(1)內政部營建署,(2001),建築物基礎構造設計規範,內政部90.10.02台內營字第9085629號函。
(2)內政部營建署,(2011),建築物耐震設計規範及解說,內政部100.1.19台內營字第0990810250號函。
(3)交通部,(1995),公路橋梁耐震設計規範。
(4)交通部中央氣象局GDMS-2020,台灣的地震特性,臺灣的地震分佈,檢自https://gdmsn.cwb.gov.tw/education.php。
(5)林柏伸,(2002),台灣東北部地區隱沒帶地震強地動衰減式之研究,國立中央大學地球物理研究所碩士論文。
(6)林啟文,陳文山,林燕惠,饒瑞鈞,劉彥求,(2010b),臺灣南部小崗山線形與鳳山線形的探討。經濟部中央地質調查所特刊,第24號,第39-60頁。
(7)茅聲燾,(1978),地震之工程危害度研究及其應用,中國土木水利學刊,第5卷,第35-40頁。
(8)倪顯德,邱宏智,(1991),台灣地區強地動最大加速度值衰減之統計模型探討,第三屆台灣地區地球物理研討會論文集,第95-105頁。
(9)高雄市政府,(2018),高雄市土壤液化潛勢分析第一期。
(10)高雄市政府,(2019),高雄市土壤液化潛勢分析第二期。
(11)國立高雄第一科技大學,(2006),加強高雄市防救災作業能力。
(12)陳文山,松多信尚,石瑞銓,楊志成,游能悌,朱耀國,陳志壕,林啟文,劉桓吉,盧詩丁、劉彥求,林燕惠,陳柏村,(2010a),臺灣西部平原區隱伏在全新世沉積層下的新期構造─以小崗山斷層為例,經濟部中央地質調查所特刊,第24號,第75-91頁。
(13)陳子鍠,(1991),台灣地區最大加速度衰減之研究,國立中央大學地,球物理研究所碩士論文。
(14)陳景文,(1999),高雄縣土層液化潛能評估,國家地震工程研究中心。
(15)黃正耀,(1995),台灣地區強地動特性及地震危害度參數之評估,國立中央大學地球物理研究所碩士論文。
(16)黃俊鴻,楊志文,(2003),以集集地震案例探討現有 SPT-N 液化評估方法之適用性,地工技術,第98期,第79-90頁。
(17)黃俊鴻,楊志文,陳正興,(2005),本土化液化評估方法之建議¬-雙曲線液化強度曲線,地工技術,第103期,第53-64頁。
(18)黃富國,(2008),SPT液化機率及損害評估模式之建立與應用,中國土木水利工程學刊,第20卷,第2期,第155-174頁。
(19)黃富國,(2008),基於訊息理論之液化機率與損害評估模式建立與應用,中國土木水利工程學刊,第20卷,第3期,第301-314頁。
(20)黃俊鴻,陳正興,莊長賢,(2012),本土HBF土壤液化評估法之不確定性,地工技術,第133期,第77-86頁。
(21)鄒瑞卿,謝寶珊,林柏伸,顏銀桐,紀宗吉,林禹希,(2020),機率式液化危害度分析於潛能指數之應用,第 18 屆大地工程學術研究討論會論文集,NO.13,L類-地工可靠度分析及性能設計。
(22)經濟部中央地質調查所,地質資料整合查詢,檢自https://gis3.moeacgs.gov.tw/gwh/gsb97-1/sys8/t3/index1.cfm。
(23)經濟部中央地質調查所,(2013),三維都市防災地質資訊整合分析與建置。
(24)趙曉玲,(2001),利用921 地震序列之強地動資料對台灣強地動衰減模式與反應譜速估之研究,國立中央大學地球物理研究所碩士論文。
(25)劉坤松,(1999),台灣地區強震地動衰減模式之研究,國立中央大學地球物理研究所博士論文。(26)鄭錦桐,(2002),台灣地區地震危害度的不確定性分析與參數拆解,國立中央大學地球物理所博士論文。(27)鄭錦桐,江憲宗,林柏伸,李錫堤,(2010),地震危害度分析技術之發展與應用,中興工程40週年工程技術論文集,第232-248頁。
(28)鄭錦桐,林柏伸,江憲宗,李錫堤,(2011),台灣的地震危害度分析,2011海峽兩岸地質災害研討會。
(29)鄭錦桐,林柏伸,謝寶珊,李錫堤,(2010),新一代強地動衰減式對工址地震危害度分析之影響,中興工程,第109期,第31-40頁。
(30)謝昇航,(2011),臺灣地區液化潛能製圖,國立中央大學應用地質研究所碩士論文。(31)薛仲宏,(2005),類神經網路與一般克利金法在空間內插之比較,中華大學土木工程學系碩士論文。
(32)饒瑞鈞等人,(2016), 2016年高雄美濃地震 - 震後科學調查。
(33)Abrahamson, N. A. and Silva, W. J.,(2008),Summary of the Abrahamson & Silva NGA ground-motion relations, Earthquake Spectra 24,pp.67-97.
(34)Abrahamson, N., Gregor, N.and Addo, K., (2016), BC Hydro ground motion prediction equations for subduction earthquakes, Earthquake Spectra, 32(1), pp.23-44.
(35)Bazzurro, P. and Cornell, C. A., (1999), Disaggregation of seismic hazard, Bull. Seism. Soc. Am., 89, pp.501-520.
(36)Bollina, M. G., (1970), Surface faulting and related effects: in Earthquake Engineering, R. L. Wiegel, Editor, Prentice-Hall, Englewood Cliffs, New Jersey, pp.47-74.
(37)Boore, D. M. and Atkinson, G. M., (2008), Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s, Earthquake Spectra 24. pp.99-138
(38)Campbell, K. W. and Bozorgnia, Y., (2008), NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from0.01 to 10 s, Earthquake Spectra 24. pp.139-171.
(39)Chiu, H. C. and Ni, S. D., (1993), The attenuation of peak groundacceleration, Syposium on Taiwan Strong Motion InstrumentionProgram, pp.60-66.
(40)Chang, T. Y., F. Cotton, and Angelier, J., (2001), Seismic Attenuation and Peak Ground Acceleration in Taiwan, Bull. Seism. Soc. Am., 91, pp.1229-1246.
(41)Cheng, C. T., Chiou, S. J., Lee, C. T., & Tsai, Y. B., (2007), Study on probabilistic seismic hazard maps of Taiwan after Chi-Chi earthquake. Journal of GeoEngineering, 2(1), pp.19-28.
(42)Chiou, B. S. J., and Youngs, R. R., (2008), Chiou-Youngs NGA ground motion relations for the geometric mean horizontal component of peakand spectral ground motion parameters, Earthquake Spectra 24, pp.173–215.
(43)Cheng, C. T., Hsieh, P. S., Lin, P. S., Yen, Y. T., Chan, C. H., Beer, M., ... & Au, I. S. K., (2015, Probability seismic hazard mapping of Taiwan. Encyclopedia of Earthquake Engineering, 10, pp.978-3.
(44)Chou, J. C., Hsieh, P. S., Lin, P. S., Yen, Y. T., and Lin, Y. H., (2021), Introduction and Application of a Simple Probabilistic Liquefaction Hazard Analysis Program: HAZ45PL Module, Hindawi, Shock and Vibration, Vol. 2021, Article ID 6687631.
(45)Cornell, C. A., (1968), Engineering seismic risk analysis, Bull. Seism. Soc. Am., 58, pp.1583-1606.
(46)Cornell, C. A., and Van Marke, E. H., (1969),The major influence on seismic risk,Proceedings Third World Conference on Earthquake Engineering, Sandiago,Chile, A-1, pp.69-93.
(47)Cramer, C. H., Petersen, M. D., and Reichle, M. S., (1996),A Monte Carlo approach in estimating uncertainty for a seismic hazard assessment of Los Angeles, Ventura, and Orange counties, California, Bull. Seism. Soc. Am., 86, pp.1681-1691.
(48)Gutenberg, B., and Richter, C. F., (1944), Frequency of earthquake in California, Bull.Seism. Soc. Am., 34, pp.185-188.
(49)Harmsen, S., Perkins, D., and Frankel, A., (1999), Deaggregation of probabilistic ground motions in the Central and Eastern United States, Bull. Seism. Soc. Am., 89, pp.1-13.
(50)Harmsen, C. S., (2001), Mean and modal e in the deaggregation of probabilistic ground motion, Bull. Seism. Soc. Am., 91, pp.1537-1552.
(51)Harmsen, C. S., and Frankel, A., (2001), Geographic deaggregation of seismic hazard in the United States, Bull. Seism. Soc. Am., 91, pp.13-16.
(52)Idriss, I. M., (2008), An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes,Earthquake Spectra 24, pp.217-242.
(53)Idriss, I. M., and Boulanger, R. W., ( 2008), Soil liquefaction during earthquakes, Earthquake Engineering Research Institute.
(54)Iwasaki, T., Tokida, K., & Tatsuoka, F., ( 1981), Soil liquefaction potential evaluation with use of the simplified procedure.
(55)Kanamori, H., (1977), The energy release in great earthquakes, Geophys. Res. J., 82, pp.2981-2987.
(56)Keefer, D. L., and Bodily, S. E., (1983),Three-point approximations for continuous random variables: Management Science, 29, pp.595-609.
(57)Kramer, S. L., & Mayfield, R. T., (2007), Return period of soil liquefaction. Journal of Geotechnical and Geoenvironmental Engineering, 133(7), pp.802-813.
(58)Lee, S. J. and Ma K. F., (1999), Rupture process of the 1999 Ji-Ji, Taiwan,earthquake from the inversion of teleseismic data, TAO, 11, pp.591-608.
(59)Liu, K. S. and Tsai, Y. B., (2005), Attenuation Relationships of Peak Ground Acceleration and Velocity for Crustal Earthquakes in Taiwan, Bull. Seism. Soc. Am., 95, pp.1045–1058.
(60)Lin, P. S., and Lee, C. T., (2008), Ground-motion attenuation relationships for subduction-zone earthquakes in northeastern Taiwan, Bull. Seism. Soc. Am. 98, pp.220-240.
(61)McGuire, R. K., (1995), Probabilistic Seismic Hazard Analysis and Design Earthquakes: Closing the Loop, Bull. Seism. Soc. Am., 85, pp.1275-1284.
(62)Seed, H. B., Martin, P. P., and Lysmer, J., (1976), Pore-water pressure changes during soil liquefaction, J. Geotechnical Eng. Div., 102(4), pp.323–46.
(63)Shyu, J.B.H., Chuang, Y.-R., Chen, Y.-L., Lee, Y.-R. and Cheng, C.T. , (2016), A new on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terr. Atmos. Ocean Sci., 27, pp.311-323.
(64)Slemmons, D. B., ( 1982), Determination of design earthquake magnitudes formicrozonation, Proceedings, 3rd International Earthquake Microzonationconference, Seattle, Washington, 1, pp.119-130.
(65)Tokimatsu, K., and Yoshimi, Y., (1983), Empirical correlation of soil liquefaction based on SPT-N value and fines content, Soils and Foundations, Vol. 23, No. 4, pp.56−74.
(66)Tsai, Y. B. and Bolt, B. A., (1983), An analysis of horizontal peak ground acceleration and velocity from SMART 1 array data, Bull. Inst.Earth Sciences, Academic Sinica, 3, pp.105-126.
(67)Tsai, C. C., C. H. Loh, and Yeh, Y. T., (1987), Analysis of Earthquake Risk in Taiwan Based on Seismotectonic Zones, Mem. Geol. Sci.,China, 9, pp.413-446.
(68)Tsai, C.-C. P., Chen, Y. H. and Liu, C. H., (2006), The Path Effect in Ground-Motion Variability: An Application of the Variance-Components Technique, Bull. Seism. Soc. Am., 96, pp.1170-1176.
(69)Wallace, R. E., (1970), Earthquake recurrence intervals on the San Andreas fault, Geological Society of America Bulletin, 81, pp. 2875-2889.
(70)Wells, D. L. and Coppersmith, K. J., (1994), New empirical relationships among Magnitude, rupture length, rupture width, rupture area, and surfacedisplacement, Bull. Seism. Soc. Am., 84, 4, pp.974-1002.
(71)Wu Y. M., Shin, T. C. and Chang, C. H., (2001), Near Real-TimeMapping of Peak Ground Acceleration and Peak Ground VelocityFollowing a Strong Earthquake, Bull. Seism. Soc. Am., 91, pp.1218–1228.
(72)Youngs, R.R. and Coppersmith, K. J., (1985), Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates, Bull.Seism. Soc. Am., 75, pp.939-964.
(73)Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Liam, F.W.D., Harder, L.F., Jr., Hynes, M.E., Ishihara, K., Koester, J.P., Laio, S.S.C., Marcuson, W.F., III, Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., Stokoe, K.H., II.(2001). Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 10, pp. 817−833.
(74)Yu, S.B., Chen, H.Y., and Kuo, L.C., (1997), Velocity field of GPS stations in the Taiwan area. Tectonophysics. ,274, pp.41–59.