跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/25 22:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:迪巴揚
研究生(外文):Debayan Bose
論文名稱:C型非專一性磷脂分解酶對於三酸甘油脂的生合成及植物生殖發育所扮演角色的研究
論文名稱(外文):Investigating the roles of non-specific phospholipases C (NPCs) in triacylglycerol (TAG) biosynthesis modulating plant reproductive growth and development
指導教授:中村友輝
指導教授(外文):Yuki Nakamura
口試委員:金原和江趙光裕李秀敏蔡宜芳
口試委員(外文):Kazue KaneharaGuang-Yuh JauhHsou-min LiYi-Fang, Tsay
口試日期:2021-07-05
學位類別:博士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:101
中文關鍵詞:型非專一性磷脂成及植物生殖發育所扮演角色的研究
外文關鍵詞:Arabidopsis thaliananon-specific phospholipases C (NPC)triacylglycerol (TAG)reproductive growth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Over the years, triacylglycerols (TAG) and their crucial roles have moved well beyond just a storage compound in seeds to finding implications in developmental aspects of the plants. One such key developmental stage where it has been
speculated to play a role, but not definitively confirmed is during the reproductive development. Also, what was elusive has been the complex metabolic pathways that synthesizes these energy dense carbon compounds. The present work aims at addressing these two seemingly distinct, yet significant questions, in the context of male gametophytic development using Arabidopsis thaliana as a model. Previous study reported that two of the non-specific phospholipase Cs (NPCs), NPC2 and 6 can play redundant roles in reproductive development in the plants. However, how it does so was an excellent question that warranted investigation. Our recently published work that forms the basis of chapter 3 of this thesis and mentioned in details have shown that it does so by utilizing the phospholipids as substrates to synthesize diacylglycerol (DAG), the precursor for TAG biosynthesis in male reproductive development (pollen tube growth). Further, within the seeds, the enzymatic pathway contributing to both TAG biosynthesis as well as determining its content has largely been contentious. Though a recent report suggests that NPC6 plays a role in the same, our unpublished data that forms the basis of chapter 2 in which we re-investigated the roles of both NPC2 and 6 shows that while this may be the case, yet there might be yet elusive pathways in addition to the Kennedy pathway that can play a more predominant role in this regard. Finally, in chapter 4, laying the future of this particular work, we have extended beyond NPC2 and 6’s role in TAG biosynthesis to phosphatidylethanol amine (PE) biosynthesis alongside the de novo pathway to modulate embryonic development in Arabidopsis. Finally, in the same chapter, we have laid down, based on the data and previous evidences, conclusions of this whole work. Together, we believe, that this work will shed light on a hitherto unknown role of NPC2 and 6 in both TAG and PE biosynthesis in context of plant reproductive development that might have translational implications in terms of enhancing food yield in commercial crops.
Acknowledgements..............................................................................ⅰ
Abstract....................................................................................................ⅵ
Table of Contents……..........................................................................vii
List of tables…………..............................................................................ⅸ
List of figures……………….....................................................................ⅹ
List of abbreviations…………………………..........................................ⅻ
CHAPTER 1……………………....................................................................1
General Introduction……………….......................................................1
CHAPTER 2………………….....................................................................24
NPC2 and NPC6 in TAG biosynthesis in seeds of Arabidopsis thaliana…................................................................................................24
Abstract………………..............................................................................25
Introduction…………………………........................................................26
Material and Methods……................................................................29
Results……………………..........................................................................31
Discussion…………................................................................................34
CHAPTER 3………………........................................................................45
Non-specific phospholipases C2 and C6 redundantly function in pollen tube growth via triacylglycerol production in Arabidopsis…………..............................................................................45
Abstract……………..................................................................................46
Introduction……………………...............................................................47
Materials and Methods……………....................................................49
Results……………….................................................................................54
Discussion………………..........................................................................58
CHAPTER 4……………………..................................................................69
Conclusions...........................................................................................70
Future Directions.................................................................................74
References……………….........................................................................84
Curriculum Vitae……………….............................................................98
•Ami, D., Mereghetti, P., Natalello, A., Doglia, S.M., Zanoni, M., Redi, C.A., and Monti, M. (2011). FTIR spectral signatures of mouse antral oocytes: molecular markers of oocyte maturation and developmental competence. Biochim Biophys Acta 1813, 1220-1229.
•Angkawijaya, A.E., Nguyen, V.C., Gunawan, F., and Nakamura, Y. (2020). A Pair of Arabidopsis Diacylglycerol Kinases Essential for Gametogenesis and Endoplasmic Reticulum Phospholipid Metabolism in Leaves and Flowers. Plant Cell 32, 2602-2620.
•Angkawijaya, A.E., Nguyen, V.C., and Nakamura, Y. (2019). LYSOPHOSPHATIDIC ACID ACYLTRANSFERASES 4 and 5 are involved in glycerolipid metabolism and nitrogen starvation response in Arabidopsis. New Phytol 224, 336-351.
•Aznar-Moreno, J.A., and Durrett, T.P. (2017). Simultaneous Targeting of Multiple Gene Homeologs to Alter Seed Oil Production in Camelina sativa. Plant Cell Physiol 58, 1260-1267.
•Badami, R.C., and Patil, K.B. (1980). Structure and occurrence of unusual fatty acids in minor seed oils. Prog Lipid Res 19, 119-153.
•Banas, W., Sanchez Garcia, A., Banas, A., and Stymne, S. (2013). Activities of acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) in microsomal preparations of developing sunflower and safflower seeds. Planta 237, 1627-1636.
•Bar-Tana, J., Rose, G., and Shapiro, B. (1973). Palmitoyl-coenzyme A synthetase. Isolation of an enzyme-bound intermediate. Biochem J 135, 411-416.
•Bates, P.D. (2016). Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis. Biochim Biophys Acta 1861, 1214-1225.
•Bates, P.D., and Browse, J. (2012). The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering. Front Plant Sci 3, 147.
•Bates, P.D., Durrett, T.P., Ohlrogge, J.B., and Pollard, M. (2009). Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. Plant Physiol 150, 55-72.
•Bates, P.D., Fatihi, A., Snapp, A.R., Carlsson, A.S., Browse, J., and Lu, C. (2012). Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. Plant Physiol 160, 1530-1539.
•Bates, P.D., Ohlrogge, J.B., and Pollard, M. (2007). Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing. J Biol Chem 282, 31206-31216.
•Baud, S., Dubreucq, B., Miquel, M., Rochat, C., and Lepiniec, L. (2008). Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. Arabidopsis Book 6, e0113.
•Bayon, S., Chen, G., Weselake, R.J., and Browse, J. (2015). A small phospholipase A2-alpha from castor catalyzes the removal of hydroxy fatty acids from phosphatidylcholine in transgenic Arabidopsis seeds. Plant Physiol 167, 1259-1270.
•Blancaflor, E.B., Kilaru, A., Keereetaweep, J., Khan, B.R., Faure, L., and Chapman, K.D. (2014). N-Acylethanolamines: lipid metabolites with functions in plant growth and development. Plant J 79, 568-583.
•Bligh, E.G., and Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911-917.
•Bose, D., Ngo, A.H., Van Nguyen, C., and Nakamura, Y. (2021). Non-specific phospholipases C2 and 6 redundantly function in pollen tube growth via triacylglycerol production in Arabidopsis. Plant J.
•Botella, C., Jouhet, J., and Block, M.A. (2017). Importance of phosphatidylcholine on the chloroplast surface. Prog Lipid Res 65, 12-23.
•Cai, G., Fan, C., Liu, S., Yang, Q., Liu, D., Wu, J., Li, J., Zhou, Y., Guo, L., and Wang, X. (2020). Nonspecific phospholipase C6 increases seed oil production in oilseed Brassicaceae plants. New Phytol 226, 1055-1073.
•Cai, S., and Lashbrook, C.C. (2008). Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2. Plant Physiol 146, 1305-1321.
•Cai, Y., Goodman, J.M., Pyc, M., Mullen, R.T., Dyer, J.M., and Chapman, K.D. (2015). Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation. Plant Cell 27, 2616-2636.
•Cernac, A., and Benning, C. (2004). WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40, 575-585.
•Cocco, L., Follo, M.Y., Manzoli, L., and Suh, P.G. (2015). Phosphoinositide-specific phospholipase C in health and disease. J Lipid Res 56, 1853-1860.
•Colquhoun, D.M. (2001). Nutraceuticals: vitamins and other nutrients in coronary heart disease. Curr Opin Lipidol 12, 639-646.
•Dahlqvist, A., Stahl, U., Lenman, M., Banas, A., Lee, M., Sandager, L., Ronne, H., and Stymne, S. (2000). Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci U S A 97, 6487-6492.
•Dormann, P., Voelker, T.A., and Ohlrogge, J.B. (1995). Cloning and expression in Escherichia coli of a novel thioesterase from Arabidopsis thaliana specific for long-chain acyl-acyl carrier proteins. Arch Biochem Biophys 316, 612-618.
•Downs, S.M., Mosey, J.L., and Klinger, J. (2009). Fatty acid oxidation and meiotic resumption in mouse oocytes. Mol Reprod Dev 76, 844-853.
•Dunning, K.R., Russell, D.L., and Robker, R.L. (2014). Lipids and oocyte developmental competence: the role of fatty acids and beta-oxidation. Reproduction 148, R15-27.
•Durrett, T.P., Benning, C., and Ohlrogge, J. (2008). Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54, 593-607.
•Dyer, J.M., Stymne, S., Green, A.G., and Carlsson, A.S. (2008). High-value oils from plants. Plant J 54, 640-655.
•Eastmond, P.J. (2006). SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell 18, 665-675.
•Essigmann, B., Guler, S., Narang, R.A., Linke, D., and Benning, C. (1998). Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 95, 1950-1955.
•Footitt, S., Dietrich, D., Fait, A., Fernie, A.R., Holdsworth, M.J., Baker, A., and Theodoulou, F.L. (2007). The COMATOSE ATP-binding cassette transporter is required for full fertility in Arabidopsis. Plant Physiol 144, 1467-1480.
•Gaude, N., Nakamura, Y., Scheible, W.R., Ohta, H., and Dormann, P. (2008). Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J 56, 28-39.
•Hattingen, E., Magerkurth, J., Pilatus, U., Mozer, A., Seifried, C., Steinmetz, H., Zanella, F., and Hilker, R. (2009). Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson's disease. Brain 132, 3285-3297.
•He, S.L., Hsieh, H.L., and Jauh, G.Y. (2018). SMALL AUXIN UP RNA62/75 Are Required for the Translation of Transcripts Essential for Pollen Tube Growth. Plant Physiol 178, 626-640.
•Hsieh, K., and Huang, A.H. (2004). Endoplasmic reticulum, oleosins, and oils in seeds and tapetum cells. Plant Physiol 136, 3427-3434.
•Hu, Z., Ren, Z., and Lu, C. (2012). The phosphatidylcholine diacylglycerol cholinephosphotransferase is required for efficient hydroxy fatty acid accumulation in transgenic Arabidopsis. Plant Physiol 158, 1944-1954.
•Huang, C.Y., Chen, P.Y., Huang, M.D., Tsou, C.H., Jane, W.N., and Huang, A.H. (2013). Tandem oleosin genes in a cluster acquired in Brassicaceae created tapetosomes and conferred additive benefit of pollen vigor. Proc Natl Acad Sci U S A 110, 14480-14485.
•Ischebeck, T. (2016). Lipids in pollen - They are different. Biochim Biophys Acta 1861, 1315-1328.
•Jimbo, H., Izuhara, T., Hirashima, T., Endo, K., Nakamura, Y., and Wada, H. (2020). Membrane lipid remodeling is required for photosystem II function under low CO2. Plant J.
•Kanai, M., Yamada, T., Hayashi, M., Mano, S., and Nishimura, M. (2019). Soybean (Glycine max L.) triacylglycerol lipase GmSDP1 regulates the quality and quantity of seed oil. Sci Rep 9, 8924.
•Kanehara, K., Yu, C.Y., Cho, Y., Cheong, W.F., Torta, F., Shui, G., Wenk, M.R., and Nakamura, Y. (2015). Arabidopsis AtPLC2 Is a Primary Phosphoinositide-Specific Phospholipase C in Phosphoinositide Metabolism and the Endoplasmic Reticulum Stress Response. PLoS Genet 11, e1005511.
•Kang, L., Wang, Y.S., Uppalapati, S.R., Wang, K., Tang, Y., Vadapalli, V., Venables, B.J., Chapman, K.D., Blancaflor, E.B., and Mysore, K.S. (2008). Overexpression of a fatty acid amide hydrolase compromises innate immunity in Arabidopsis. Plant J 56, 336-349.
•Karimi, M., De Meyer, B., and Hilson, P. (2005). Modular cloning in plant cells. Trends Plant Sci 10, 103-105.
•Katavic, V., Reed, D.W., Taylor, D.C., Giblin, E.M., Barton, D.L., Zou, J., Mackenzie, S.L., Covello, P.S., and Kunst, L. (1995). Alteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity. Plant Physiol 108, 399-409.
•Kawaguchi, A., Tomoda, H., Nozoe, S., Omura, S., and Okuda, S. (1982). Mechanism of action of cerulenin on fatty acid synthetase. Effect of cerulenin on iodoacetamide-induced malonyl-CoA decarboxylase activity. J Biochem 92, 7-12.
•Kelly, A.A., Quettier, A.L., Shaw, E., and Eastmond, P.J. (2011). Seed storage oil mobilization is important but not essential for germination or seedling establishment in Arabidopsis. Plant Physiol 157, 866-875.
•Kim, H.U., Lee, K.R., Go, Y.S., Jung, J.H., Suh, M.C., and Kim, J.B. (2011). Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Plant Cell Physiol 52, 983-993.
•Kim, S., Yamaoka, Y., Ono, H., Kim, H., Shim, D., Maeshima, M., Martinoia, E., Cahoon, E.B., Nishida, I., and Lee, Y. (2013). AtABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum. Proc Natl Acad Sci U S A 110, 773-778.
•Kim, S.C., Nusinow, D.A., Sorkin, M.L., Pruneda-Paz, J., and Wang, X. (2019). Interaction and Regulation Between Lipid Mediator Phosphatidic Acid and Circadian Clock Regulators. Plant Cell 31, 399-416.
•Kocourkova, D., Krckova, Z., Pejchar, P., Veselkova, S., Valentova, O., Wimalasekera, R., Scherer, G.F., and Martinec, J. (2011). The phosphatidylcholine-hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. J Exp Bot 62, 3753-3763.
•Krckova, Z., Brouzdova, J., Danek, M., Kocourkova, D., Rainteau, D., Ruelland, E., Valentova, O., Pejchar, P., and Martinec, J. (2015). Arabidopsis non-specific phospholipase C1: characterization and its involvement in response to heat stress. Front Plant Sci 6, 928.
•Krckova, Z., Kocourkova, D., Danek, M., Brouzdova, J., Pejchar, P., Janda, M., Pokotylo, I., Ott, P.G., Valentova, O., and Martinec, J. (2018). The Arabidopsis thaliana non-specific phospholipase C2 is involved in the response to Pseudomonas syringae attack. Ann Bot 121, 297-310.
•Lager, I., Glab, B., Eriksson, L., Chen, G., Banas, A., and Stymne, S. (2015). Novel reactions in acyl editing of phosphatidylcholine by lysophosphatidylcholine transacylase (LPCT) and acyl-CoA:glycerophosphocholine acyltransferase (GPCAT) activities in microsomal preparations of plant tissues. Planta 241, 347-358.
•Lee, J., Welti, R., Schapaugh, W.T., and Trick, H.N. (2011). Phospholipid and triacylglycerol profiles modified by PLD suppression in soybean seed. Plant Biotechnol J 9, 359-372.
•Lemieux, B., Miquel, M., Somerville, C., and Browse, J. (1990). Mutants of Arabidopsis with alterations in seed lipid fatty acid composition. Theor Appl Genet 80, 234-240.
•Li-Beisson, Y., Shorrosh, B., Beisson, F., Andersson, M.X., Arondel, V., Bates, P.D., Baud, S., Bird, D., Debono, A., Durrett, T.P., et al. (2013). Acyl-lipid metabolism. Arabidopsis Book 11, e0161.
•Li, N., Gugel, I.L., Giavalisco, P., Zeisler, V., Schreiber, L., Soll, J., and Philippar, K. (2015). FAX1, a novel membrane protein mediating plastid fatty acid export. PLoS Biol 13, e1002053.
•Li, Y.L., Su, X., Stahl, P.D., and Gross, M.L. (2007). Quantification of diacylglycerol molecular species in biological samples by electrospray ionization mass spectrometry after one-step derivatization. Anal Chem 79, 1569-1574.
•Lin, Y.C., Liu, Y.C., and Nakamura, Y. (2015). The Choline/Ethanolamine Kinase Family in Arabidopsis: Essential Role of CEK4 in Phospholipid Biosynthesis and Embryo Development. Plant Cell 27, 1497-1511.
•Liu, Q., Siloto, R.M., Lehner, R., Stone, S.J., and Weselake, R.J. (2012). Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology. Prog Lipid Res 51, 350-377.
•Liu, Y., Wang, G., and Wang, X. (2015). Role of aminoalcoholphosphotransferases 1 and 2 in phospholipid homeostasis in Arabidopsis. Plant Cell 27, 1512-1528.
•Liu, Y.C., Gunawan, F., Yunus, I.S., and Nakamura, Y. (2018). Arabidopsis Serine Decarboxylase 1 (SDC1) in Phospholipid and Amino Acid Metabolism. Front Plant Sci 9, 972.
•Lu, C., Fulda, M., Wallis, J.G., and Browse, J. (2006). A high-throughput screen for genes from castor that boost hydroxy fatty acid accumulation in seed oils of transgenic Arabidopsis. Plant J 45, 847-856.
•Lu, C., Xin, Z., Ren, Z., Miquel, M., and Browse, J. (2009). An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc Natl Acad Sci U S A 106, 18837-18842.
•Lung, S.C., and Weselake, R.J. (2006). Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids 41, 1073-1088.
•Macfarlane, M.G., and Knight, B.C. (1941). The biochemistry of bacterial toxins: The lecithinase activity of Cl. welchii toxins. Biochem J 35, 884-902.
•Mellema, S., Eichenberger, W., Rawyler, A., Suter, M., Tadege, M., and Kuhlemeier, C. (2002). The ethanolic fermentation pathway supports respiration and lipid biosynthesis in tobacco pollen. Plant J 30, 329-336.
•Mhaske, V., Beldjilali, K., Ohlrogge, J., and Pollard, M. (2005). Isolation and characterization of an Arabidopsis thaliana knockout line for phospholipid: diacylglycerol transacylase gene (At5g13640). Plant Physiol Biochem 43, 413-417.
•Millar, A.A., and Kunst, L. (1997). Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12, 121-131.
•Mizoi, J., Nakamura, M., and Nishida, I. (2006). Defects in CTP:PHOSPHORYLETHANOLAMINE CYTIDYLYLTRANSFERASE affect embryonic and postembryonic development in Arabidopsis. Plant Cell 18, 3370-3385.
•Montjean, D., Entezami, F., Lichtblau, I., Belloc, S., Gurgan, T., and Menezo, Y. (2012). Carnitine content in the follicular fluid and expression of the enzymes involved in beta oxidation in oocytes and cumulus cells. J Assist Reprod Genet 29, 1221-1225.
•Mu, J., Tan, H., Zheng, Q., Fu, F., Liang, Y., Zhang, J., Yang, X., Wang, T., Chong, K., Wang, X.J., et al. (2008). LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol 148, 1042-1054.
•Muller, A.O., and Ischebeck, T. (2018). Characterization of the enzymatic activity and physiological function of the lipid droplet-associated triacylglycerol lipase AtOBL1. New Phytol 217, 1062-1076.
•Nakamura, Y. (2013). Phosphate starvation and membrane lipid remodeling in seed plants. Prog Lipid Res 52, 43-50.
•Nakamura, Y. (2015). Function of polar glycerolipids in flower development in Arabidopsis thaliana. Prog Lipid Res 60, 17-29.
•Nakamura, Y. (2017). Plant Phospholipid Diversity: Emerging Functions in Metabolism and Protein-Lipid Interactions. Trends Plant Sci 22, 1027-1040.
•Nakamura, Y., Arimitsu, H., Yamaryo, Y., Awai, K., Masuda, T., Shimada, H., Takamiya, K., and Ohta, H. (2003). Digalactosyldiacylglycerol is a major glycolipid in floral organs of Petunia hybrida. Lipids 38, 1107-1112.
•Nakamura, Y., Awai, K., Masuda, T., Yoshioka, Y., Takamiya, K., and Ohta, H. (2005). A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem 280, 7469-7476.
•Nakamura, Y., and Ngo, A.H. (2020). Non-specific phospholipase C (NPC): an emerging class of phospholipase C in plant growth and development. J Plant Res 133, 489-497.
•Napier, J.A., and Graham, I.A. (2010). Tailoring plant lipid composition: designer oilseeds come of age. Curr Opin Plant Biol 13, 330-337.
•Nelson, B.K., Cai, X., and Nebenfuhr, A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51, 1126-1136.
•Nerlich, A., von Orlow, M., Rontein, D., Hanson, A.D., and Dormann, P. (2007). Deficiency in phosphatidylserine decarboxylase activity in the psd1 psd2 psd3 triple mutant of Arabidopsis affects phosphatidylethanolamine accumulation in mitochondria. Plant Physiol 144, 904-914.
•Ngo, A.H., Kanehara, K., and Nakamura, Y. (2019). Non-specific phospholipases C, NPC2 and NPC6, are required for root growth in Arabidopsis. Plant J 100, 825-835.
•Ngo, A.H., Lin, Y.C., Liu, Y.C., Gutbrod, K., Peisker, H., Dormann, P., and Nakamura, Y. (2018). A pair of nonspecific phospholipases C, NPC2 and NPC6, are involved in gametophyte development and glycerolipid metabolism in Arabidopsis. New Phytol 219, 163-175.
•Ohlrogge, J.B., Kuhn, D.N., and Stumpf, P.K. (1979). Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea. Proc Natl Acad Sci U S A 76, 1194-1198.
•Paczkowski, M., Silva, E., Schoolcraft, W.B., and Krisher, R.L. (2013). Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes. Biol Reprod 88, 111.
•Patel, D., and Witt, S.N. (2017). Ethanolamine and Phosphatidylethanolamine: Partners in Health and Disease. Oxid Med Cell Longev 2017, 4829180.
•Pejchar, P., and Martinec, J. (2015). Aluminum ions alter the function of non-specific phospholipase C through the changes in plasma membrane physical properties. Plant Signal Behav 10, e1031938.
•Pejchar, P., Potocky, M., Novotna, Z., Veselkova, S., Kocourkova, D., Valentova, O., Schwarzerova, K., and Martinec, J. (2010). Aluminium ions inhibit the formation of diacylglycerol generated by phosphatidylcholine-hydrolysing phospholipase C in tobacco cells. New Phytol 188, 150-160.
•Pellaud, S., Bory, A., Chabert, V., Romanens, J., Chaisse-Leal, L., Doan, A.V., Frey, L., Gust, A., Fromm, K.M., and Mene-Saffrane, L. (2018). WRINKLED1 and ACYL-COA:DIACYLGLYCEROL ACYLTRANSFERASE1 regulate tocochromanol metabolism in Arabidopsis. New Phytol 217, 245-260.
•Peters, C., Kim, S.C., Devaiah, S., Li, M., and Wang, X. (2014). Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis. Plant Cell Environ 37, 2002-2013.
•Peters, C., Li, M., Narasimhan, R., Roth, M., Welti, R., and Wang, X. (2010). Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell 22, 2642-2659.
•Piffanelli, P., Ross, J.H., and Murphy, D.J. (1997). Intra- and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus. Plant J 11, 549-562.
•Pinfield-Wells, H., Rylott, E.L., Gilday, A.D., Graham, S., Job, K., Larson, T.R., and Graham, I.A. (2005). Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism. Plant J 43, 861-872.
•Poussin, M.A., Leitges, M., and Goldfine, H. (2009). The ability of Listeria monocytogenes PI-PLC to facilitate escape from the macrophage phagosome is dependent on host PKCbeta. Microb Pathog 46, 1-5.
•Pyc, M., Cai, Y., Gidda, S.K., Yurchenko, O., Park, S., Kretzschmar, F.K., Ischebeck, T., Valerius, O., Braus, G.H., Chapman, K.D., et al. (2017). Arabidopsis lipid droplet-associated protein (LDAP) - interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds. Plant J 92, 1182-1201.
•Rahmet-Alla, M., and Rowley, A.F. (1990). Studies on the cellular defense reactions of the madeira cockroach, Leucophaea maderae: in vitro phagocytosis of different strains of Bacillus cereus and their effect on hemocyte viability. J Invertebr Pathol 55, 350-356.
•Reddy, V.S., Rao, D.K., and Rajasekharan, R. (2010). Functional characterization of lysophosphatidic acid phosphatase from Arabidopsis thaliana. Biochim Biophys Acta 1801, 455-461.
•Rhee, S.G., and Bae, Y.S. (1997). Regulation of phosphoinositide-specific phospholipase C isozymes. J Biol Chem 272, 15045-15048.
•Rontein, D., Wu, W.I., Voelker, D.R., and Hanson, A.D. (2003). Mitochondrial phosphatidylserine decarboxylase from higher plants. Functional complementation in yeast, localization in plants, and overexpression in Arabidopsis. Plant Physiol 132, 1678-1687.
•Routaboul, J.M., Benning, C., Bechtold, N., Caboche, M., and Lepiniec, L. (1999). The TAG1 locus of Arabidopsis encodes for a diacylglycerol acyltransferase. Plant Physiol Biochem 37, 831-840.
•Salas, J.J., and Ohlrogge, J.B. (2002). Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys 403, 25-34.
•Santos-Mendoza, M., Dubreucq, B., Baud, S., Parcy, F., Caboche, M., and Lepiniec, L. (2008). Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J 54, 608-620.
•Sasaki, Y., and Nagano, Y. (2004). Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem 68, 1175-1184.
•Shockey, J.M., Fulda, M.S., and Browse, J. (2003). Arabidopsis contains a large superfamily of acyl-activating enzymes. Phylogenetic and biochemical analysis reveals a new class of acyl-coenzyme a synthetases. Plant Physiol 132, 1065-1076.
•Shockey, J.M., Fulda, M.S., and Browse, J.A. (2002). Arabidopsis contains nine long-chain acyl-coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism. Plant Physiol 129, 1710-1722.
•Slack, C.R., Bertaud, W.S., Shaw, B.D., Holland, R., Browse, J., and Wright, H. (1980). Some studies on the composition and surface properties of oil bodies from the seed cotyledons of safflower (Carthamus tinctorius) and linseed (Linum ustatissimum). Biochem J 190, 551-561.
•Stahl, U., Carlsson, A.S., Lenman, M., Dahlqvist, A., Huang, B., Banas, W., Banas, A., and Stymne, S. (2004). Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis. Plant Physiol 135, 1324-1335.
•Stalberg, K., Neal, A.C., Ronne, H., and Stahl, U. (2008). Identification of a novel GPCAT activity and a new pathway for phosphatidylcholine biosynthesis in S. cerevisiae. J Lipid Res 49, 1794-1806.
•Sturmey, R.G., Reis, A., Leese, H.J., and McEvoy, T.G. (2009). Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim 44 Suppl 3, 50-58.
•Stymne, S., and Stobart, A.K. (1984). Evidence for the reversibility of the acyl-CoA:lysophosphatidylcholine acyltransferase in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons and rat liver. Biochem J 223, 305-314.
•Taylor, L.P., and Hepler, P.K. (1997). Pollen Germination and Tube Growth. Annu Rev Plant Physiol Plant Mol Biol 48, 461-491.
•Teaster, N.D., Keereetaweep, J., Kilaru, A., Wang, Y.S., Tang, Y., Tran, C.N., Ayre, B.G., Chapman, K.D., and Blancaflor, E.B. (2012). Overexpression of Fatty Acid Amide Hydrolase Induces Early Flowering in Arabidopsis thaliana. Front Plant Sci 3, 32.
•Titball, R.W. (1993). Bacterial phospholipases C. Microbiol Rev 57, 347-366.
•Titball, R.W. (1998). Bacterial phospholipases. Symp Ser Soc Appl Microbiol 27, 127S-137S.
•Tjellstrom, H., Yang, Z., Allen, D.K., and Ohlrogge, J.B. (2012). Rapid kinetic labeling of Arabidopsis cell suspension cultures: implications for models of lipid export from plastids. Plant Physiol 158, 601-611.
•Valsangkar, D., and Downs, S.M. (2013). A requirement for fatty acid oxidation in the hormone-induced meiotic maturation of mouse oocytes. Biol Reprod 89, 43.
•van Erp, H., Bates, P.D., Burgal, J., Shockey, J., and Browse, J. (2011). Castor phospholipid:diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis. Plant Physiol 155, 683-693.
•van Erp, H., Bryant, F.M., Martin-Moreno, J., Michaelson, L.V., Bhutada, G., and Eastmond, P.J. (2019). Engineering the stereoisomeric structure of seed oil to mimic human milk fat. Proc Natl Acad Sci U S A 116, 20947-20952.
•van Wijk, N., Broersen, L.M., de Wilde, M.C., Hageman, R.J., Groenendijk, M., Sijben, J.W., and Kamphuis, P.J. (2014). Targeting synaptic dysfunction in Alzheimer's disease by administering a specific nutrient combination. J Alzheimers Dis 38, 459-479.
•Vanhercke, T., Wood, C.C., Stymne, S., Singh, S.P., and Green, A.G. (2013). Metabolic engineering of plant oils and waxes for use as industrial feedstocks. Plant Biotechnol J 11, 197-210.
•Wang, L., Shen, W., Kazachkov, M., Chen, G., Chen, Q., Carlsson, A.S., Stymne, S., Weselake, R.J., and Zou, J. (2012). Metabolic interactions between the Lands cycle and the Kennedy pathway of glycerolipid synthesis in Arabidopsis developing seeds. Plant Cell 24, 4652-4669.
•Wang, S., Zhang, S., Liou, L.C., Ren, Q., Zhang, Z., Caldwell, G.A., Caldwell, K.A., and Witt, S.N. (2014). Phosphatidylethanolamine deficiency disrupts alpha-synuclein homeostasis in yeast and worm models of Parkinson disease. Proc Natl Acad Sci U S A 111, E3976-3985.
•Wang, X. (2000). Multiple forms of phospholipase D in plants: the gene family, catalytic and regulatory properties, and cellular functions. Prog Lipid Res 39, 109-149.
•Wang, Y.S., Shrestha, R., Kilaru, A., Wiant, W., Venables, B.J., Chapman, K.D., and Blancaflor, E.B. (2006). Manipulation of Arabidopsis fatty acid amide hydrolase expression modifies plant growth and sensitivity to N-acylethanolamines. Proc Natl Acad Sci U S A 103, 12197-12202.
•Wickramarathna, A.D., Siloto, R.M., Mietkiewska, E., Singer, S.D., Pan, X., and Weselake, R.J. (2015). Heterologous expression of flax PHOSPHOLIPID:DIACYLGLYCEROL CHOLINEPHOSPHOTRANSFERASE (PDCT) increases polyunsaturated fatty acid content in yeast and Arabidopsis seeds. BMC Biotechnol 15, 63.
•Wimalasekera, R., Pejchar, P., Holk, A., Martinec, J., and Scherer, G.F. (2010). Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana. Mol Plant 3, 610-625.
•Wolters-Arts, M., Lush, W.M., and Mariani, C. (1998). Lipids are required for directional pollen-tube growth. Nature 392, 818-821.
•Wood, B.R., Chernenko, T., Matthaus, C., Diem, M., Chong, C., Bernhard, U., Jene, C., Brandli, A.A., McNaughton, D., Tobin, M.J., et al. (2008). Shedding new light on the molecular architecture of oocytes using a combination of synchrotron Fourier transform-infrared and Raman spectroscopic mapping. Anal Chem 80, 9065-9072.
•Wu, F.H., Shen, S.C., Lee, L.Y., Lee, S.H., Chan, M.T., and Lin, C.S. (2009). Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16.
•Xu, C., and Shanklin, J. (2016). Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues. Annu Rev Plant Biol 67, 179-206.
•Xu, J., Carlsson, A.S., Francis, T., Zhang, M., Hoffman, T., Giblin, M.E., and Taylor, D.C. (2012). Triacylglycerol synthesis by PDAT1 in the absence of DGAT1 activity is dependent on re-acylation of LPC by LPCAT2. BMC Plant Biol 12, 4.
•Yam, C., He, Y., Zhang, D., Chiam, K.H., and Oliferenko, S. (2011). Divergent strategies for controlling the nuclear membrane satisfy geometric constraints during nuclear division. Curr Biol 21, 1314-1319.
•Yamaoka, Y., Yu, Y., Mizoi, J., Fujiki, Y., Saito, K., Nishijima, M., Lee, Y., and Nishida, I. (2011). PHOSPHATIDYLSERINE SYNTHASE1 is required for microspore development in Arabidopsis thaliana. Plant J 67, 648-661.
•Yang, Y., and Benning, C. (2018). Functions of triacylglycerols during plant development and stress. Curr Opin Biotechnol 49, 191-198.
•Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2, 1565-1572.
•Yunus, I.S., Liu, Y.C., and Nakamura, Y. (2016). The importance of SERINE DECARBOXYLASE1 (SDC1) and ethanolamine biosynthesis during embryogenesis of Arabidopsis thaliana. Plant J 88, 559-569.
•Zhang, B., Wang, Y., and Liu, J.Y. (2018). Genome-wide identification and characterization of phospholipase C gene family in cotton (Gossypium spp.). Sci China Life Sci 61, 88-99.
•Zhang, M., Fan, J., Taylor, D.C., and Ohlrogge, J.B. (2009). DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell 21, 3885-3901.
•Zienkiewicz, A., Zienkiewicz, K., Rejon, J.D., Rodriguez-Garcia, M.I., and Castro, A.J. (2013). New insights into the early steps of oil body mobilization during pollen germination. J Exp Bot 64, 293-302.
電子全文 電子全文(網際網路公開日期:20240723)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top