跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/09/24 08:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳禹衡
研究生(外文):Yu-Heng Chen
論文名稱:I. 利用CRISPR/Cas9基因編輯技術探討水稻GA 3-oxidase基因家族之功能差異II. 水稻第一類GA 2-oxidase同源基因去GA活性能力的分析
論文名稱(外文):I. Functional characterization of GA 3-oxidase gene family by CRISPR/Cas9 technologyII. Characterizations of GA deactivation capability of rice class I GA 2-oxidase orthologs
指導教授:陳良築
口試委員:陳鵬文葉顓銘
口試日期:2021-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:分子生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:70
中文關鍵詞:CRISPR/Cas9GA2oxsGA3oxs稔實率矮化去GA活性
外文關鍵詞:CRISPR/Cas9GA2oxsGA3oxsseed setting ratedwarfGA deactivation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 i
Abstract ii
目錄 iii
表目次 v
圖目次 v
縮寫字對照表 vii
前言 1
前人研究 2
利用CRISPR/Cas9基因編輯技術探討水稻GA 3-oxidase基因家族之功能差異
一、Gibberellin (GA) 的生合成 2
二、水稻不同部位之GA C-3β羥基化 (C-3β-hydroxylation) 2
三、水稻GA3oxs基因鑑定與功能確認 3
四、CRISPR/Cas9基因編輯技術 4
水稻第一類GA 2-oxidase同源基因去GA活性能力的分析
五、GA去活性與class I GA2oxs研究 5
六、GA訊息傳遞 6
材料與方法 7
一、 實驗用藥品 7
二、 儀器與設備 7
三、 植株材料 7
四、 水稻轉殖株構築 8
五、 水稻農桿菌轉殖 11
六、 水稻轉殖株分析 11
結果 14
利用CRISPR/Cas9基因編輯技術探討水稻GA 3-oxidase基因家族之功能差異
一、GA3ox1基因破壞轉殖株分析 14
二、GA3ox2基因破壞轉殖株分析 18
水稻第一類GA 2-oxidase同源基因去GA活性能力的分析
三、大量表現小米之水稻第一類GA2oxs同源基因轉殖株 22
四、大量表現高粱之水稻第一類GA2oxs同源基因轉殖株 23
討論 24
利用CRISPR/Cas9基因編輯技術探討水稻GA 3-oxidase基因家族之功能差異
一、GA3ox1基因破壞轉殖株探討 24
二、GA3ox2基因破壞轉殖株探討 25
水稻第一類GA 2-oxidase同源基因去GA活性能力的分析
三、小米之水稻GA2oxs同源基因 26
四、高粱之水稻GA2oxs同源基因 26
結論 28
參考文獻 29
表 33
圖 37
附表 64
附圖 65
胡庭臻 (2013) 水稻GA 2-oxidase 4、7及8之功能分析. 國立中興大學, 台中市
耿偉哲 (2019) OsGA2ox1和OsGA2ox10之基因功能探討及OsGA2ox6單點突變對4個水稻栽培種的生長影響. 國立中興大學, 台中市
郭益全 (1981) 水稻臺農67號產量潛能之研究-Ⅰ. 產量構成要素之表現. 中華農業研究 30(3): 215-218
陳宜廷 (2019) 水稻 GA2ox7 酵素活性差異與關鍵胺基酸功能鑑定. 國立中興大學, 台中市
廖翊君 (2019) 利用CRISPR/Cas9基因編輯技術探討水稻GA-oxidase基因的功能及其應用. 國立中興大學, 台中市
蔡寬治 (2017) 水稻GA2ox4,GA2ox8基因功能探討及Ga缺乏轉殖株對於分蘖及非生物逆境相關基因之影響. 國立中興大學, 台中市
賴明信, 李長沛, 曾清山, 黃惠娟, 陳治官, 郭益全 (2001) 水稻台農71號(益全香米)的育成. 中華農業研究 50(2): 1-12
謝昆廷 (2011) OsGA2oxs之功能研究I.水稻OsGA2ox2基因之功能及其T-DNA插入活化突變體M43852之探討II. C20 OsGA2ox6三個保留性motifs之功能探討. 國立中興大學, 台中市
Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M (2009) Gibberellin Modulates Anther Development in Rice via the Transcriptional Regulation of GAMYB. The Plant Cell 21: 1453-1472
Bae HK, Oh S-A, Park S (2018) Induction of Male-Sterility by Controlling of Gibberellin Biosynthesis in Rice ( Oryza sativa ). Plant Breeding and Biotechnology 6: 19-29
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-1712
Chiang HH, Hwang I, Goodman HM (1995) Isolation of the Arabidopsis GA4 locus. Plant Cell 7: 195-201
Dehairs J, Talebi A, Cherifi Y, Swinnen JV (2016) CRISP-ID: decoding CRISPR mediated indels by Sanger sequencing. Scientific Reports 6: 28973
Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology 31: 822-826
Gaur VS, Channappa G, Chakraborti M, Sharma TR, Mondal TK (2020) ‘Green revolution’ dwarf gene sd1 of rice has gigantic impact. Briefings in Functional Genomics 19: 390-409
Hirano K, Ueguchi-Tanaka M, Matsuoka M (2008) GID1-mediated gibberellin signaling in plants. Trends Plant Sci 13: 192-199
Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. The Plant Cell 13: 999-1010
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology 169: 5429-5433
Itoh H, Tanaka-Ueguchi M, Kawaide H, Chen X, Kamiya Y, Matsuoka M (1999) The gene encoding tobacco gibberellin 3beta-hydroxylase is expressed at the site of GA action during stem elongation and flower organ development. Plant J 20: 15-24
Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M (2001) Cloning and functional analysis of two gibberellin 3 beta -hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci U S A 98: 8909-8914
Jiang F, Zhou K, Ma L, Gressel S, Doudna JA (2015) STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348: 1477-1481
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology 31: 233-239
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821
Khatodia S, Bhatotia K, Passricha N, Khurana SMP, Tuteja N (2016) The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops. Frontiers in Plant Science 7: 506
Kobayashi M, Gaskin P, Spray CR, Phinney BO, MacMillan J (1994) The Metabolism of Gibberellin A20 to Gibberellin A1 by Tall and Dwarf Mutants of Oryza sativa and Arabidopsis thaliana. Plant Physiol 106: 1367-1372
Kobayashi M, Kamiya Y, Sakurai A, Saka H, Takahashi N (1990) Metabolism of Gibberellins in Cell-Free-Extracts of Anthers from Normal and Dwarf Rice. Plant and Cell Physiology 31: 289-293
Kobayashi M, Sakurai A, Saka H, Takahashi N (1989) Quantitative-Analysis of Endogenous Gibberellins in Normal and Dwarf Cultivars of Rice. Plant and Cell Physiology 30: 963-969
Kobayashi M, Yamaguchi I, Murofushi N, Ota Y, Takahashi N (1988) Fluctuation and Localization of Endogenous Gibberellins in Rice. Agricultural and Biological Chemistry 52: 1189-1194
Lee DJ, Zeevaart JA (2005) Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris. Plant Physiol 138: 243-254
Lester DR, Ross JJ, Davies PJ, Reid JB (1997) Mendel''s stem length gene (Le) encodes a gibberellin 3 beta-hydroxylase. Plant Cell 9: 1435-1443
Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JA, Chen LJ, Yu SM (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20: 2603-2618
Magome H, Nomura T, Hanada A, Takeda-Kamiya N, Ohnishi T, Shinma Y, Katsumata T, Kawaide H, Kamiya Y, Yamaguchi S (2013) CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proc Natl Acad Sci U S A 110: 1947-1952
Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJM, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV (2015) An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology 13: 722-736
Murakami Y (1972) Dwarfing Genes in Rice and Their Relation to Glbberellin Biosynthesis. In. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 166-174
Osnato M, Castillejo C, Matias-Hernandez L, Pelaz S (2012) TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Nat Commun 3: 808
Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134: 1642-1653
Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong DH, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299: 1896-1898
Silverstone AL, Ciampaglio CN, Sun T-p (1998) The Arabidopsis RGA Gene Encodes a Transcriptional Regulator Repressing the Gibberellin Signal Transduction Pathway. The Plant Cell 10: 155-169
Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci U S A 99: 9043-9048
Spray C, Phinney BO, Gaskin P, Gilmour SJ, Macmillan J (1984) Internode length in Zea mays L. : The dwarf-1 mutation controls the 3beta-hydroxylation of gibberellin A20 to gibberellin A 1. Planta 160: 464-468
Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437: 693-698
Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59: 225-251
Zeevaart JAD, Talon M (1992) Gibberellin mutants in Arabidopsis thaliana. In CM Karssen, LC van Loon, D Vreugdenhil, eds, Progress in Plant Growth Regulation: Proceedings of the 14th International Conference on Plant Growth Substances, Amsterdam, 21–26 July, 1991. Springer Netherlands, Dordrecht, pp 34-42
Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, Sun TP (2007) Global analysis of della direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19: 3037-3057
電子全文 電子全文(網際網路公開日期:20231001)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top