跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 21:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林宗祺
研究生(外文):LIN, ZONG-QI
論文名稱:NaNbO3和AgNbO3添加對Bi0.5Na0.5TiO3-BaTiO3弛豫鐵電陶瓷介電特性和能量儲存性能之影響
論文名稱(外文):Effects of NaNbO3 and AgNbO3 additions on dielectric and energy storage performances of Bi0.5Na0.5TiO3-BaTiO3 relaxor ferroelectric ceramics
指導教授:陳炳宜陳正劭
指導教授(外文):CHEN, PIN-YICHEN, CHENG-SAO
口試委員:陳炳宜杜繼舜陳正劭馮奎智
口試委員(外文):CHEN, PIN-YITU, CHI-SHUNCHEN, CHENG-SAOFENG, KUEI-CHIH
口試日期:2020-07-16
學位類別:碩士
校院名稱:明志科技大學
系所名稱:機械工程系機械與機電工程碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:87
中文關鍵詞:無鉛壓電陶瓷材料弛豫鐵電陶瓷反鐵電材料能量儲存密度電容溫度係數變溫介電常數
外文關鍵詞:Lead-free piezoelectric materialsRelaxor ferroelectric ceramicsAntiferroelectric materialsEnergy storage densityCapacitance temperature coefficientDielectric constant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用固態反應法分別合成(1-x)(0.925Bi0.5Na0.5TiO3-0.075BaTiO3)-x(NaNbO3)與(1-x)(0.925Bi0.5Na0.5TiO3-0.075BaTiO3)-x(AgNbO3)] (縮寫為(1-x)BNBT-xNN與(1-x)BNBT-xAN)製備高能量儲存密度電容元件。探討反鐵電材料NaNbO3、AgNbO3對Bi0.5Na0.5TiO3-BaTiO3弛豫鐵電陶瓷之介電和能量儲存性能的影響。實驗中除鑑定成份-結構關係,並進行電性分析,其中包括電滯曲線(P-E loops)、變溫介電常數(D-T)曲線,計算(1-x)BNBT-xNN與(1-x)BNBT-xAN試片的能量儲存密度(Wrec)、電容溫度係數(TCC)曲線,並探討各溫度區間材料介電的穩定性。實驗結果顯示X光繞射分析(XRD)與掃描式電子顯微鏡(SEM)證實BNBT添加適量NN(10 mol%)、或AN(10 mol%)之試片可燒結緻密且無二次相。同時有效提升電阻值,並使最大極化量(Pmax)、剩餘極化量(Pr)、矯頑電場(Ec)下降,達到改善儲存能量密度之效果。在170 kV/cm電場下,90BNBT-10NN其室溫能量儲存密度為 1.3 J/cm3;另90BNBT-10AN在130kV/cm電場下,其室溫能量儲存密度可達2.2 J/cm3。變溫D-T曲線顯示:微量添加10 mol% NN或10 mol% AN,不但可使BNBT材料介電損失維持在0.1%以下,而且TCC曲線可以降低BNBT材料電容溫度係數,使趨於穩定並分別符合X7S和X7R規範。
In this study, the solid-state reaction method was used to respectively synthesize lead-free (1-x)(0.925Bi0.5Na0.5TiO3-0.075BaTiO3)-xNaNbO3 and (1-x)(0.925Bi0.5Na0.5TiO3-0.075BaTiO3) -xAgNbO3 (abbreviated as (1-x)BNBT-xNN and (1-x)BNBT-xAN) ceramic capacitor materials on high-energy storage density development. To explore the influence of antiferroelectric materials NaNbO3 and AgNbO3 on the dielectric and energy storage properties of Bi0.5Na0.5TiO3-BaTiO3 relaxor ferroelectric ceramics, the composition-structure relationship, electrical properties including hysteresis loops (P-E loops), dielectric constant of temperature (D-T) curves, and energy storage density (Wrec), as well as temperature coefficient of capacitance (TCC) in (1-x)BNBT-xNN and (1-x)BNBT-xAN samples, respectively. X-ray diffraction (XRD) analysis and scanning electron microscope (SEM) observation confirm that BNBT materials can be sintered densely and without secondary phase by adding a proper amount (10 mol%) of NN and AN additives. NN and AN additives can effectively increase the resistance, and reduce the maximum polarization (Pmax), residual polarization (Pr) and coercive electric field (Ec) to improve the energy storage density (Wrec) of BNBT relaxor ferroelectric material. Under an electric field 170 kV/cm, the Wrec of 90BNBT-10NN is1.3J/cm3 at room temperature; whereas the Wrec of 90BNBT-10AN can significantly reach2.2J/cm3 under an electric field 130 kV/cm. The D-T curves show that 10 mol% NN and AN additions can maintain the lower dielectric loss of the BNBT material below 0.1%. In addition, 10 mol% NN and AN additions can reduce the TCC of BNBT materials and meet the X7S and X7R specifications, respectively.
目錄
指導教授推薦書 i
口試委員審定書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vii
圖目錄 x
表目錄 xiii
第一章 緒論 1
1.1 研究背景 1
第二章 文獻回顧 3
2.1 鐵電、反鐵電、介電、電容溫度係數概述 3
2.1.1 晶體及空間群 3
2.1.2 鐵電原理概述 4
2.1.3 反鐵電原理概述 6
2.1.4 介電原理 9
2.1.5 電容器的溫度係數概述 9
2.2 鈣鈦礦結構 10
2.3 具MPB組成之BNT-BT陶瓷 12
2.4 晶體結構 15
2.4.1 鈦酸鉍鈉(Bi0.5Na0.5)TiO3晶體結構 15
2.4.2 鈦酸鋇BaTiO3晶體結構 16
2.4.3 鈮酸鈉(NaNbO3)晶體結構 16
2.4.4 鈮酸銀(AgNbO3)晶體結構 18
2.5固態反應法 19
2.6布拉格定律 20
2.7居禮-外斯定律 22
第三章 實驗方法及步驟 23
3.1實驗藥品及實驗儀器 23
3.1.1實驗藥品 23
3.1.2 實驗儀器 24
3.2 樣品製備 26
3.2.1 BNBT陶瓷 26
3.2.2 NaNbO3陶瓷 27
3.2.3 AgNbO3陶瓷 28
3.2.4 (1-x)BNBT-xNN陶瓷 29
3.2.5 (1-x)BNBT-xAN陶瓷 30
3.3 X-Ray晶體結構量測 30
3.4 微觀結構之觀察 31
3.4.1 掃描式電子顯微鏡 31
3.4.2 穿透式顯微鏡 33
3.4.3 拉曼光譜 34
3.4.4 掃描探針顯微鏡 35
3.5 電性量測探討 36
3.5.1 極化值與電場(P-E)曲線量測 36
3.5.2 介電常數對溫度(D-T)曲線量測 37
3.5.3 電容溫度係數(TCC)溫度特性量測 38
第四章 結果與討論 40
4.1 BNBT陶瓷材料 40
4.1.1 BNBT結構結晶分析 40
4.1.2 BNBT微觀結構分析 40
4.1.3 BNBT電滯曲線分析 41
4.1.4 BNBT變溫介電常數分析 42
4.1.5 BNBT Raman分析 43
4.2 NaNbO3 (鈮酸鈉) 44
4.2.1 NaNbO3結構結晶分析 44
4.2.2 NaNbO3微觀結構分析 45
4.2.3 NaNbO3電滯曲線分析 46
4.2.4 NaNbO3變溫介電常數分析 47
4.2.5 NaNbO3 TEM分析 47
4.2.6 NaNbO3 Raman分析 48
4.3 AgNbO3(鈮酸銀) 49
4.3.1 AgNbO3結構結晶分析 49
4.3.2 AgNbO3微觀結構分析 50
4.3.3 AgNbO3電滯曲線分析 51
4.3.4 AgNbO3變溫介電常數分析 52
4.3.5 AgNbO3 TEM分析 52
4.3.6 AgNbO3 Raman分析 53
4.4 BNBT摻雜NN系統之結構分析與電性量測 54
4.4.1 (1-x)BNBT-xNN結晶結構分析 54
4.4.2 (1-x)BNBT-xNN微觀結構分析 55
4.4.3 (1-x)BNBT-xNN電滯曲線分析 56
4.4.4 (1-x)BNBT-xNN變溫介電量測分析 60
4.4.5 (1-x)BNBT-xNN電容溫度係數分析 63
4.4.6 (1-x)BNBT-xNN之TEM分析 64
4.4.7 (1-x)BNBT-xNN之拉曼分析 65
4.4.8 (1-x)BNBT-xNN之PFM分析 66
4.5 BNBT摻雜AgNbO3系統之結構分析與電性量測 69
4.5.1 (1-x)BNBT-xAN結晶結構分析 69
4.5.2 (1-x)BNBT-xAN微觀結構分析 70
4.5.3 (1-x)BNBT-xAN電滯曲線分析 70
4.5.4 (1-x)BNBT-xAN變溫介電量測分析 74
4.5.5 (1-x)BNBT-xAN電容溫度係數分析 76
4.5.6 (1-x)BNBT-xAN之TEM分析 77
4.5.7 (1-x)BNBT-xAN之Raman分析 79
4.5.8 (1-x)BNBT-xAN之PFM分析 80
第五章 結論 82
參考文獻 83

圖目錄
圖2 1 典型鐵電材料P-E電滯曲線圖 5
圖2 2 典型反鐵電材料P-E電滯曲線圖 5
圖2 3 反鐵電四方晶系轉至鐵電正交晶系示意圖 8
圖2 4 反鐵電材料之極化量對電場關係圖及參數 8
圖2 5 ABO3鈣鈦礦結構示意圖 11
圖2 6 BNBT陶瓷系統隨不同Ba2+含量的增加之相變溫度變化 13
圖2 7 利用介電量測分析、TEM影像與繞射分析所描繪出的相圖 14
圖2 8 (Bi0.5Na0.5)TiO3陶瓷在不同溫度與Ba2+含量下之相圖 14
圖2 9 BNT晶體溫度變化 15
圖2 10 鈮酸鈉(NaNbO3)隨著晶體結構轉變過程 18
圖2 11 XRD布拉格繞射示意圖 21
圖3 1 (0.925Bi0.5Na0.5TiO3-0.075BaTiO3)製作流程圖 26
圖3 2 NaNbO3製作流程圖 27
圖3 3 AgNbO3製作流程圖 28
圖3 4 (1-x)BNBT-xNN 29
圖3 5 (1-x)BNT-BT-xAN 30
圖3 6 掃描式電子顯微鏡 32
圖3 7 穿透式電子顯微鏡示意圖 34
圖3 8 HORIBA LabRam HR Evolution顯微拉曼光譜儀 35
圖3 9 Bruker MultiMode 8-HR掃描探針顯微鏡 36
圖3 10 儲存電路量測系統架設示意圖 37
圖3 11 樣品量測治具示意圖 37
圖3 12 介電常數對溫度(D-T) 38
圖4 1BNBT XRD(20°~80°繞射圖) 40
圖4 2 BNBT之SEM表面微觀構圖 41
圖4 3 BNBT在不同溫度區間下的電滯曲線 42
圖4 4 BNBT之變溫介電常數以及介電損失 43
圖4 5 BNBT拉曼光譜散射 44
圖4 6 NaNbO3(20°~80°繞射圖) 45
圖4 7 NaNbO3之SEM微觀構圖 46
圖4 8 NaNbO3在不同溫度下之電滯曲線 46
圖4 9 NaNbO3之變溫介電常數以及介電損失 47
圖4 10 NaNbO3{001}、{010}、{110}晶軸之軸區TEM影像與繞射圖 48
圖4 11 NaNbO3拉曼光譜散射 49
圖4 12 AgNbO3 XRD(20°~80°繞射圖) 50
圖4 13 AgNbO3之SEM微觀構圖 50
圖4 14 AgNbO3在不同電場下之電滯曲線 51
圖4 15 AgNbO3之變溫介電常數以及介電損失 52
圖4 16 AgNbO3 {110}晶軸之軸區TEM影像及奈米極化區與繞射圖 53
圖4 17 AgNbO3拉曼散射光譜 54
圖4 18不同比例NN摻雜(1-x)BNBT-xNN系統陶瓷之X-ray 繞射圖 55
圖4 19(1-x)BNBT-xNN系統陶瓷之SEM微觀結構圖 56
圖4 20 在相同電場情況之下(1-x)BNBT-xNaNbO3電滯曲線 57
圖4 21 90BNBT-10NN電滯曲線 58
圖4 22 80BNBT-20NN電滯曲線 59
圖4 23 70BNBT-30NN電滯曲線 59
圖4 24 30BNBT-70NN電滯曲線 60
圖4 25 90BNBT-10NN介電常數與損失曲線 61
圖4 26 80BNBT-20NN介電常數與損失曲線 61
圖4 27 70BNBT-30NN介電常數與損失曲線 62
圖4 28 30BNBT-70NN介電常數與損失曲線 62
圖4 29 (1-x)BNBT-xNN系統陶瓷之電容溫度係數曲線 63
圖4 30 90BNBT-10NN陶瓷{001}、{011}晶軸之擇區TEM影像與繞射圖 65
圖4 31 90BNBT-10NN拉曼散射光譜 66
圖4 32 90BNBT-10NN在特定的晶粒施加-12V~12V之電壓 67
圖4 33上圖A~E點的P-E曲線量測結果 68
圖4 34不同比例AN摻雜(1-x)BNBT-xAN系統陶瓷之X-ray繞射圖 69
圖4 35 (1-x) BNBT-xAN系統陶瓷之SEM微觀結構圖 70
圖4 36 在相同電場情況之下(1-x)BNBT-xAgNbO3電滯曲線 71
圖4 37 90BNBT-10AN電滯曲線 72
圖4 38 80BNBT-20AN電滯曲線 72
圖4 39 70BNBT-30AN電滯曲線 73
圖4 40 30BNBT-70AN電滯曲線 73
圖4 41 90BNBT-10AN介電常數與損失曲線 74
圖4 42 80BNBT-20AN之介電常數與損失曲線 75
圖4 43 70BNBT-30AN之介電常數與損失曲線 75
圖4 44 30BNBT-70AN之介電常數與損失曲線 76
圖4 45 (1-x)BNBT-xAN系統陶瓷之電容溫度係數曲線 77
圖4 46 90BNBT-10NN陶瓷{001}、{011}、{111}晶軸之擇區TEM影像與繞射圖 78
圖4 47 90BNBT-10AN拉曼散射光譜 79
圖4 48 90BNBT-10AN在特定的晶粒施加-12V~12V之電壓 80
圖4 49上圖A~E點的P-E曲線量測結果 81


表目錄
表3 1 實驗使用之藥品名稱、純度(濃度)及廠商 23
表3 2 實驗使用之儀器名稱、來源及用途 24
表3 3 T.C.C.電容溫度係數規格表 39
表4 1 (1-x)BNBT-xNN系統陶瓷之電容變化率 64
表4 2 (1-x)BNBT-xAN系統陶瓷之電容變化率計算 77


參考文獻
1. Wang, C., et al., Bi0.48(Na0.84K0.16)0.48Sr0.04(Ti1-xTax)O3 lead-free ceramics with enhanced electric field-induced strain. Journal of Alloys and Compounds, 2019. 803: p. 1082-1089.
2. 徐翊萍, 摻雜鋯、鍶、錳之鈦酸鉍鈉鋇壓電材料單晶生長 及其電性與微觀結構之研究, in 機械工程系機械與機電工程碩士班. 2017, 明志科技大學: 新北市. p. 90.
3. Zhou, Y.N., et al., Morphotropic phase boundary (MPB) and enhanced multiferroic characteristics of Bi1-x(Ba0.75Ca0.25)xFe1-xTixO3 ceramics (0.25≤x≤0.35). Journal of Alloys and Compounds, 2020. 819: p. 153031.
4. Chaterjee, S., et al., Electromechanical Properties and Electric Field Induced Strain of BNT-BT Piezoceramic Material at the MPB Region. Materials Today: Proceedings, 2018. 5(11, Part 3): p. 24880-24886.
5. Jia, W., et al., High-temperature dielectrics based on (1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xNaNbO3 system. Journal of Alloys and Compounds, 2017. 724: p. 306-315.
6. Burns, G. and A.M. Glazer, Chapter 3 - Bravais Lattices, in Space Groups for Solid State Scientists (Third Edition), G. Burns and A.M. Glazer, Editors. 2013, Academic Press: Oxford. p. 45-64.
7. Yu, P., et al., The bending and vibration responses of functionally graded piezoelectric nanobeams with dynamic flexoelectric effect. Results in Physics, 2021. 28: p. 104624.
8. Khan, H.A.A., et al., First principle study of band gap nature, spontaneous polarization, hyperfine field and electric field gradient of desirable multiferroic bismuth ferrite (BiFeO3). Journal of Physics and Chemistry of Solids, 2021. 148: p. 109737.
9. Zhang, Y., et al., Evaluation of energy storage performance of ferroelectric materials by equivalent circuit model. Ceramics International, 2021. 47(14): p. 20512-20518.
10. Luo, X., et al., Electron transport enhancement of perovskite solar cell due to spontaneous polarization of Li+-doped BaTiO3. Solid State Sciences, 2020. 108: p. 106387.
11. Woldman, A.Y. and C.M. Landis, Thermo-electro-mechanical phase-field modeling of paraelectric to ferroelectric transitions. International Journal of Solids and Structures, 2019. 178-179: p. 19-35.
12. Guo, J. and T. Yang, Giant energy storage density in Ba, La co-doped PbHfO3-based antiferroelectric ceramics by a rolling process. Journal of Alloys and Compounds, 2021. 888: p. 161539.
13 Xie, Y., et al., Ultra-high energy storage density and enhanced dielectric properties in BNT-BT based thin film. Ceramics International, 2021. 47(16): p. 23259-23266.
14. 李奕璁, 摻雜鍶、錳對(1-x)(Bi0.5Na0.5)TiO3-(x)BaTiO3壓電陶瓷微觀與電性之影響, in 機械工程系機械與機電工程碩士班. 2017, 明志科技大學: 新北市. p. 86.
15. 吳夏語, 鋅鈮鋯鈦酸鉛材料系統應用於超音波元件之電性和疲勞研究, in 材料科技研究所. 2006, 國立臺灣科技大學: 台北市. p. 118.
16. Behara, S., T. Poonawala, and T. Thomas, Crystal structure classification in ABO3 perovskites via machine learning. Computational Materials Science, 2021. 188: p. 110191.
17. Li, L., et al., Ferroelectric P4mm to relaxor P4bm transition and temperature-insensitive large strains in Bi(Mg0.5Ti0.5)O3-modified tetragonal 0.875Bi0.5Na0.5TiO3-0.125BaTiO3 lead-free ferroelectric ceramics. Journal of the European Ceramic Society, 2018. 38(4): p. 1381-1388.
18. Wu, J., et al., Simultaneously enhanced piezoelectricity and Curie temperature in BiFeO3-based high temperature piezoelectrics. Journal of the European Ceramic Society, 2021.
19. Ahn, Y. and J.Y. Son, Domain switching kinetics in ferroelectric PbTiO3 nanostructures. Scripta Materialia, 2021. 205: p. 114208.
20. Craciun, F., Dielectric, Ferroelectric, Antiferroelectric, Relaxor, Piezoelectric Ceramics: Definitions and Main Applications, in Encyclopedia of Materials: Technical Ceramics and Glasses, M. Pomeroy, Editor. 2021, Elsevier: Oxford. p. 281-294.
21. Han, K., et al., Simultaneously optimizing both energy storage density and efficiency in a novel lead-free relaxor antiferroelectrics. Journal of the European Ceramic Society, 2020. 40(10): p. 3562-3568.
22. Huang, J., et al., Expanded linear polarization response and excellent energy-storage properties in (Bi0.5Na0.5)TiO3-KNbO3 relaxor antiferroelectrics with medium permittivity. Chemical Engineering Journal, 2020. 398: p. 125639.
23. Deng, A. and J. Wu, Optimized strain properties with small hysteresis in BNT-based ceramics with ergodic relaxor state. Journal of the European Ceramic Society, 2021. 41(10): p. 5147-5154.
24. Jin, S.H., et al., Sonochemically activated solid-state synthesis of BaTiO3 powders. Journal of the European Ceramic Society, 2021. 41(9): p. 4826-4834.
25. Qi, H., et al., Excellent energy-storage properties of NaNbO3-based lead-free antiferroelectric orthorhombic P-phase (Pbma) ceramics with repeatable double polarization-field loops. Journal of the European Ceramic Society, 2019. 39(13): p. 3703-3709.
26. Chen, M., et al., Realizing room temperature double hysteresis loops in antiferroelectric NaNbO3 based ceramics. Ceramics International, 2021. 47(15): p. 21303-21309.
27. Shangguan, D., et al., Enhanced energy-storage performances of (1-x)PbZrO3-xPbSnO3 antiferroelectric thin films under low electric fields. Journal of Alloys and Compounds, 2021. 870: p. 159440.
28. Zhang, Y., et al., AgNbO3 antiferroelectric film with high energy storage performance. Journal of Materiomics, 2021.
29. Ding, J., et al., Origin of ferrimagnetism and the effect of octahedral tilting in double-perovskite compound Sr2CoRuO6. Journal of Magnetism and Magnetic Materials, 2021. 535: p. 168035.
30. 李庭臺, 以不同粒徑之碳酸鋇和二氧化鈦粉末經由固態反應法製備鈦酸鋇與其相生成之研究, in 資源工程學系碩博士班. 2012, 國立成功大學: 台南市. p. 82.
31 Hsu, S.-Y. and C.-W. Wu, Effects of particle shape in mass-diffusion-controlled dissolution process. International Communications in Heat and Mass Transfer, 2021. 125: p. 105321.
32. 吳昱頡,電場誘發織構(Bi0.4625Na0.4625Ba0.075)(Ti0.998Mn0.002)O3 弛豫鐵電陶瓷之應變與微觀結構, in 機械工程系機械與機電工程碩士班. 2018, 明志科技大學: 新北市. p. 76.
33. Thoemmes, A., et al., Microstructure and lattice parameters of suction-cast Ti–Nb alloys in a wide range of Nb concentrations. Materials Science and Engineering: A, 2021. 818: p. 141378.
34. Hallam, K.R., et al., Measurements by x-ray diffraction of the temperature dependence of lattice parameter and crystallite size for isostatically-pressed graphite. Carbon Trends, 2021. 4: p. 100071.
35. Jonker, G.H., On the dielectric curie-weiss law and diffuse phase transition in ferroelectrics. Materials Research Bulletin, 1983. 18(3): p. 301-308.
36. Pang, S., et al., Edge determination improvement of scanning electron microscope images by inpainting and anisotropic diffusion for measurement and analysis of microstructures. Measurement, 2021. 176: p. 109217.
37. Řiháček, T., et al., Beam shaping and probe characterization in the scanning electron microscope. Ultramicroscopy, 2021. 225: p. 113268.
38. 謝政霖, 高應變及高儲能密度之(001)切面Zr、Mn共同摻雜(Bi0.5Na0.5)TiO3-BaTiO3單晶奈米極化結構與壓電特性之研究, in 機械工程系機械與機電工程碩士班. 2019, 明志科技大學: 新北市. p. 96.
39. Lee, B.-W., et al., Tailoring of temperature coefficient of capacitance (TCC) in nanocomposite capacitors. Scripta Materialia, 2006. 54(7): p. 1231-1234.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊