421, 149-159. doi:10.1016/j.desal.2017.01.041
Phuntsho, S., Shon, H. K., Hong, S., Lee, S., & Vigneswaran, S. (2011). A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating the performance of fertilizer draw solutions. Journal of Membrane Science, 375(1-2), 172-181. doi:10.1016/j.memsci.2011.03.038
Puguan, J. M. C., Kim, H.-S., Lee, K.-J., & Kim, H. (2014). Low internal concentration polarization in forward osmosis membranes with hydrophilic crosslinked PVA nanofibers as porous support layer. Desalination, 336, 24-31. doi:10.1016/j.desal.2013.12.031
Qingchun Ge, J. S., Tai-Shung Chung,Gary Amy. (2011). Hydrophilic superparamagnetic nanoparticles synthesis characterization and performance in forward osmosis processes.
Sahebi, S., Shon, H. K., Phuntsho, S., & Ramavandi, B. (2018). Fabricating robust thin film composite membranes reinforced on woven mesh backing fabric support for pressure assisted and forward osmosis: A dataset. Data Brief, 21, 364-370. doi:10.1016/j.dib.2018.10.007
Sairam, M., Sereewatthanawut, E., Li, K., Bismarck, A., & Livingston, A. G. (2011). Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis—Desalination using MgSO4 draw solution. Desalination, 273(2-3), 299-307. doi:10.1016/j.desal.2011.01.050
Smiglak, M., Metlen, R., & Rogers, R. D. (2007). The Second Evolution of Ionic Liquids: From Solvents and Separations to Advanced Materials. Center for Green Manufacturing and Department of Chemistry.
Stone, M. L., Wilson, A. D., Harrup, M. K., & Stewart, F. F. (2013). An initial study of hexavalent phosphazene salts as draw solutes in forward osmosis. Desalination, 312, 130-136. doi:10.1016/j.desal.2012.09.030
Su, J., Chung, T.-S., Helmer, B. J., & de Wit, J. S. (2012). Enhanced double-skinned FO membranes with inner dense layer for wastewater treatment and macromolecule recycle using Sucrose as draw solute. Journal of Membrane Science, 396, 92-100. doi:10.1016/j.memsci.2012.01.001
Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science, 96(2), 557-569. doi:10.1002/app.21481
Teo, W.-E., Gopal, R., Ramaseshan, R., Fujihara, K., & Ramakrishna, S. (2007). A dynamic liquid support system for continuous electrospun yarn fabrication. Polymer, 48(12), 3400-3405. doi:10.1016/j.polymer.2007.04.044
Thiruvenkatachari, R., Francis, M., Cunnington, M., & Su, S. (2016). Application of integrated forward and reverse osmosis for coal mine wastewater desalination. Separation and Purification Technology, 163, 181-188. doi:10.1016/j.seppur.2016.02.034
Tian, M., Qiu, C., Liao, Y., Chou, S., & Wang, R. (2013). Preparation of polyamide thin film composite forward osmosis membranes using electrospun polyvinylidene fluoride (PVDF) nanofibers as substrates. Separation and Purification Technology, 118, 727-736. doi:10.1016/j.seppur.2013.08.021
UNSD. (2015). Goal 6: Ensure availability and sustainable management of water and sanitation for all. United Nations.
Wang, Y., Ou, R., Wang, H., & Xu, T. (2015). Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane. Journal of Membrane Science, 475, 281-289. doi:10.1016/j.memsci.2014.10.028
Yang, Y., Xu, Y., Liu, Z., Huang, H., Fan, X., Wang, Y., Song, Y., & Song, C. (2020). Preparation and characterization of high-performance electrospun forward osmosis membrane by introducing a carbon nanotube interlayer. Journal of Membrane Science, 616. doi:10.1016/j.memsci.2020.118563
Yen, S. K., Mehnas Haja N, F., Su, M., Wang, K. Y., & Chung, T.-S. (2010). Study of draw solutes using 2-methylimidazole-based compounds in forward osmosis. Journal of Membrane Science, 364(1-2), 242-252. doi:10.1016/j.memsci.2010.08.021
Yong, J. S., Phillip, W. A., & Elimelech, M. (2012). Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes. Journal of Membrane Science, 392-393, 9-17. doi:10.1016/j.memsci.2011.11.020
Z.F. Cui, Y. J., R.W. Field,. (2010). Fundamentals of Pressure-Driven Membrane Separation Processes. Membrane Technology. doi:10.1016/B978-1-85617-632-3.00001-X.
Zeweldi, H. G., Bendoy, A. P., Park, M. J., Shon, H. K., Johnson, E. M., Kim, H.-S., Kim, H., Chung, W.-J., & Nisola, G. M. (2021). Forward osmosis with direct contact membrane distillation using tetrabutylphosphonium p-toluenesulfonate as an effective and safe thermo-recyclable osmotic agent for seawater desalination. Chemosphere, 263. doi:10.1016/j.chemosphere.2020.128070
Zeweldi, H. G., Bendoy, A. P., Park, M. J., Shon, H. K., Kim, H.-S., Johnson, E. M., Kim, H., Lee, S.-P., Chung, W.-J., & Nisola, G. M. (2020). Tetrabutylammonium 2,4,6-trimethylbenzenesulfonate as an effective and regenerable thermo-responsive ionic liquid drawing agent in forward osmosis for seawater desalination. Desalination, 495. doi:10.1016/j.desal.2020.114635
Zeweldi, H. G., Limjuco, L. A., Bendoy, A. P., Kim, H.-S., Park, M. J., Shon, H. K., Johnson, E. M., Lee, H., Chung, W.-J., & Nisola, G. M. (2018). The potential of monocationic imidazolium-, phosphonium-, and ammonium-based hydrophilic ionic liquids as draw solutes for forward osmosis. Desalination, 444, 94-106. doi:10.1016/j.desal.2018.07.017
Zhou, Z., Lee, J. Y., & Chung, T.-S. (2014). Thin film composite forward-osmosis membranes with enhanced internal osmotic pressure for internal concentration polarization reduction. Chemical Engineering Journal, 249, 236-245. doi:10.1016/j.cej.2014.03.049
王大銘. (2004). 薄膜分離技術於廢水處理之應用概述.
王諭平. (2018). 探討溫敏型離子液體相分離機制與作為正滲透提取液之應用.
伍柏韋. (2011). 晶圓研磨廢水處理之最佳化.
李晨瑜, 黃欣栩, 王鬱萱, & 黃育德. (2018). 我國高科技產業水回收再利用技術概述-以竹科為例.
徐又一. (2005). 高分子膜材料: 化學工業出版社.
崔紹波, 盧忠遠, 劉德春, 賀鳳偉, & 宋麗賢. (2006). 界面聚合技術在材料製備中的應用. [Applications of Interfacial Polymerization in Preparation of Materials]. 材料導報, 20(7), 91-94.
許中俊. (2016). 正向滲透. 科學Online.
曾世豐. (2014). IC封測廠切割研磨廢水回收可行性之探討 以UF膜處理技術為例.
湯蓓蓓, 徐., 武培怡. (2007). 界面聚合法製備複合膜.
黃宣諭. (2009). 以電氣紡絲法製備具方向性纖維之管狀結構.

電子全文 電子全文(網際網路公開日期:20260801)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊