跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/09/27 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林庭宇
研究生(外文):Ting-Yu Lin
論文名稱:機率式土壤液化危害度評估之應用-以高雄市岡山區等七處行政區為例
論文名稱(外文):Applications of Probabilistic Liquefaction Hazard Analysis–A case study of Gangshan District and Seven administrative regions in Kaohsiung City
指導教授:鄒瑞卿
口試委員:林德貴林柏伸
口試日期:2021-10-01
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:100
中文關鍵詞:高雄市土壤液化定值式液化危害度分析機率式液化危害度分析土壤液化潛勢圖
外文關鍵詞:Kaohsiung CitySoil liquefactionDeterministic liquefaction hazard analysisProbabilistic liquefaction hazard analysisSoil liquefaction potential map
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
台灣位於環太平洋地震帶上,好發地震,歷史上發生多起大規模的災害地震案例,其中2016年高雄美濃地震造成南台灣嚴重損失,地震及衍生之土壤液化現象造成建築物之沉陷或損害,引起社會大眾關注土壤液化可能造成之災害,政府機關也開始著手進行土壤液化潛勢調查及公告土壤液化潛勢地區。
目前中央地質調查所頒布之土壤液化潛勢圖之製作採用定值式分析,定值式分析依國震中心建議之地震規模與耐震規範之地震力配合簡易評估法進行液化潛勢評估並繪製液化潛勢圖。定值式採用單一地震力進行液化評估,然地震發生之次數、規模、強度等皆存在不確定性,因此定值式分析無法將地震之不確定性完全反映於分析中。機率式評估將地震之不確定性以統計方式納入液化評估,可有效評估液化災害發生之可能性。本研究以高雄市為例,採用定值式及機率式方式進行評估,並繪製土壤液化潛勢圖,將兩者分析結果進行比較。
本研究成果顯示,定值式分析與機率式分析之液化潛勢分布趨勢接近,靠近沿海地區屬沖積平原的行政區域液化潛勢程度較高,而因定值式分析與機率式分析採用之設計地震力不同,使兩種分析法所得之液化潛勢程度有明顯差異。另外,本研究利用液化危害度曲線搭配卜桑過程,求得場址發生中度與嚴重液化潛勢之年超越機率,上述研究成果皆可提供使用者了解發生液化災害之可能性與未來都市發展計畫、防災計畫擬定及補強計畫實施與否等規劃之參考。
Taiwan is located in the Pacific Rim Seismic Belt and is prone to earthquakes. There have been many large-scale disaster earthquake cases in history. Among them, the 2016 Kaohsiung Mino Earthquake caused severe losses in southern Taiwan. The earthquake and the resulting soil liquefaction phenomenon caused the subsidence or damage of buildings, Causing the public to pay attention to the possible disasters caused by soil liquefaction, government agencies have also begun to investigate the potential of soil liquefaction and announce the potential areas of soil liquefaction.
At present, the soil liquefaction potential maps issued by the Central Geological Survey are mostly made by deterministic liquefaction hazard analysis (DLHA). The DLHA is based on the earthquake scale recommended by the National Seismic Center and the seismic force coordination simple evaluation method of the earthquake resistance code to evaluate the liquefaction potential energy index. Analyze and draw a liquefaction potential map. The DLHA adopts the seismic force of a single seismic reference for liquefaction assessment. However, there are uncertainties in the number, size, scale, intensity, and depth of earthquakes. Therefore, the DLHA cannot fully reflect the uncertainty of earthquakes. In the analysis. Probabilistic liquefaction hazard analysis (PLHA) can incorporate the uncertainty of earthquakes into the liquefaction assessment in a statistical and probabilistic manner, which can effectively assess the possibility of liquefaction disasters. This study takes Kaohsiung City as an example, uses DLHA and PLHA to evaluate, and draws a soil liquefaction potential map, and compares the two analysis results.
The results of this research show that the distribution trend of liquefaction potential in DLHA and PLHA is similar. The area close to coastal areas belonging to alluvial plains has a higher degree of liquefaction potential, due to the design adopted in DLHA and PLHA. The seismic force is different, which makes the degree of liquefaction potential obtained by the two analysis methods have obvious differences. In addition, this research uses the liquefaction hazard curve and the Poisson process to find the annual probability of the site's occurrence of moderate and severe liquefaction potential. The above research results can provide users with an understanding of the possibility of liquefaction disasters and future urban development. That also could reference for planning, preparation of disaster prevention plan , and implementation of reinforcement plan.
摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 viii
第1章 緒論 1
1.1 研究動機 1
1.2 研究方法 1
1.3 論文架構 2
第2章 文獻回顧 3
2.1 土壤液化成因 3
2.2 地震危害度分析 3
2.2.1 震源分類與模式 4
2.2.2 震源特性參數 13
2.2.3 地動預估式 14
2.2.4 邏輯樹 14
2.2.5 參數拆解 16
2.3 土壤液化簡易評估法 17
2.3.1 HBF法(雙曲線函數液化評估法) 17
2.3.2 NCEER法 20
2.3.3 T-Y法 (Tokimatsu 與Yoshimi 簡易經驗法) 24
2.3.4 AIJ法(日本建築學會法) 26
2.3.5 JRA96法 (日本道路協會簡易經驗法) 29
2.4 機率式液化潛勢評估 33
2.5 空間內插法 37
2.5.1 距離反權重法(IDW) 38
2.5.2 平滑曲線法(Spline) 38
2.5.3 趨勢面法(Trend) 38
2.5.4 克利金法(Kriging) 39
2.6 高雄市液化潛能分析 40
第3章 研究方法 42
3.1 研究流程 42
3.2 研究區域概況 43
3.3 液化評估分析方法 45
3.3.1 定值式液化分析 45
3.3.2 機率式液化危害度分析 48
3.4 液化潛勢圖 55
第4章 分析結果與討論 56
4.1 液化分析結果 56
4.1.1 定值式液化分析結果 56
4.1.2 機率式液化分析結果 61
4.1.3 定值式與機率式液化分析比較 66
4.2 液化潛勢圖 74
4.2.1 定值式液化潛勢圖 74
4.2.2 機率式液化潛勢圖 77
4.2.3 定值式與機率式液化潛勢圖比較 81
4.3 機率式成果應用 87
第5章 結論與建議 93
5.1 結論 93
5.2 建議 93
參考文獻 94
(1)內政部營建署,(2001),建築物基礎構造設計規範,內政部90.10.02台內營字第9085629號函。
(2)內政部營建署,(2011),建築物耐震設計規範及解說,內政部100.1.19台內營字第0990810250號函。
(3)交通部,(1995),公路橋梁耐震設計規範。
(4)交通部中央氣象局GDMS-2020,台灣的地震特性,臺灣的地震分佈,檢自https://gdmsn.cwb.gov.tw/education.php。
(5)林柏伸,(2002),台灣東北部地區隱沒帶地震強地動衰減式之研究,國立中央大學地球物理研究所碩士論文。
(6)林啟文,陳文山,林燕惠,饒瑞鈞,劉彥求,(2010b),臺灣南部小崗山線形與鳳山線形的探討。經濟部中央地質調查所特刊,第24號,第39-60頁。
(7)茅聲燾,(1978),地震之工程危害度研究及其應用,中國土木水利學刊,第5卷,第35-40頁。
(8)倪顯德,邱宏智,(1991),台灣地區強地動最大加速度值衰減之統計模型探討,第三屆台灣地區地球物理研討會論文集,第95-105頁。
(9)高雄市政府,(2018),高雄市土壤液化潛勢分析第一期。
(10)高雄市政府,(2019),高雄市土壤液化潛勢分析第二期。
(11)國立高雄第一科技大學,(2006),加強高雄市防救災作業能力。
(12)陳文山,松多信尚,石瑞銓,楊志成,游能悌,朱耀國,陳志壕,林啟文,劉桓吉,盧詩丁、劉彥求,林燕惠,陳柏村,(2010a),臺灣西部平原區隱伏在全新世沉積層下的新期構造─以小崗山斷層為例,經濟部中央地質調查所特刊,第24號,第75-91頁。
(13)陳子鍠,(1991),台灣地區最大加速度衰減之研究,國立中央大學地,球物理研究所碩士論文。
(14)陳景文,(1999),高雄縣土層液化潛能評估,國家地震工程研究中心。
(15)黃正耀,(1995),台灣地區強地動特性及地震危害度參數之評估,國立中央大學地球物理研究所碩士論文。
(16)黃俊鴻,楊志文,(2003),以集集地震案例探討現有 SPT-N 液化評估方法之適用性,地工技術,第98期,第79-90頁。
(17)黃俊鴻,楊志文,陳正興,(2005),本土化液化評估方法之建議¬-雙曲線液化強度曲線,地工技術,第103期,第53-64頁。
(18)黃富國,(2008),SPT液化機率及損害評估模式之建立與應用,中國土木水利工程學刊,第20卷,第2期,第155-174頁。
(19)黃富國,(2008),基於訊息理論之液化機率與損害評估模式建立與應用,中國土木水利工程學刊,第20卷,第3期,第301-314頁。
(20)黃俊鴻,陳正興,莊長賢,(2012),本土HBF土壤液化評估法之不確定性,地工技術,第133期,第77-86頁。
(21)鄒瑞卿,謝寶珊,林柏伸,顏銀桐,紀宗吉,林禹希,(2020),機率式液化危害度分析於潛能指數之應用,第 18 屆大地工程學術研究討論會論文集,NO.13,L類-地工可靠度分析及性能設計。
(22)經濟部中央地質調查所,地質資料整合查詢,檢自https://gis3.moeacgs.gov.tw/gwh/gsb97-1/sys8/t3/index1.cfm。
(23)經濟部中央地質調查所,(2013),三維都市防災地質資訊整合分析與建置。
(24)趙曉玲,(2001),利用921 地震序列之強地動資料對台灣強地動衰減模式與反應譜速估之研究,國立中央大學地球物理研究所碩士論文。
(25)劉坤松,(1999),台灣地區強震地動衰減模式之研究,國立中央大學地球物理研究所博士論文。
(26)鄭錦桐,(2002),台灣地區地震危害度的不確定性分析與參數拆解,國立中央大學地球物理所博士論文。
(27)鄭錦桐,江憲宗,林柏伸,李錫堤,(2010),地震危害度分析技術之發展與應用,中興工程40週年工程技術論文集,第232-248頁。
(28)鄭錦桐,林柏伸,江憲宗,李錫堤,(2011),台灣的地震危害度分析,2011海峽兩岸地質災害研討會。
(29)鄭錦桐,林柏伸,謝寶珊,李錫堤,(2010),新一代強地動衰減式對工址地震危害度分析之影響,中興工程,第109期,第31-40頁。
(30)謝昇航,(2011),臺灣地區液化潛能製圖,國立中央大學應用地質研究所碩士論文。
(31)薛仲宏,(2005),類神經網路與一般克利金法在空間內插之比較,中華大學土木工程學系碩士論文。
(32)饒瑞鈞等人,(2016), 2016年高雄美濃地震 - 震後科學調查。
(33)Abrahamson, N. A. and Silva, W. J.,(2008),Summary of the Abrahamson & Silva NGA ground-motion relations, Earthquake Spectra 24,pp.67-97.
(34)Abrahamson, N., Gregor, N.and Addo, K., (2016), BC Hydro ground motion prediction equations for subduction earthquakes, Earthquake Spectra, 32(1), pp.23-44.
(35)Bazzurro, P. and Cornell, C. A., (1999), Disaggregation of seismic hazard, Bull. Seism. Soc. Am., 89, pp.501-520.
(36)Bollina, M. G., (1970), Surface faulting and related effects: in Earthquake Engineering, R. L. Wiegel, Editor, Prentice-Hall, Englewood Cliffs, New Jersey, pp.47-74.
(37)Boore, D. M. and Atkinson, G. M., (2008), Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s, Earthquake Spectra 24. pp.99-138
(38)Campbell, K. W. and Bozorgnia, Y., (2008), NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from0.01 to 10 s, Earthquake Spectra 24. pp.139-171.
(39)Chiu, H. C. and Ni, S. D., (1993), The attenuation of peak groundacceleration, Syposium on Taiwan Strong Motion InstrumentionProgram, pp.60-66.
(40)Chang, T. Y., F. Cotton, and Angelier, J., (2001), Seismic Attenuation and Peak Ground Acceleration in Taiwan, Bull. Seism. Soc. Am., 91, pp.1229-1246.
(41)Cheng, C. T., Chiou, S. J., Lee, C. T., & Tsai, Y. B., (2007), Study on probabilistic seismic hazard maps of Taiwan after Chi-Chi earthquake. Journal of GeoEngineering, 2(1), pp.19-28.
(42)Chiou, B. S. J., and Youngs, R. R., (2008), Chiou-Youngs NGA ground motion relations for the geometric mean horizontal component of peakand spectral ground motion parameters, Earthquake Spectra 24, pp.173–215.
(43)Cheng, C. T., Hsieh, P. S., Lin, P. S., Yen, Y. T., Chan, C. H., Beer, M., ... & Au, I. S. K., (2015, Probability seismic hazard mapping of Taiwan. Encyclopedia of Earthquake Engineering, 10, pp.978-3.
(44)Chou, J. C., Hsieh, P. S., Lin, P. S., Yen, Y. T., and Lin, Y. H., (2021), Introduction and Application of a Simple Probabilistic Liquefaction Hazard Analysis Program: HAZ45PL Module, Hindawi, Shock and Vibration, Vol. 2021, Article ID 6687631.
(45)Cornell, C. A., (1968), Engineering seismic risk analysis, Bull. Seism. Soc. Am., 58, pp.1583-1606.
(46)Cornell, C. A., and Van Marke, E. H., (1969),The major influence on seismic risk,Proceedings Third World Conference on Earthquake Engineering, Sandiago,Chile, A-1, pp.69-93.
(47)Cramer, C. H., Petersen, M. D., and Reichle, M. S., (1996),A Monte Carlo approach in estimating uncertainty for a seismic hazard assessment of Los Angeles, Ventura, and Orange counties, California, Bull. Seism. Soc. Am., 86, pp.1681-1691.
(48)Gutenberg, B., and Richter, C. F., (1944), Frequency of earthquake in California, Bull.Seism. Soc. Am., 34, pp.185-188.
(49)Harmsen, S., Perkins, D., and Frankel, A., (1999), Deaggregation of probabilistic ground motions in the Central and Eastern United States, Bull. Seism. Soc. Am., 89, pp.1-13.
(50)Harmsen, C. S., (2001), Mean and modal e in the deaggregation of probabilistic ground motion, Bull. Seism. Soc. Am., 91, pp.1537-1552.
(51)Harmsen, C. S., and Frankel, A., (2001), Geographic deaggregation of seismic hazard in the United States, Bull. Seism. Soc. Am., 91, pp.13-16.
(52)Idriss, I. M., (2008), An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes,Earthquake Spectra 24, pp.217-242.
(53)Idriss, I. M., and Boulanger, R. W., ( 2008), Soil liquefaction during earthquakes, Earthquake Engineering Research Institute.
(54)Iwasaki, T., Tokida, K., & Tatsuoka, F., ( 1981), Soil liquefaction potential evaluation with use of the simplified procedure.
(55)Kanamori, H., (1977), The energy release in great earthquakes, Geophys. Res. J., 82, pp.2981-2987.
(56)Keefer, D. L., and Bodily, S. E., (1983),Three-point approximations for continuous random variables: Management Science, 29, pp.595-609.
(57)Kramer, S. L., & Mayfield, R. T., (2007), Return period of soil liquefaction. Journal of Geotechnical and Geoenvironmental Engineering, 133(7), pp.802-813.
(58)Lee, S. J. and Ma K. F., (1999), Rupture process of the 1999 Ji-Ji, Taiwan,earthquake from the inversion of teleseismic data, TAO, 11, pp.591-608.
(59)Liu, K. S. and Tsai, Y. B., (2005), Attenuation Relationships of Peak Ground Acceleration and Velocity for Crustal Earthquakes in Taiwan, Bull. Seism. Soc. Am., 95, pp.1045–1058.
(60)Lin, P. S., and Lee, C. T., (2008), Ground-motion attenuation relationships for subduction-zone earthquakes in northeastern Taiwan, Bull. Seism. Soc. Am. 98, pp.220-240.
(61)McGuire, R. K., (1995), Probabilistic Seismic Hazard Analysis and Design Earthquakes: Closing the Loop, Bull. Seism. Soc. Am., 85, pp.1275-1284.
(62)Seed, H. B., Martin, P. P., and Lysmer, J., (1976), Pore-water pressure changes during soil liquefaction, J. Geotechnical Eng. Div., 102(4), pp.323–46.
(63)Shyu, J.B.H., Chuang, Y.-R., Chen, Y.-L., Lee, Y.-R. and Cheng, C.T. , (2016), A new on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terr. Atmos. Ocean Sci., 27, pp.311-323.
(64)Slemmons, D. B., ( 1982), Determination of design earthquake magnitudes formicrozonation, Proceedings, 3rd International Earthquake Microzonationconference, Seattle, Washington, 1, pp.119-130.
(65)Tokimatsu, K., and Yoshimi, Y., (1983), Empirical correlation of soil liquefaction based on SPT-N value and fines content, Soils and Foundations, Vol. 23, No. 4, pp.56−74.
(66)Tsai, Y. B. and Bolt, B. A., (1983), An analysis of horizontal peak ground acceleration and velocity from SMART 1 array data, Bull. Inst.Earth Sciences, Academic Sinica, 3, pp.105-126.
(67)Tsai, C. C., C. H. Loh, and Yeh, Y. T., (1987), Analysis of Earthquake Risk in Taiwan Based on Seismotectonic Zones, Mem. Geol. Sci.,China, 9, pp.413-446.
(68)Tsai, C.-C. P., Chen, Y. H. and Liu, C. H., (2006), The Path Effect in Ground-Motion Variability: An Application of the Variance-Components Technique, Bull. Seism. Soc. Am., 96, pp.1170-1176.
(69)Wallace, R. E., (1970), Earthquake recurrence intervals on the San Andreas fault, Geological Society of America Bulletin, 81, pp. 2875-2889.
(70)Wells, D. L. and Coppersmith, K. J., (1994), New empirical relationships among Magnitude, rupture length, rupture width, rupture area, and surfacedisplacement, Bull. Seism. Soc. Am., 84, 4, pp.974-1002.
(71)Wu Y. M., Shin, T. C. and Chang, C. H., (2001), Near Real-TimeMapping of Peak Ground Acceleration and Peak Ground VelocityFollowing a Strong Earthquake, Bull. Seism. Soc. Am., 91, pp.1218–1228.
(72)Youngs, R.R. and Coppersmith, K. J., (1985), Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates, Bull.Seism. Soc. Am., 75, pp.939-964.
(73)Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Liam, F.W.D., Harder, L.F., Jr., Hynes, M.E., Ishihara, K., Koester, J.P., Laio, S.S.C., Marcuson, W.F., III, Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., Stokoe, K.H., II.(2001). Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 10, pp. 817−833.
(74)Yu, S.B., Chen, H.Y., and Kuo, L.C., (1997), Velocity field of GPS stations in the Taiwan area. Tectonophysics. ,274, pp.41–59.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊