跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/22 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖應慈
研究生(外文):LIAO,YING-TZU
論文名稱:利用昆蟲降解發泡聚苯乙烯並以其為原料生產生質柴油
論文名稱(外文):Use insects to degrade expanded polystyrene and use it as a raw material for biodiesel production
指導教授:蘇家弘蘇家弘引用關係
指導教授(外文):SU,CHIA-HUNG
口試委員:傅俊中吳紹榮蘇家弘
口試委員(外文):FU,CHUN-CHONGWU,SHAO-JUNGSU,CHIA-HUNG
口試日期:2021-07-07
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化學工程系生化工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:59
中文關鍵詞:大麥蟲生質柴油降解保麗龍
外文關鍵詞:MealwormBiodieselDegradationStyrofoam
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
保麗龍是一種發泡形式的聚苯乙烯結構,它是一種耐用且成本低廉的塑膠,保麗龍過度的使用使得我們環境中保麗龍廢物大量增加,目前尚無兼顧環境永續的處理程序,一般常用燃燒法來處理保麗龍廢棄物,然而大量燃燒保麗龍會產生戴奧辛,危害人類的身體健康,所以我們必須想辦法解決這問題,文獻提出大麥蟲能有效降解保麗龍,本實驗將探討飼養大麥蟲來降解保麗龍的最佳條件,並以其消化有機物質而累積體內的油脂,作為生質柴油的原料,生質柴油是最受矚目取代石化柴油的新興能源,生質柴油一般以糧食作為大宗原料,但近幾年來人類人口快速的增長,糧食作物無法再被當作生質柴油的原料所使用,所以我們尋找到了新的替代原料:昆蟲油脂,雖然昆蟲油脂目前還在未成熟階段,但某些特定的昆蟲能夠消耗各種有機廢物來積累脂肪,這種高脂肪昆蟲具有作為生質柴油原料的潛力,而我們在大麥蟲身上看到了可以降解保麗龍跟做為生質柴油原料的可能性,來解決能源短缺跟保麗龍所帶來的環境問題,在實驗中我們先試驗不同食物對於大麥蟲的影響,我們可以從實驗中發現雖然大麥蟲可以降解保麗龍,但卻無法從中得到所需要的能量,然而我們可以經過尋找大麥蟲的最佳飼養條件來增加油脂的含量,雖然大麥蟲真的有取食保麗龍,但我們無法證明它體內是否含有降解的保麗龍成分存在,所以我們將吃過保麗龍的大麥蟲糞便拿去做分析,尋找大麥蟲糞便中的成分是否有我們所需要的物質存在,最終我們在吃過保麗龍的大麥蟲糞便當中發現了有保麗龍存在的塑膠成分。

Styrofoam is a foamed polystyrene structure. It is a durable and low-cost plastic. Excessive use of Styrofoam has caused a large increase in Styrofoam waste in our environment. At present, it is not possible to take environmentally sustainable treatment into consideration. In general, the burning method is commonly used to dispose of Styrofoam waste. However, burning a large amount of Styrofoam will produce dioxin and endanger human health. Therefore, we must find a way to solve this problem. The literature suggests that malware can effectively degrade Styrofoam. This experiment will explore the best conditions for raising mealworm to degrade Styrofoam, and use it to digest organic substances to accumulate fats in the body. As a raw material for biodiesel, biodiesel is the most eye-catching emerging energy sources to replace petrochemical diesel. Biodiesel generally uses grain as a bulk raw material, but the human population has grown rapidly in recent years, and food crops can no longer be used as raw materials for biodiesel, so we have found a new alternative raw material: insect oil, although insect oil it is still in the immature stage, but certain specific insects can consume various organic wastes to accumulate fat. This high-fat insect has the potential as a raw material for biodiesel, and we have seen the degradable Styrofoam and as a raw material for biodiesel, it is possible to solve the environmental problems caused by energy shortages and Styrofoam. In the experiment, we first test the influence of different foods on mealworm. We can find from the experiment that although mealworm can degrade Styrofoam, but it can’t get the energy it needs. However, we can increase the oil content by looking for the best breeding conditions for mealworm. Although barley insects do feed on Styrofoam, we cannot prove whether it contains degraded Styrofoam ingredients, so we will mealworm feces that have eaten Styrofoam are used for analysis to find out whether the ingredients in mealworm feces have the substances we need, Finally, we found the presence of Styrofoam in the feces of mealworm that had eaten Styrofoam.
指導教授推薦書 i
口試委員會審定書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 x
第一章緒論 1
1.1前言 1
第二章文獻回顧 3
2.1.1保麗龍之介紹 3
2.1.2生質能源之介紹 5
2.1.3生質柴油之介紹 6
2.1.4生質柴油之效益優勢 7
2.1.5生質柴油之種類 7
2.1.6生質柴油之原料 10
2.2生質柴油之製成 12
2.2.1酸催化 13
2.2.2鹼催化 13
2.2.3兩階段催化法 14
2.2.4酵素催化法 15
2.2.5直接式轉酯化法 16
第三章 實驗方法與材料 17
3.1實驗藥品與設備 17
3.1.1實驗藥品 17
3.1.2實驗設備 18
3.2實驗儀器之操作介紹 19
3.2.1熱重分析 19
3.2.2氣相層析儀之介紹 19
3.2.3氣相層析儀之操作 20
3.2.4氣相層析儀圖譜分析 21
3.2.5標準品之檢量線製作 21
3.3保麗龍的生物降解 22
3.4昆蟲製備生質柴油 23
3.4.1昆蟲前處理 23
3.4.2昆蟲油量測定 24
3.5直接轉酯化反應 25
3.6實驗設計的意義 26
3.6.1決定係數 26
3.6.2 Box-Behnken Design 26
3.6.3統計分析 28
第四章 結果與討論 29
4.1大麥蟲對於不同飼養方式的探討 29
4.1.1不同天數對於保麗龍降解率的影響 29
4.1.2不同飼養方式對於大麥蟲重量的影響 30
4.1.3在相同環境不同飼養方式對大麥蟲存活率的比較 31
4.1.4不同飼養方式對於大麥蟲脂肪的比較 32
4.1.5昆蟲粗脂肪量 33
4.2實驗因子與階層 34
4.3不同溫度與濕度對於大麥蟲油脂、存活率與大麥蟲取食保麗龍的個重之影響 35
4.4飼養結果 36
4.5迴歸分析 37
4.6變異數分析 37
4.7飼養之最適化溫度和濕度條件 38
4.8生質柴油鑑定 39
4.8.1標準品的滯留時間 39
4.8.2標準品與滯留時間與生質柴油滯留時間對照 44
4.8.3生質柴油碳鏈成分比 45
4.9甲醇添加對於實驗之影響 46
4.10 DBU添加量對於實驗之影響 47
4.11反應時間對於實驗之影響 48
4.12反應溫度對於時間之影響 49
4.13在最佳條件所得到的生質柴油 50
4.14檢測大麥蟲是否真正取食保麗龍 51
第五章 結論 54
第六章 參考文獻 55

圖目錄
圖1轉酯化反應之過程 6
圖2-1 三酸甘油酯與醇轉酯化反應生成脂肪酸甲酯與甘油之過程 13
圖2-2鹼催化反應 14
圖 3-1標準品的檢量線 21
圖3-2麵包蟲對保麗龍的降解 22
圖3-3大麥蟲對保麗龍的降解 23
圖3-4昆蟲粉處理 24
圖4-1二次多項式迴歸方程式 38
圖4-2大麥蟲甲醇添加之影響 46
圖4-3大麥蟲DBU添加之影響 47
圖4-4大麥蟲反應時間之影響 48
圖4-5大麥蟲反應溫度之影響 49
圖4-6保麗龍分析圖 51
圖4-7吃過保麗龍的大麥蟲糞便分析圖 51
圖4-8沒吃過保麗龍的大麥蟲糞便分析圖 52



表目錄
表 1種子植物之生長週期及種子之油收量 9
表2昆蟲的粗蛋白與粗脂肪 12
表3-1實驗藥品 17
表3-2實驗設備 18
表3-3以Box-Behnken design來進行大麥蟲飼養之實驗 27
表4-1不同天數對於保麗龍降解的影響 29
表4-2不同飼養方式對於大麥蟲重量的影響 30
表4-3在相同環境不同飼養方式對於大麥蟲存活率的比較 31
表4-4不同飼養方式對於大麥蟲脂肪的比較 32
表4-5 Box-Behnken design之分析變數及階層 34
表4-6溫度與濕度對於大麥蟲油脂、存活率與大麥蟲取食保麗龍的個重之影響 35
表4-7 Box-Behnken design之實驗結果 36
表4-8大麥蟲取食保麗龍的個重 37
表4-9大麥蟲油脂 37
表4-10飼養之最適化溫度與濕度條件 38
表4-11 GLC-10標準品碳鏈 39
表4-12 GLC-30標準品碳鏈 40
表4-13 GLC-37標準品碳鏈 41
表4-14 GLC-90標準品碳鏈 42
表4-15標準品碳鏈比對滯留時間位置 43
表4-16標準品碳鏈與生質柴油滯留時間對照表 44
表4-17大麥蟲的生質柴油成分比 45
表4-18在最佳條件下所得到的生質柴油 50

[1]M. Chandra, C. Kohn, J. Pawlitz, and G. J. M. Powell, Estados Unidos, "Real cost of styrofoam," 2016.
[2]A. P. Minton and R. L. J. J. o. B. r. Rose, "The effects of environmental concern on environmentally friendly consumer behavior: An exploratory study," vol. 40, no. 1, pp. 37-48, 1997.
[3]苗少娟,張雅林, "大麥蟲Zophobas morio對塑料的取食和降解作用研究," 環境昆蟲學報, 2010.
[4]Y. Yang et al., "Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 1. Chemical and physical characterization and isotopic tests," vol. 49, no. 20, pp. 12080-12086, 2015.
[5]Y. Yang et al., "Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms," vol. 49, no. 20, pp. 12087-12093, 2015.
[6]T. Mathimani, N. J. R. Mallick, and S. E. Reviews, "A comprehensive review on harvesting of microalgae for biodiesel–key challenges and future directions," vol. 91, pp. 1103-1120, 2018.
[7]張揚狀. (2016/04). 21世紀能源革命-生質能. Available: https://ejournal.stpi.narl.org.tw/sd/download?source=10504-08.pdf&vlId=2EF1A7CC-0FE6-40E2-86DC-5620D7D93732&nd=1&ds=1
[8]B. Graca, M. Bełdowska, P. Wrzesień, A. J. E. S. Zgrundo, and P. Research, "Styrofoam debris as a potential carrier of mercury within ecosystems," vol. 21, no. 3, pp. 2263-2271, 2014.
[9]維基百科. (2020). 聚苯乙烯. Available: https://zh.wikipedia.org/wiki/聚苯乙烯
[10]M. Jang et al., "Styrofoam debris as a source of hazardous additives for marine organisms," vol. 50, no. 10, pp. 4951-4960, 2016.
[11]陳永煌,劉紹興,陳一中,田健堯和周稚傑, "苯之毒性," 1998
[12]I. S. Abd Manaf et al., "A review for key challenges of the development of biodiesel industry," vol. 185, pp. 508-517, 2019.
[13]A. Z. Abdullah, B. Salamatinia, H. Mootabadi, and S. J. E. P. Bhatia, "Current status and policies on biodiesel industry in Malaysia as the world's leading producer of palm oil," vol. 37, no. 12, pp. 5440-5448, 2009.
[14]謝志誠, "生質柴油之技術與文獻探討," 2007/04/22.
[15]S. Sinha, A. K. Agarwal, and S. Garg, "Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization," vol. 49, no. 5, pp. 1248-1257, 2008.
[16]R. Wang et al., "Biodiesel preparation, optimization, and fuel properties from non-edible feedstock, Datura stramonium L," vol. 91, no. 1, pp. 182-186, 2012.
[17]張. 于. 陳. 謝志誠. (2007). 利用固態催化劑將黃豆油轉酯化成生質柴油. Available: http://www.taiwan921.lib.ntu.edu.tw/mypdf/myame&bime2007-d.pdf
[18]J.-H. Ng, H. K. Ng, S. J. C. T. Gan, and E. Policy, "Recent trends in policies, socioeconomy and future directions of the biodiesel industry," vol. 12, no. 3, pp. 213-238, 2010.
[19]曾彥魁和鄭伯其, "可連續生產生質柴油轉酯化設備之設計," vol. 32, no. 3&4, pp. 97-103, 2013.
[20]J. Kansedo, K. T. Lee, and S. Bhatia, "Biodiesel production from palm oil via heterogeneous transesterification," vol. 33, no. 2, pp. 271-276, 2009.
[21]G. Antolın, F. Tinaut, Y. Briceno, V. Castano, C. Perez, and Ramırez, "Optimisation of biodiesel production by sunflower oil transesterification," vol. 83, no. 2, pp. 111-114, 2002.
[22]楊培晟, "昆蟲油脂的生物資源應用," 碩士, 化學工程系生化工程碩士班, 明志科技大學, 新北市, 2015.
[23]林忠亮,方炳勳,黃冬梨,李政誠和吳奇生, "生質柴油之製程發展與應用," vol. 42, no. 1, pp. 49-59, 2006.
[24]H. Wang et al., "Insect biorefinery: a green approach for conversion of crop residues into biodiesel and protein," vol. 10, no. 1, p. 304, 2017.
[25]F. Manzano-Agugliaro, M. Sanchez-Muros, F. Barroso, A. Martínez-Sánchez, S. Rojo, and Pérez-Bañón, "Insects for biodiesel production," vol. 16, no. 6, pp. 3744-3753, 2012.
[26]劉曉庚,廖曉峰,徐明生和陳梅梅., "昆蟲油脂及其功能性成分開發利用研究," no. 2, pp. 24-27, 2002.
[27]楊青,劉高強和魏美才., "昆蟲油脂的營養和開發研究," vol. 2008, no. 3, pp. 246-249, 2008.
[28]王利娟, "大麥蟲的人工飼養條件研究及生長發育性狀評價," 四川農業大學, 2014.
[29]陳薏如, "利用直接反應法自咖啡渣與昆蟲中合成生質柴油之研究:開關型溶劑之應用," 碩士, 化學工程系碩士班, 明志科技大學, 新北市, 2020.
[30]Y. H. Longyu Zheng , Wu Li , Sen Yang , Qing Li , Ziniu Yu "Exploring the potential of grease from yellow mealworm beetle (Tenebrio molitor) as a novel biodiesel feedstock," 2013.
[31]吳時敏和裘愛泳., "昆蟲功能性脂質與油脂的發展," vol. 13, no. 1, pp. 52-55, 2001.
[32]馮金華和邢榮娥, "大麥蟲幼蟲脂肪油中的脂肪酸组成分析," vol. 2010, no. 9, pp. 17-19, 2010.
[33]陳奕宏,林佳融和陳律言, "生質柴油油品性質與原料成本對最適摻合比例之影響," vol. 49, no. 4, pp. 55-67, 2013.
[34]D. Y. Leung, Wu, X., & Leung, "A review on biodiesel production using catalyzed transesterification," vol. 87, no. 4, pp. 1083-1095, 2010.
[35]W. P. Jencks, "General acid-base catalysis of complex reactions in water," vol. 72, no. 6, pp. 705-718, 1972.
[36]沈胤亨. 生質柴油製程簡介. Available: http://ebooks.lib.ntu.edu.tw/1_file/moeaidb/012647/gpt002.pdf
[37]Y. L. Edgar Lotero, Dora E. Lopez, Kaewta Suwannakarn, David A. Bruce, and James G. Goodwin, Jr., "Calculations of enzymic reactions: calculations of pKa, proton transfer reactions, and general acid catalysis reactions in enzymes," vol. 20, no. 11, pp. 3167-3177, 1981.
[38]林忠亮, 方炳勳, 黃冬梨, 李政誠, and 吳奇生, "生質柴油之製程發展與應用," vol. 42, no. 1, pp. 49-59, 2006.
[39]M. Kouzu, M. Tsunomori, S. Yamanaka, and J. Hidaka, "Solid base catalysis of calcium oxide for a reaction to convert vegetable oil into biodiesel," vol. 21, no. 4, pp. 488-494, 2010.
[40]B. D. Wahlen, R. M. Willis, and L. C. Seefeldt, "Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures," vol. 102, no. 3, pp. 2724-2730, 2011.
[41]H. C. Nguyen et al., "Direct transesterification of black soldier fly larvae (Hermetia illucens) for biodiesel production," vol. 85, pp. 165-169, 2018.
[42]C.-H. Su, H. C. Nguyen, T. L. Bui, and D.-L. Huang, "Enzyme-assisted extraction of insect fat for biodiesel production," vol. 223, pp. 436-444, 2019.
[43]李星穎, "利用直接反應法合成昆蟲生質柴油之研究," 碩士, 化學工程系生化工程碩士班, 明志科技大學, 新北市, 2017.
[44]M. B. Johnson and Z. Wen, "Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass," vol. 23, no. 10, pp. 5179-5183, 2009.
[45]H. C. Nguyen et al., "Using switchable solvent as a solvent and catalyst for in situ transesterification of spent coffee grounds for biodiesel synthesis," vol. 289, p. 121770, 2019.
[46]維基百科. (2020/09/07). 熱重分析.
[47]曾依晴, "從麵包蟲體內分離出可分解保麗龍之菌種," 2009.
[48]徐世才,唐婷,閔宏和劉小偉, "黄粉蟲在不同飼料比例下的泡沫降解率研究," 2013.
[49]徐富凱和孫忠芳, "黃粉蟲取食和消化降解塑料的研究," vol. 37, no. 1, pp. 26-28, 2019.
[50]周爾康和單玉昕, "黃粉蟲取食塑料的特征研究," no. 10, p. 73, 2019.
[51]郭存雨, "黃粉蟲取食聚苯乙烯塑料對其繁殖能力的影響," no. 12, p. 78, 2019.
[52]王麒淞,陳軍,周辰霈和許沈傑, "關於黃粉蟲提取物對提升聚苯乙烯泡沫塑料分解效率的研究," no. 3, p. 20, 2019.
[53]B. Yeten, A. Castellini, B. Guyaguler, and W. Chen, "A comparison study on experimental design and response surface methodologies," in SPE Reservoir Simulation Symposium, 2005: Society of Petroleum Engineers.
[54]陳尚賢, "昆蟲油脂與乙酸甲酯的轉酯化反應以生成生質柴油之研究," 碩士, 化學工程系生化工程碩士班, 明志科技大學, 新北市, 2015.
[55]林瀚駿, "應用實驗設計於手工肥皂製造程序改善之研究," 碩士, 工業管理學系, 義守大學, 高雄市, 2013.
[56]D. Xue, Y. Mu, Y. Mao, T. Yang, and Z. J. G. C. Xiu, "Kinetics of DBU-catalyzed transesterification for biodiesel in the DBU–ethanol switchable-polarity solvent," vol. 16, no. 6, pp. 3218-3223, 2014.

電子全文 電子全文(網際網路公開日期:20260805)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top