跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 03:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱齡瑩
研究生(外文):Ling-Ying Chiu
論文名稱:菸草蛋白NbLTP1在細胞內的雙重定位及其與竹嵌紋病毒關係之研究
論文名稱(外文):The study of the dual localization of lipid transfer protein 1 from Nicotiana benthamiana and its relationship with Bamboo mosaic virus
指導教授:蔡慶修蔡慶修引用關係
指導教授(外文):Ching-Hsiu Tsai
口試委員:徐堯煇胡仲祺林納生鄭綺萍
口試委員(外文):Yau-Heiu HsuChung-Chi HuNa-Sheng LinChi-Ping Cheng
口試日期:2021-05-20
學位類別:博士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:69
中文關鍵詞:脂質傳送蛋白竹嵌紋病毒雙重位置訊號
外文關鍵詞:lipid transfer proteinBamboo mosaic virusdual localization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
我們在Nicotiana benthamiana中找到一個與N. tabacum的non-specific lipid transfer protein 1 (nsLTP1)有85%相似性的基因命名為NbLTP1。透過研究其在植物細胞中所扮演的角色及與竹嵌紋病毒之關係,能夠了解到植物細胞的生理功能與病毒的繁殖機制。竹嵌紋病毒為一隸屬於Alphaflexiviridae科Potexvirus屬的單一正股RNA病毒。NbLTP1會在感染竹嵌紋病毒後表現量降低。靜默葉片與原生質體內的宿主基因NbLTP1後,病毒鞘蛋白的累積量皆會下降,因此推斷宿主基因NbLTP1可能與病毒的複製有關。利用融合橘螢光蛋白的表現,觀察其於細胞的位置主要分佈於胞外,然而如將訊息胜肽去除,則大部分的蛋白會與葉綠體結合。在原生質體中,野生型與突變型蛋白皆會與葉綠體結合。因此推論NbLTP1可能具有兩種位置訊號,其中主要的位置訊號為分泌至胞外,次要的訊號則是送至葉綠體。由於有部分的葉綠體蛋白是經由胞內的分泌系統來傳送,因此推測NbLTP1也有可能會利用此機制將其送至葉綠體。然而大量的表現NbLTP1後,再感染病毒,發現病毒鞘蛋白累積量有增加但無統計上的顯著差異;而過量表現NbLTP1/△SP卻能顯著的提升BaMV累積。顯示將此蛋白特別表現在葉綠體,也就是BaMV複製的位置時,或許對病毒累積有正向的調節。在進一步實驗中發現,能夠被磷酸化或模擬磷酸化的蛋白,NbLTP1/△SP與NbLTP1/△SP/P(+),就能夠幫助病毒累積,且傾向與葉綠體結合;缺乏攜鈣素(Calmodulin)結合及模擬不能被磷酸化的蛋白則無法幫助病毒累積。由於LTP1與鈣素結合或被磷酸化等功能與結合脂質的能力相關,因此我們推測NbLTP1的脂質結合活性,對於蛋白本身表達位置與竹嵌紋病毒在葉綠體內的複製,扮演重要的角色。
In this study, we characterized a lipid transfer protein, designated NbLTP1 in Nicotiana benthamiana, which was downregulated after Bamboo mosaic virus (BaMV) inoculation. Finding out the role of host proteins in plants helps us acquire knowledge of plant physiology. Revealing the mechanism of how these proteins are involved in virus infection cycle could pave the way to defeat viral disease. BaMV accumulation significantly decreased in NbLTP1-knockdown leaves and protoplasts compared with the controls. The subcellular localization of the NbLTP1-orange fluorescent protein (OFP) was mainly the extracellular matrix. However, when we removed the signal peptide (NbLTP1/ΔSP-OFP), most of the expressed protein targeted chloroplasts. Both NbLTP1-OFP and NbLTP1/ΔSP-OFP were localized in chloroplasts when we removed the cell wall. These results suggest that NbLTP1 may have a secondary targeting signal. Previous research demonstrated a part of the chloroplast proteins are leading to chloroplasts through secretory pathway, NbLTP1 may use the same mechanism. Transient overexpression of NbLTP1 had no effect on BaMV accumulation, but that of NbLTP1/ΔSP significantly increased BaMV expression. NbLTP1 may be a positive regulator of BaMV accumulation especially when its expression is associated with chloroplasts, where BaMV replicates. The mutation was introduced to the predicted phosphorylation site to simulate the phosphorylated status, NbLTP/ΔSP/P(+), which could still assist BaMV accumulation and tend to associate with chloroplasts. By contrast, a mutant lacking calmodulin-binding or simulates the phosphorylation-negative status could not support BaMV accumulation. The lipid-binding activity of LTP1 was reported to be associated with calmodulin-binding and phosphorylation, by which the C-terminus functional domain of NbLTP1 may play a critical role in its localization and BaMV accumulation.
摘要 i
Abstract ii
Content iv
List of Figures vi

Preface 1

Chapter I. The lipid transfer protein 1 from Nicotiana benthamiana assists Bamboo mosaic virus accumulation 2
Abstract 2
Introduction 4
Bamboo Mosaic Virus 4
Host proteins involved in viral infection cycles 4
Non-specific lipid transfer protein 1 5
Materials and Methods 8
NbLTP1 Knockdown and Virus Infection 8
Protoplast Preparation and Viral RNA Inoculation 8
Protein Extraction 9
Western Blot Analysis 9
Total RNA Extraction 10
Quantitative Real-Time RT-PCR 10
Northern Blot Analysis 11
Transient Expression of C-terminus fused OFP-NbLTP1 and Its Derivatives 11
Extraction of Apoplastic Wash Fluids 13
Transient Expression of rbcSTP-NbLTP1 13
Confocal Microscopy 14
Results 15
ACGT12 is a cDNA Fragment of Nonspecific Lipid Transfer Protein 1 of N. benthamiana 15
Reduced Expression of NbLTP1 Decreases BaMV Accumulation 16
NbLTP1-OFP Targets Chloroplasts in Protoplasts with the Removal of Its Signal Peptide 16
Expression of NbLTP1/ΔSP-OFP Assists BaMV Accumulation 17
The Phosphorylation of NbLTP1 is Crucial for Efficient BaMV Accumulation 19
Discussion 20
Figures 22

Chapter II. The mechanism of NbLTP1 targeting chloroplasts 33
Abstract 33
Introduction 34
Materials and Methods 36
Transient expression of C-terminus OFP-fused NbLTP1 36
Transient expression of N-terminus OFP-fused NbLTP1 36
Construction of possible chloroplast signal with OFP 37
Confocal Microscopy 37
Results 38
Mutant with a mimicry phosphorylation status tends to localize in chloroplasts 38
The chloroplast targeting restricted in the younger leaves 38
The N-terminus fusion to block the signal peptide localized in cytoplasm 39
Discussion 40
Figures 42
References 46
Publication 55
Bao, D., Ganbaatar, O., Cui, X., Yu, R., Bao, W., Falk, B.W., Wuriyanghan, H., 2018. Down-regulation of genes coding for core RNAi components and disease resistance proteins via corresponding microRNAs might be correlated with successful Soybean mosaic virus infection in soybean. Mol Plant Pathol 19, 948-960.

Benning, C., 2008. A role for lipid trafficking in chloroplast biogenesis. Prog Lipid Res 47, 381-389.

Bernhard, W.R., Thoma, S., Botella, J., Somerville, C.R., 1991. Isolation of a cDNA Clone for Spinach Lipid Transfer Protein and Evidence that the Protein Is Synthesized by the Secretory Pathway. Plant Physiol 95, 164-170.

Bruce, B.D., 2000. Chloroplast transit peptides: structure, function and evolution. Trends Cell Biol 10, 440-447.

Carvalho Ade, O., Gomes, V.M., 2007. Role of plant lipid transfer proteins in plant cell physiology-a concise review. Peptides 28, 1144-1153.

Chen, I.H., Chen, H.T., Huang, Y.P., Huang, H.C., Shenkwen, L.L., Hsu, Y.H., Tsai, C.H., 2018. A thioredoxin NbTRXh2 from Nicotiana benthamiana negatively regulates the movement of Bamboo mosaic virus. Mol Plant Pathol 19, 405-417.

Chen, I.H., Chiu, M.H., Cheng, S.F., Hsu, Y.H., Tsai, C.H., 2013. The glutathione transferase of Nicotiana benthamiana NbGSTU4 plays a role in regulating the early replication of Bamboo mosaic virus. New Phytol 199, 749-757.

Chen, I.H., Huang, Y.W., Tsai, C.H., 2017a. The functional roles of the cis-acting elements in Bamboo mosaic virus RNA genome. Front Microbiol 8, 645.

Chen, I.H., Tsai, A.Y., Huang, Y.P., Wu, I.F., Cheng, S.F., Hsu, Y.H., Tsai, C.H., 2017b. Nuclear-encoded plastidal carbonic anhydrase is involved in replication of Bamboo mosaic virus RNA in Nicotiana benthamiana. Front Microbiol 8, 2046.

Cheng, S.F., Huang, Y.P., Chen, L.H., Hsu, Y.H., Tsai, C.H., 2013a. Chloroplast phosphoglycerate kinase is involved in the targeting of Bamboo mosaic virus to chloroplasts in Nicotiana benthamiana plants. Plant Physiol 163, 1598-1608.

Cheng, S.F., Huang, Y.P., Wu, Z.R., Hu, C.C., Hsu, Y.H., Tsai, C.H., 2010. Identification of differentially expressed genes induced by Bamboo mosaic virus infection in Nicotiana benthamiana by cDNA-amplified fragment length polymorphism. BMC Plant Biol 10, 286.

Cheng, S.F., Tsai, M.S., Huang, C.L., Huang, Y.P., Chen, I.H., Lin, N.S., Hsu, Y.H., Tsai, C.H., Cheng, C.P., 2013b. Ser/Thr kinase-like protein of Nicotiana benthamiana is involved in the cell-to-cell movement of Bamboo mosaic virus. PLoS One 8, e62907.

Chotewutmontri, P., Reddick, L.E., McWilliams, D.R., Campbell, I.M., Bruce, B.D., 2012. Differential Transit Peptide Recognition during Preprotein Binding and Translocation into Flowering Plant Plastids. Plant cell 24, 3040-3059.

Coutos-Thevenot, P., Jouenne, T., Maes, O., Guerbette, F., Grosbois, M., Le Caer, J.P., Boulay, M., Deloire, A., Kader, J.C., Guern, J., 1993. Four 9-kDa proteins excreted by somatic embryos of grapevine are isoforms of lipid-transfer proteins. Eur J Biochem 217, 885-889.

Crain, R.C., Zilversmit, D.B., 1980. Two nonspecific phospholipid exchange proteins from beef liver. I. Purification and characterization. Biochemistry 19, 1433-1439.

Edstam, M.M., Viitanen, L., Salminen, T.A., Edqvist, J., 2011. Evolutionary history of the non-specific lipid transfer proteins. Mol Plant 4, 947-964.

Fleming, A.J., Mandel, T., Hofmann, S., Sterk, P., de Vries, S.C., Kuhlemeier, C., 1992. Expression pattern of a tobacco lipid transfer protein gene within the shoot apex. Plant J 2, 855-862.

Hölzl, G., Dörmann, P., 2019. Chloroplast Lipids and Their Biosynthesis. Annu Re Plant Biol 70, 51-81.

Huang, Y.P., Chen, I.H., Tsai, C.H., 2017a. Host Factors in the Infection Cycle of Bamboo mosaic virus. Front Microbiol. 8, 437.

Huang, Y.L., Han, Y.T., Chang, Y.T., Hsu, Y.H., Meng, M., 2004. Critical residues for GTP methylation and formation of the covalent m7GMP-enzyme intermediate in the capping enzyme domain of Bamboo mosaic virus. J Virol 78, 1271-1280.

Huang, Y.P., Chen, J.S., Hsu, Y.H., Tsai, C.H., 2013. A putative Rab-GTPase activation protein from Nicotiana benthamiana is important for Bamboo mosaic virus intercellular movement. Virology 447, 292-299.

Huang, Y.P., Jhuo, J.H., Tsai, M.S., Tsai, C.H., Chen, H.C., Lin, N.S., Hsu, Y.H., Cheng, C.P., 2016. NbRABG3f, a member of Rab GTPase, is involved in Bamboo mosaic virus infection in Nicotiana benthamiana. Mol Plant Pathol 17, 714-726.

Huang, Y.W., Hu, C.C., Tsai, C.H., Lin, N.S., Hsu, Y.H., 2017b. Chloroplast Hsp70 Isoform Is Required for Age-Dependent Tissue Preference of Bamboo mosaic virus in Mature Nicotiana benthamiana Leaves. Mol Plant Microbe Interact. 30, 631-645.

Hung, C.J., Huang, Y.W., Liou, M.R., Lee, Y.C., Lin, N.S., Meng, M.H., Tsai, C.H., Hu, C.C., Hsu, Y.H., 2014. Phosphorylation of coat protein by protein kinase CK2 regulates cell-to-cell movement of Bamboo mosaic virus through modulating RNA binding. Mol Plant Microbe Interact 27, 1211-1225.

Hyodo, K., Kaido, M., Okuno, T., 2014. Traffic jam on the cellular secretory pathway generated by a replication protein from a plant RNA virus. Plant Signal Behav 9, e28644.

Jiang, S., Lu, Y., Li, K., Lin, L., Zheng, H., Yan, F., Chen, J., 2014. Heat shock protein 70 is necessary for Rice stripe virus infection in plants. Mol Plant Pathol 15, 907-917.

Jose-Estanyol, M., Gomis-Ruth, F.X., Puigdomenech, P., 2004. The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Biochem 42, 355-365.

Kader, J.C., 1996. LIPID-TRANSFER PROTEINS IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol 47, 627-654.

Kitajima, A., Asatsuma, S., Okada, H., Hamada, Y., Kaneko, K., Nanjo, Y., Kawagoe, Y., Toyooka, K., Matsuoka, K., Takeuchi, M., Nakano, A., Mitsui, T., 2009. The rice alpha-amylase glycoprotein is targeted from the Golgi apparatus through the secretory pathway to the plastids. Plant cell 21, 2844-2858.

Kleffmann, T., Russenberger, D., von Zychlinski, A., Christopher, W., Sjolander, K., Gruissem, W., Baginsky, S., 2004. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14, 354-362.

Lan, P., Yeh, W.B., Tsai, C.W., Lin, N.S., 2010. A unique glycine-rich motif at the N-terminal region of Bamboo mosaic virus coat protein is required for symptom expression. Mol Plant Microbe Interact 23, 903-914.

Lee, C.C., Ho, Y.N., Hu, R.H., Yen, Y.T., Wang, Z.C., Lee, Y.C., Hsu, Y.H., Meng, M., 2011. The interaction between Bamboo mosaic virus replication protein and coat protein is critical for virus movement in plant hosts. J Virol 85, 12022-12031.

Li, C., Xiang, Z., Ling, Q., Shang, K., 1998a. Effects of calmodulin and calmodulin binding protein BP-10 on phosphorylation of thylakoid membrane protein. Sci China C Life Sci 41, 64-70.

Li, C., Xie, W., Bai, W., Li, Z., Zhao, Y., Liu, H., 2008. Calmodulin binds to maize lipid transfer protein and modulates its lipids binding ability. FEBS J 275, 5298-5308.

Li, C., Xie, W., Wang, L., Zhao, Y., 2011. The phosphorylation of lipid transfer protein CaMBP10. Protein Pept Lett 18, 17-22.

Li, H.M., Chiu, C.C., 2010. Protein Transport into Chloroplasts. Annu Rev Plant Biol, 61, 157-180.

Li, Y.I., Chen, Y.J., Hsu, Y.H., Meng, M., 2001a. Characterization of the AdoMet-Dependent Guanylyltransferase Activity That Is Associated with the N Terminus of Bamboo Mosaic Virus Replicase. J Virol 75, 782-788.

Li, Y.I., Cheng, Y.M., Huang, Y.L., Tsai, C.H., Hsu, Y.H., Meng, M., 1998b. Identification and characterization of the Escherichia coli-expressed RNA-dependent RNA polymerase of Bamboo mosaic virus. J Virol 72, 10093-10099.

Li, Y.I., Shih, T.W., Hsu, Y.H., Han, Y.T., Huang, Y.L., Meng, M., 2001b. The helicase-like domain of plant potexvirus replicase participates in formation of RNA 5' cap structure by exhibiting RNA 5'-triphosphatase activity. J Virol 75, 12114-12120.

Lin, K.F., Liu, Y.N., Hsu, S.T., Samuel, D., Cheng, C.S., Bonvin, A.M., Lyu, P.C., 2005. Characterization and structural analyses of nonspecific lipid transfer protein 1 from mung bean. Biochemistry 44, 5703-5712.

Lin, M.K., Chang, B.Y., Liao, J.T., Lin, N.S., Hsu, Y.H., 2004. Arg-16 and Arg-21 in the N-terminal region of the triple-gene-block protein 1 of Bamboo mosaic virus are essential for virus movement. J Gen Virol 85, 251-259.

Lin, M.K., Hu, C.C., Lin, N.S., Chang, B.Y., Hsu, Y.H., 2006. Movement of potexviruses requires species-specific interactions among the cognate triple gene block proteins, as revealed by a trans-complementation assay based on the Bamboo mosaic virus satellite RNA-mediated expression system. J Gen Virol 87, 1357-1367.

Lin, N.S., Lin, B.Y., Lo, N.W., Hu, C.C., Chow, T.Y., Hsu, Y.H., 1994. Nucleotide sequence of the genomic RNA of bamboo mosaic potexvirus. J Gen Virol 75, 2513-2518.

Lin, N.S., Lin, F.Z., Huang, T.Y., Hsu, Y.H., 1992. Genome properties of Bamboo mosaic virus. Mol Plant Pathol 82, 731-734.

Liu, F., Zhang, X., Lu, C., Zeng, X., Li, Y., Fu, D., Wu, G., 2015. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J Exp Bot 66, 5663-5681.

Liu, Y., Schiff, M., Dinesh-Kumar, S.P., 2002. Virus-induced gene silencing in tomato. Plant J 31, 777-786.

Lucas, W.J., 2006. Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344, 169-184.

Maldonado, A.M., Doerner, P., Dixon, R.A., Lamb, C.J., Cameron, R.K., 2002. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419, 399-403.

Meier, N., Hatch, C., Nagalakshmi, U., Dinesh-Kumar, S.P., 2019. Perspectives on intracellular perception of plant viruses. Mol Plant Pathol 20, 1185-1190.

Meng, M., Lee, C.C., 2017. Function and Structural Organization of the Replication Protein of Bamboo mosaic virus. Front Microbiol 8, 522.

Molina, A., Segura, A., García-Olmedo, F., 1993. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett 316, 119-122.

Nanjo, Y., Oka, H., Ikarashi, N., Kaneko, K., Kitajima, A., Mitsui, T., Munoz, F.J., Rodriguez-Lopez, M., Baroja-Fernandez, E., Pozueta-Romero, J., 2006. Rice plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase is transported from the ER-Golgi to the chloroplast through the secretory pathway. Plant Cell 18, 2582-2592.

Nelson, B.K., Cai, X., Nebenfuhr, A., 2007. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51, 1126-1136.

Neumann, G.M., Condron, R., Svensson, B., Polya, G.M., 1993. Phosphorylation of barley and wheat phospholipid transfer proteins by wheat calcium-dependent protein kinase. Plant Sci 92, 159-167.

Neumann, G.M., Condron, R., Thomas, I., Polya, G.M., 1995. Purification, characterization and sequencing of a family of Petunia petal lipid transfer proteins phosphorylated by plant calcium-dependent protein kinase. Plant Sci 107, 129-145.

Nishimura, S., Tatano, S., Gomi, K., Ohtani, K., Fukumoto, T., Akimitsu, K., 2008. Chloroplast-localized nonspecific lipid transfer protein with anti-fungal activity from rough lemon. Physiol Mol Plant Pathol 72, 134-140.

Paila, Y.D., Richardson, L.G.L., Schnell, D.J., 2015. New Insights into the Mechanism of Chloroplast Protein Import and Its Integration with Protein Quality Control, Organelle Biogenesis and Development. J Mol Biol 427, 1038-1060.

Pang, T., Zhao, J., Li, C., 2016. Lipid transfer protein CaMBP10 binds to glyceraldehyde-3-phosphate dehydrogenase and modulates its activity. J Plant Biochem Biotechnol 25, 294-300.

Prasanth, K.R., Huang, Y.W., Liou, M.R., Wang, R.Y., Hu, C.C., Tsai, C.H., Meng, M., Lin, N.S., Hsu, Y.H., 2011. Glyceraldehyde 3-phosphate dehydrogenase negatively regulates the replication of Bamboo mosaic virus and its associated satellite RNA. J Virol 85, 8829-8840.

Radhamony, R.N., Theg, S.M., 2006. Evidence for an ER to Golgi to chloroplast protein transport pathway. Trends Cell Biol 16, 385-387.

Samuel, D., Liu, Y.J., Cheng, C.S., Lyu, P.C., 2002. Solution structure of plant nonspecific lipid transfer protein-2 from rice (Oryza sativa). J Biol Chem 277, 35267-35273.

Takishima, K., Watanabe, S., Yamada, M., Suga, T., Mamiya, G., 1988. Amino acid sequences of two nonspecific lipid-transfer proteins from germinated castor bean. Eur J Biochem 177, 241-249.

Tchang, F., This, P., Stiefel, V., Arondel, V., Morch, M.D., Pages, M., Puigdomenech, P., Grellet, F., Delseny, M., Bouillon, P., et al., 1988. Phospholipid transfer protein: full-length cDNA and amino acid sequence in maize. Amino acid sequence homologies between plant phospholipid transfer proteins. J Biol Chem 263, 16849-16855.

Thivierge, K., Nicaise, V., Dufresne, P.J., Cotton, S., Laliberte, J.F., Le Gall, O., Fortin, M.G., 2005. Plant virus RNAs. Coordinated recruitment of conserved host functions by (+) ssRNA viruses during early infection events. Plant physiol 138, 1822-1827.

Thoma, S., Kaneko, Y., Somerville, C., 1993. A non-specific lipid transfer protein from Arabidopsis is a cell wall protein. Plant J 3, 427-436.

Tsuboi, S., Osafune, T., Tsugeki, R., Nishimura, M., Yamada, M., 1992. Nonspecific lipid transfer protein in castor bean cotyledon cells: subcellular localization and a possible role in lipid metabolism. J Biochem 111, 500-508.

Villarejo, A., Buren, S., Larsson, S., Dejardin, A., Monne, M., Rudhe, C., Karlsson, J., Jansson, S., Lerouge, P., Rolland, N., von Heijne, G., Grebe, M., Bako, L., Samuelsson, G., 2005. Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7, 1224-1231.

Wang, C., Xie, W., Chi, F., Hu, W., Mao, G., Sun, D., Li, C., Sun, Y., 2008. BcLTP, a novel lipid transfer protein in Brassica chinensis, may secrete and combine extracellular CaM. Plant cell Rep 27, 159-169.

Wang, S.Y., Wu, J.H., Ng, T.B., Ye, X.Y., Rao, P.F., 2004. A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides 25, 1235-1242.

Wang, Z., Benning, C., 2012. Chloroplast lipid synthesis and lipid trafficking through ER-plastid membrane contact sites. Biochem Soc Trans 40, 457-463.

Wang, Z., Xie, W., Chi, F., Li, C., 2005. Identification of non-specific lipid transfer protein-1 as a calmodulin-binding protein in Arabidopsis. FEBS Lett 579, 1683-1687.

Whitham, S.A., Wang, Y., 2004. Roles for host factors in plant viral pathogenicity. Curr Opin Plant Biol 7, 365-371.

Wirtz, K.W., 1991. Phospholipid transfer proteins. Annu Rev Biochem 60, 73-99.

Yeats, T.H., Rose, J.K., 2008. The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Sci 17, 191-198.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top