跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/27 03:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周純仰
研究生(外文):Chou-Yang Chou
論文名稱:蝴蝶蘭中PaSTM與PaMIP1基因調控植物分生組織與器官發育之功能性分析
論文名稱(外文):Functional analysis of Phalaenopsis PaSTM and PaMIP1 genes in regulating the meristem and organ development
指導教授:楊長賢楊長賢引用關係
指導教授(外文):Chang-Hsien Yang
口試委員:林彩雲楊俊逸
口試委員(外文):Tsai-Yun LinChun-Yi Yang
口試日期:2021-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:96
中文關鍵詞:STM基因分生組織老化
外文關鍵詞:STM genemeristemaging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了解蘭花早期生長發育是由哪些基因所調控,透過蝴蝶蘭V3 Sogo Yukidian花朵NGS資料庫的分析,選殖出在花朵分生組織 (floral meristem,FM) 及花苞中具有高表現量之基因PaSTM和PaMIP1。親緣演化樹分析顯示PaSTM和PaMIP1分別為阿拉伯芥AtSTM (KNOX gene family) 和AT4G37080 (ternary complex factor MIP1 leucine-zipper protein)、AT5G4260之同源基因。PaSTM在花分生組織及各時期花朵的子房中具有高表現量;而PaMIP1表現量隨花苞發育成熟逐漸累積,至花開後急遽下降。為探討PaSTM和PaMIP1的基因功能,透過模式植物阿拉伯芥基因轉殖進行功能性分析。35S::PaSTM和35S::PaSTM+VP16轉殖株葉片呈現短小、捲曲且有皺褶之形態;35S ::PaSTM+SRDX轉殖株則呈現細長葉片。在PaSTM轉殖株中,花瓣長度都較野生型短。35S::PaSTM和35S::PaSTM+VP16轉殖株中的花苞總數大於35S::PaSTM + SRDX轉殖株。35S ::PaSTM+SRDX轉殖株果莢長度較野生型短,且35S::PaSTM和35S::PaSTM+VP16轉殖株中促進莖頂分生組織 (SAM) 細胞增生之IPT7、GA2ox與KNAT6基因表現量上升,推測PaSTM可能為轉錄活化子,透過活化IPT7與GA2ox基因調控葉和花器的形態發育與KNAT6基因協調SAM形成與維持。此外,利用蝴蝶蘭病毒誘導基因靜默 (VIGS) 技術抑制PaSTM基因表現,結果使花苞總數減少、果莢減短,也印證了PaSTM調控分生組織發育的可能性。另外有發現花梗紅化與葉片黃化,猜測PaSTM可能與調控老化有相關。35S::PaMIP1和35S::PaMIP1 + SRDX轉殖株葉片面積較野生型大,而35S :: PaMIP1 + VP16轉殖株葉片面積則較小,推測PaMIP1在阿拉伯芥中以轉錄抑制子的特性調控葉片發育。
Early growth and development of orchids are regulated by genes. PaSTM and PaMIP1 are orchid genes with high transcription levels in the floral meristem (FM) and buds of Phalaenopsis, identified by referring to the Phalaenopsis V3 Sogo Yukidian flower NGS database. According to the phylogenetic analysis, PaSTM and PaMIP1 were homologous to Arabidopsis AtSTM (KNOX gene family) and AT4G37080 (ternary complex factor MIP1 leucine-zipper protein) / AT5G4260, respectively. PaSTM mRNAs are detected at a high level in the FM and ovaries of various flower stages. PaMIP1 mRNAs accumulate increasingly as floral buds mature and significantly decrease in the mature flowers. To investigate the gene functions of PaSTM and PaMIP1, the transgenic Arabidopsis system was applied. Transgenic plants carrying 35S::PaSTM and 35S::PaSTM+VP16 produced short, curl and wrinkled leaves, while that carrying 35S::PaSTM+SRDX produced slender leaves. In all PaSTM transgenic plants, the petal size was reduced. 35S::PaSTM and 35S::PaSTM+VP16 plants produced more floral buds than 35S::PaSTM+SRDX plants. 35S::PaSTM+SRDX transgenic plant has shorter fruit pods than the wild type. Besides, transcripts of IPT7, GA2ox and KNAT6, the genes promoting cell proliferation in SAM, were up-regulated in 35S::PaSTM and 35S::PaSTM+VP16 plants, which indicated that PaSTM plays as an activator to regulate the leaf and flower morphology by activating IPT7 and GA2ox, and coordinate SAM formation and maintenance by KNAT6. Furthermore, suppression of PaSTM activity in Phalaenopsis by VIGS technology reduced the floral bud formation and shortened the fruit pod, which corroborate the possibility that PaSTM regulates the meristem development. In addition, PaSTM suppressed plants displayed red peduncle and yellowish leaf. It is speculated that PaSTM may be related to the regulation of aging. 35S::PaMIP1 and 35S::PaMIP1+SRDX increased the leaf size, whereas 35S::PaMIP1+VP16 reduced the leaf size in transgenic plants, which implied that PaMIP1 plays as a repressor to regulate the leaf development.
第一章 蝴蝶蘭中PaSTM基因之功能性分析 Functional analysis of PaSTM gene in Phalaenopsis 1
前言 2
材料和方法 8
一、研究材料 8
二、阿拉伯芥種植 8
三、阿拉伯芥總體核糖核酸 (RNA) 萃取 8
四、蝴蝶蘭V3總體核糖核酸 (RNA) 萃取 9
五、阿拉伯芥反轉錄增幅反應 (Reverse transcription PCR) 9
六、蘭花反轉錄聚合酶酵素連鎖反應 9
七、即時定量聚合酶連鎖反應 (Real-time quantitative PCR) 9
八、聚合酶連鎖反應 (Polymerase Chain Reaction,PCR) 10
九、瓊脂凝膠膠片 (Agarose gel) 之配製 10
十、膠體電泳 (Electrophoresis) 10
十一、DNA片段回收與純化 11
十二、接合反應 (Ligation) 11
十三、大腸桿菌勝任細胞製備 (Competent cell preparation) 11
十四、大腸桿菌轉型作用 (Transformation into E.coli) 12
十五、轉形細菌之菌落聚合酶連鎖反應篩選 (Colony PCR) 12
十六、抽取高純度小量質體DNA (Preparation of plasmid DNA) 12
十七、限制酶酵素裁切 (Digestion of restriction enzyme) 13
十八、DNA定序與序列比對 13
十九、農桿菌 (Agrobacterium tumefaciens) 勝任細胞備製 13
二十、農桿菌轉型作用 13
二十一、阿拉伯芥之轉殖 13
二十二、轉基因阿拉伯芥之篩選 14
二十三、Gateway 基因重組選殖系統 (Gateway clone) 14
二十四、蝴蝶蘭病毒誘導基因靜默 (Virus induced gene silencing,VIGS) 14
二十五、阿拉伯芥植株葉片長寬統計與相對生長素率計算 15
二十六、甲苯胺藍 (Toluidine Blue Solution) 染色 15
二十七、科學製圖方法 15
結果 16
一、蝴蝶蘭V3基因PaSTM的基因選殖與序列分析 16
二、蝴蝶蘭V3中PaSTM的表現量分析 16
三、PaSTM基因大量表現、C端接上抑制子區域SRDX及C端接上活化子區
域VP16與病毒誘導基因靜默 (Virus induced gene silencing,VIGS) 技術之重組載體構築 17
四、大量異位表現PaSTM、PaSTM+SRDX及PaSTM+VP16於阿拉伯芥中影
響葉片型態、花器異常、果莢型態及種子數量 18
五、大量異位表現PaSTM、PaSTM+SRDX及PaSTM+VP16於阿拉伯芥轉殖
株中之外源性基因PaSTM及下游基因IPT7、GA2ox及KNAT6的表現量 19
六、利用病毒誘導基因靜默 (Virus induced gene silencing,VIGS) 技術抑制蝴蝶蘭V3 內生性基因STM影響花器之型態及花梗紅化 20
七、利用病毒誘導基因靜默 (Virus induced gene silencing,VIGS) 技術抑制蝴蝶蘭V3 內生性基因STM抑制花苞產量、開花速度與果莢長度 21
八、蝴蝶蘭葉片內生性基因STM基因的表現量分析 21
九、利用病毒誘導基因靜默 (Virus induced gene silencing,VIGS) 技術抑制蝴蝶蘭葉片內生性基因STM基因導致葉片黃化死亡 22
討論 23
參考文獻 27
圖表 33
表1-1、本實驗蝴蝶蘭基因PaSTM所使用之引子 (primer) 33
圖1-1、PaSTM 之編碼序列與胺基酸序列 34
圖1-2、PaSTM 與各物種KNOX之演化樹分析 35
圖1-3、PaSTM與阿拉伯芥中STM之胺基酸序列比對分析 36
圖1-4、蝴蝶蘭中PaSTM各時期各部位之表現量分析 37
圖1-5、PaSTM之選殖與大量表現PaSTM、PaSTM+SRDX及PaSTM+VP16構
築 38
圖1-6、大量異位表現PaSTM、PaSTM+SRDX及PaSTM+VP16於阿拉伯芥
中影響葉片型態之分析 39
圖1-7大量異位表現PaSTM、PaSTM+SRDX及PaSTM+VP16於阿拉伯芥中
影響花瓣面積大小和花苞數量之性狀分析 40
圖1-8大量異位表現PaSTM+SRDX於阿拉伯芥中影響果莢長度及種子數量
減少 41
圖1-9、大量異位表現PaSTM、PaSTM+SRDX及PaSTM+VP16於阿拉伯芥轉
殖株中之外源性基因PaSTM及下游基因IPT7、GA2ox與KNAT6的表現量42
圖1-10、蝴蝶蘭中PaSTM利用VIGS影響花器的結構及表現量分析 43
圖1-11、蝴蝶蘭中PaSTM利用VIGS使花瓣產生裂痕 44
圖1-12、蝴蝶蘭中PaSTM利用VIGS使花梗紅化 45
圖1-13、蝴蝶蘭中PaSTM利用VIGS使花苞數量減少及早期凋落 46
圖1-14、蝴蝶蘭中PaSTM利用VIGS抑制花苞產量及開花速度的統計 47
圖1-15、蝴蝶蘭中PaSTM利用VIGS使果莢長度減少及統計 48
圖1-16、蝴蝶蘭中PaSTM 葉子各時期之表現量分析 49
圖1-17、蝴蝶蘭中PaSTM 利用VIGS使葉子凋亡及表現量分析 50
圖1-18、PaSTM基因功能性的假想模型圖 51
附錄 52
附圖1-1、莖頂分生組織的結構和組織示意圖 52
附圖1-2、pGEM®-T Easy vector之圖譜 (3015 bp) 53
附圖1-3、pEpyon-22K之圖譜 (10293 bp) 54
附圖1-4、pEpyon-2aK之圖譜 (9801 bp) 55
附圖1-5、pEpyon-2bK之圖譜 (9801 bp) 56
第二章 蝴蝶蘭中PaMIP1基因之功能性分析 Functional analysis of PaMIP1 gene in Phalaenopsis 57
前言 58
材料和方法 61
結果 62
一、蝴蝶蘭V3基因PaMIP1的基因選殖與序列分析 62
二、蝴蝶蘭V3中PaMIP1的表現量分析 63
三、PaMIP1基因大量表現、C端接上抑制子區域SRDX及C端接上活化子區域VP16之重組載體構築 63
四、大量異位表現PaMIP1、PaMIP1+SRDX及PaMIP1+VP16於阿拉伯芥中
影響葉片 64
五、大量異位表現PaMIP1、PaMIP1+SRDX及PaMIP1+VP16於阿拉伯芥中
影響葉片型態 64
六、PaMIP1的兩個相似阿拉伯芥基因AT4G37080及AT5G42690於阿拉伯芥中影響葉片型態 65
七、利用病毒誘導基因靜默 (Virus induced gene silencing,VIGS) 技術抑制蝴蝶蘭V3內生性基因MIP1的表現量 65
討論 66
參考文獻 69
圖表 73
表2-1、本實驗蝴蝶蘭基因PaMIP1所使用之引子 (primer) 73
圖2-1、PaMIP1之編碼序列與胺基酸序列 74
圖2-2、PaMIP1 與各物種之演化樹分析 75
圖2-3、PaMIP1保守序列Lzipper-MIP1及DUF547與阿拉伯芥基因之演化樹分析 76
圖2-4、AT4G37080之編碼序列與胺基酸序列 77
圖2-5、AT5G42690之編碼序列與胺基酸序列 78
圖2-6、PaMIP1與阿拉伯芥基因AT4G37080及AT5G42690之胺基酸序列比對分析 79
圖2-7、蝴蝶蘭中PaMIP1各時期各部位之表現量分析 80
圖2-8、PaMIP1之選殖與大量表現PaMIP1、PaMIP1+SRDX及PaMIP1+VP16之構築 81
圖2-9、AT4G37080之選殖與大量表現AT4G37080、AT4G37080+SRDX及
AT4G37080+VP16之構築 82
圖2-10、AT5G42690之選殖與大量表現AT5G42690之構築 83
圖2-11、大量異位表現PaMIP1、PaMIP1+SRDX及PaMIP1+VP16於阿拉伯芥中植株的相對生長速率比較 84
圖2-12、大量異位表現PaMIP1、PaMIP1+SRDX及PaMIP1+VP16於阿拉伯芥中影響葉片型態之分析 85
圖2-13、大量異位表現AT4G37080、AT4G37080+SRDX及AT4G37080+VP16於阿拉伯芥中影響葉片型態之分析 86
圖2-14、大量異位表現AT5G42690於阿拉伯芥中影響葉片型態之分析 87
圖2-15、蝴蝶蘭中PaMIP1利用VIGS之表現量分析 88
圖2-16、PaMIP1基因功能性假想模型圖 89
附錄 90
附圖2-1、pGEM®-T Easy vector之圖譜 (3015 bp) 90
附圖2-2、pEpyon-22K之圖譜 (10293 bp) 91
附圖2-3、pEpyon-2aK之圖譜 (9801 bp) 92
附圖2-4、pEpyon-2bK之圖譜 (9801 bp) 93
附圖2-5、葉片橢圓形面積公式 94
附圖2-6、eFP Browser 中阿拉伯芥AT4G37080之表現趨勢 95
附圖2-7、eFP Browser 中阿拉伯芥AT5G42690之表現趨勢 96
第一章
許巍瀚,阿拉伯芥中調控細胞分裂與配子體發育相關基因之功能性分析,博士論文,國立中興大學生物科技學研究所,臺中 (2012)。
Aichinger, E., Kornet, N., Friedrich, T., Laux T. (2012). Plant stem cell niches. Annu Rev Plant Biol. 63: 615-636. DOI: 10.1146/annurev-arplant-042811-105555.
Ali, S., Khan, N., Xie, L. (2020). Molecular and hormonal regulation of leaf morphogenesis in Arabidopsis. Int J Mol Sci. 21(14): 5132. DOI: 10.3390/ijms21145132.
Arnaud, N. and Pautot, V. (2014). Ring the BELL and tie the KNOX: roles for TALEs in gynoecium development. Front Plant Sci. 20(5): 93. DOI: 10.3389/fpls.2014.00093.
Azizi, P., Rafii, M.Y., Maziah, M., Abdullah, S.N.A., Hanafi, M.M., Latif, M.A., Rashid, A.A., Sahebi, M. (2014). Understanding the shoot apical meristem regulation: a study of the phytohormones, auxin and cytokinin, in rice. Mech Dev. 135: 1-15. DOI: 10.1016/j. mod.2014.11.001.
Balanzà, V., Martínez-Fernández, I., Sato, S., Yanofsky, M.F., Ferrándiz, C. (2019). Inflorescence meristem fate is dependent on seed development and fruitful in Arabidopsis thaliana. Front Plant Sci. 18(10): 1622. DOI: 10.3389/fpls.2019.01622.
Banwarth-Kuhn, M., Nematbakhsh, A., Rodriguez, K.W., Snipes, S., Rasmussen, C.G., Reddy, G.V., Alber, M. (2019). Cell-based model of the generation and maintenance of the shape and structure of the multilayered shoot apical meristem of Arabidopsis thaliana. Bull Math Biol. 81(8): 3245-3281. DOI: 10.1007/s11538-018-00547-z.
Belles-Boix, E., Hamant, O., Witiak, S.M., Morin, H., Traas, J., Pautot, V. (2006). KNAT6: an Arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell. 18(8): 1900-1907. DOI: 10.1105/tpc.106.041988.
Benlloch, R., Berbel, A., Mislata, A.S., Madueño, F. (2007). Floral initiation and inflorescence architecture: a comparative view. Ann Bot. 100(3): 659-676. DOI: 10.1093/ aob/mcm146.
Bürglin, T.R. (1997). Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res. 25(21): 4173-4180. DOI: 10.1093/nar/25.21.4173.
Bürglin, T.R. and Affolter, M. (2016). Homeodomain proteins: an update. Chromosoma. 125(3): 497-521. DOI: 10.1007/s00412-015-0543-8.
Box, M.S., Dodsworth, S., Rudall, P.J., Bateman, R.M., Glover, B.J. (2012). Flower-specific KNOX phenotype in the orchid Dactylorhiza fuchsia. J Exp Bot. 63(13): 4811-4819. DOI: 10.1093/jxb/ ers152.
Boller T and Felix G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol. 60: 379-406. DOI: 10.1146/annurev.arplant.57.032905.105346.
Chang, W.W., Guo, Y.H., Zhang, H., Liu, X.G., Guo, L. (2020). Same actor in different stages: genes in shoot apical meristem maintenance and floral meristem determinacy in Arabidopsis. Frontiers. 8: 89. DOI: 10.3389/fevo.2020.00089.
Chongloi, G.L., Prakash, S., Vijayraghavan, U. (2019). Regulation of meristem maintenance and organ identity during rice reproductive development. J Exp Bot. 70(6): 1719-1736. DOI: 10.1093/jxb/erz046.
Fletcher, J.C. (2018). The CLV-WUS stem cell signaling pathway: a roadmap to crop yield optimization. Plants Basel. 7(4): 87. DOI: 10.3390/plants7040087.
Fletcher, J.C., Brand, U., Running, M.P., Simon, R., Meyerowitz, E.M. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science. 283(5409): 1911-1914. DOI: 10.1126/science.283.5409.1911.
Gaillochet, C. and Lohmann, J.U. (2015). The never-ending story: from pluripotency to plant developmental plasticity. Development. 142(13): 2237-2249. DOI: 10.12 42/dev.117614.
Goslin, K., Zheng, B., Serrano-Mislata, A., Rae, L., Ryan, P.T., Kwaśniewska, K., Thomson, B., Ó'Maoiléidigh, D.S., Madueño, F., Wellmer, F., Graciet, E. (2017). Transcription factor interplay between LEAFY and APETALA1/CAULIFLOWER during floral initiation. Plant Physiol. 174(2): 1097-1109. DOI: 10.1104/pp.17.00098.
Greb, T. and Lohmann, J.U. (2016). Plant stem cells. Curr Biol. 26(17): 816-821. DOI: 10.1016/j.cub. 2016.07.070.
Hawkins, C. and Liu, Z.C. (2014). A model for an early role of auxin in Arabidopsis gynoecium morphogenesis. Front Plant Sci. 5: 327. DOI: 10.3389/fpls.2014.00327.
Hamant, O., Nogué, F., Belles-Boix, E., Jublot, D., Grandjean, O., Traas, J., Pautot, V. (2002). The KNAT2 homeodomain protein interacts with ethylene and cytokinin signaling. Plant Physiol. 130(2): 657-665. DOI:10.1104/pp.004564.
Hay, A. and Tsiantis, M. (2010). KNOX genes: versatile regulators of plant development and diversity. Development. 137(19): 3153-3165. DOI: 10.1242/dev.030049.
Hepworth, S.R. and Pautot, V.A. (2015). Beyond the divide: boundaries for patterning and stem cell regulation in plants. Front Plant Sci. 6: 1052. DOI: 10.3389/fpls.2015. 01052.
Hsieh, M.H., Pan, Z.J., Lai, P.H., Lu, H.C., Yeh, H.H., Hsu, C.C., Wu, W.L., Chung, M..C, Wang, S.S., Chen, W.H., Chen, H.H. (2013). Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in Phalaenopsis orchids. J Exp Bot. 64(12): 3869-84. DOI: 10.1093/jxb/ert218.
Jack, T. (2004). Molecular and genetic mechanisms of floral control. Plant Cell. 16 Suppl: S1-17. DOI: 10.1105/tpc.017038.
Jasinski, S., Piazza, P., Craft, J., Hay, A., Woolley, L., Rieu, I., Phillips, A., Hedden, P., Tsiantis, M. (2005). KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol. 15(17): 1560-1565. DOI: 10.1016/j.cub. 2005.07.023.
Kater, M.M., Dreni, L., Colombo, L. (2006). Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot. 57(13): 3433-3444. DOI: 10.1093/jxb/erl097.
Kamiuchi, Y., Yamamoto, K., Furutani, M., Tasaka, M., Aida, M. (2014). The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development. Front Plant Sci. 5: 165. DOI: 10.3389/fpls.2014.00165.
Kimura, S., Koenig, D., Kang, J., Yoong, F.Y., Sinha, N. (2008). Natural variation in leaf morphology results from mutation of a novel KNOX gene. Curr Biol. 18(9): 672-677. DOI: 10.1016/ j.cub.2008.04.008.
Landrein, B., Kiss, A., Sassi, M., Chauvet, A., Das, P., Cortizo, M., Laufs, P., Takeda, S., Aida, M., Traas, J., Vernoux, T., Boudaoud, A., Hamant, O. (2015). Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems. Elife. 4: e07811. DOI: 10.7554/eLife.07811.
Lee, H., Chah, O.K. and Sheen, J. (2011). Stem-cell-triggered immunity through CLV3p –FLS2 signaling. Nature. 473(7347): 376-379. DOI: 10.1038/nature09958.
Lenhard, M., Jürgens, G., Laux, T. (2002). The WUSCHEL and SHOOTM- ERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development. 129(13): 3195-3206.
Lu, H.C., Chen, H.H., Tsai, W.C., Chen, W.H., Su, H.J., Chang, D.C.N., Yeh, H.H. (2007). Strategies for functional validation of genes involved in reproductive stages of orchids. Plant Physiol. 143(2): 558-569. DOI: 10.1104/pp.106.092742.
Magnani, E. and Hake, S. (2008). KNOX lost the OX: the Arabidopsis KNATM gene defines a novel class of KNOX transcriptional regulators missing the homeodomain. Plant Cell. 20(4): 875-887. DOI: 10.1105/tpc.108.058495.
McGinnis, W. and Krumlauf, R. (1992). Homeobox genes and axial patterning. Cell. 68(2): 283-302. DOI: 10.1016/0092-8674 (92)90471-n.
Meng, L.Y., Liu, X.M., He, C.F., Xu, B.Y., Li, Y.X., Hu, Y.K. (2020). Functional divergence and adaptive selection of KNOX gene family in plants. Open Life Sci. 15(1): 346-363. DOI:10.1515/biol-2020-0036.
Murashige T and Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiology. 15(3): 473-497.
Naseem, M., Srivastava, M., Dandekar, T. (2014). Stem-cell-triggered immunity safeguards cytokinin enriched plant shoot apexes from pathogen infection. Front Plant Sci. 5: 588. DOI: 10.3389/fpls.2014.00588.
Nagasaki, H., Sakamoto, T., Sato, Y., Matsuok, M. (2001). Functional analysis of the conserved domains of a rice KNOX homeodomain protein, OSH15. Plant Cell. 13(9): 2085-2098. DOI: 10.1105/TPC.010113.
Pan, Z.J., Chen, Y.Y., Du, J.S,, Chen, Y.Y., Chung, M.C., Tsai, W.C., Wang, C.N., Chen, H.H. (2014). Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes. New Phytol. 202(3): 1024-1042. DOI: 10.1111/nph. 12723.
Pautot, V., Dockx, J., Hamant, O., Kronenberger, J., Grandjean, O., Jublot, D., Traas, J. (2001). KNAT2: evidence for a link between knotted-like genes and carpel development. Plant Cell. 13(8): 1719-1734. DOI: 10.1105/tpc.010184.
Pautler, M., Tanaka, W., Hirano, H.Y., Jackson, D. (2013). Grass meristems I: shoot apical meristem maintenance, axillary meristem determinacy and the floral transition. Plant Cell Physiol. 54(3): 302-312. DOI: 10.1093/pcp/pct025.
Petrov, V., Hille, J., Mueller-Roeber, B., Gechev, T.S. (2015). ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci. 6: 69. DOI: 10.3389/fpls. 2015.00069.
Prusinkiewicz, P., Erasmus, Y., Lane, B., Harder, L.D., Coen, E. (2007). Evolution and development of inflorescence architectures. Science. 316(5830): 1452-1456. DOI: 10.1126/science.1140429.
Reyes-Olalde, J.I., Zuñiga-Mayo, V.M., Montes, R.A.C., Marsch-Martínez, N., Folter, S.D. (2013). Inside the gynoecium: at the carpel margin. Trends Plant Sci. 18(11): 644-655. DOI: 10.1016/j.tplants.2013.08.002.
Roth, O., Alvarez, J.P., Levy, M., Bowman, J.L., Ori, N., Shani, E. (2018). The KNOXI transcription factor SHOOT MERISTEMLESS regulates floral fate in Arabidopsis. Plant Cell. 30(6): 1309-1321. DOI: 10.1105/tpc.18.00222.
Scofield, S., Dewitte, W., Murray, J.A. (2007). The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. The Plant Journal. 3(4): 257-259. DOI: 10.4161/psb.3.4.5194.
Scofield, S., Dewitte, W., Murray, J.A. (2008). A model for Arabidopsis class-1 KNOX gene function. Plant Signal Behav. 3(4): 257-259. DOI: 10.4161/psb.3.4.5194.
Scofield, S., Murison, A., Jones, A., Fozard, J., Aida, M., Band, L.R., Bennett, M., Murray, J.A.H. (2018). Coordination of meristem and boundary functions by transcription factors in the SHOOT MERISTEMLESS regulatory network. Development. 145(9): dev157081. DOI: 10.1242/dev. 157081.
Scott, M.P. and Weiner, A.J. (1984). Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. PNAS. 81(13): 4115-4119. DOI: 10.1073/pnas.81.13.4115.
Su, Y.H., Liu, Y.B., Zhang, X.S. (2011). Auxin-cytokinin interaction regulates meristem development. Mol Plant. 4(4): 616-25. DOI: 10.1093/mp/ssr007.
Tax, F.E. and Durbak, A. (2006). Meristems in the movies: live imaging as a tool for decoding intercellular signaling in shoot apical meristems. Plant Cell. 18(6): 1331-1337. DOI: 10.1105/tpc.106.042572.
Teo, Z.W.N., Zhou, W., Shen, L.S. (2019). Dissecting the function of MADS-Box transcription factors in orchid reproductive development. Front Plant Sci. 10: 1474. DOI: 10.3389/fpls.2019.01474.
Theißen, G., Melzer, R., Rümpler, F. (2016). MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development. 143(18): 3259-3271. DOI: 10.1242/dev.134080.
Tooke, F., Ordidge, M., Chiurugwi, T., Battey, N. (2005). Mechanisms and function of flower and inflorescence reversion. J Exp Bot. 56(420): 2587-2599. DOI: 10.1093/jxb/ eri254.
Truernit, E. and Haseloff, J. (2007). A role for KNAT class II genes in root development. Plant Signal Behav. 2(1): 10-12. DOI:10.4161/psb.2.1.3604.
Vollbrecht, E., Veit, B., Sinha, N., Hake, S. (1991). The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature. 350(6315): 241-243. DOI: 10. 1038/350241a0.
Wang, S., Yamaguchi, M., Grienenberger, E., Martone, P.T., Samuels, A.L., Mansfield, S.D. (2020). The class II KNOX genes KNAT3 and KNAT7 work cooperatively to influence deposition of secondary cell walls that provide mechanical support to Arabidopsis stems. Plant J. 101(2): 293-309. DOI: 10.1111/tpj.14541.
Wingler, A., Schaewen, A.V., Leegood, R.C., Lea, P.J., Quick, W.P. (1998). Regulation of leaf senescence by cytokinin, sugars, and light. Plant Physiol. 116(1): 329-335.
Wu, W.Q., Du, K., Kang, X.Y., Wei, H.R. (2021). The diverse roles of cytokinin in regulating leaf development. Hortic Res. 8(1): 118. DOI: 10.1038/s41438-021-00558-3.
Xue, Z.H., Liu, L.Y., Zhang, C. (2020). Regulation of shoot apical meristem and axillary meristem development in plants. Int J Mol Sci. 21(8): 2917. DOI: 10.3390/ijms21082917.
Yanai, O., Shani, E., Dolezal, K., Tarkowski, P., Sablowski, R., Sandberg, G., Samach, A., Ori, N. (2005). Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol. 15(17): 1566-1571. DOI: 10.1016/j.cub.2005.07.060.
Yu, Y.K., Li, Y.L., Ding, L.N., Sarwar, R., Zhao, F.Y., Tan, X.L. (2020a). Mechanism and regulation of silique dehiscence, which affects oil seed production. Front Plant Sci. 11: 580. DOI: 10.3389/fpls.2020.00580.
Yu, L., Patibanda, V., Smith, H.M.S. (2009). A novel role of BELL1-like homeobox genes, PENNYWISE and POUND-FOOLISH, in floral patterning. Planta. 229(3): 693-707. DOI: 10.1007/s00425-008-0867-1.
Yu, C.C., Yan, C.H., Liu, Y.L., Liu, Y.L., Jia, Y., Lavelle, D., An, G.H., Zhang, W.Y., Zhang, L., Han, R.K., Larkin, R.M., Chen, J.J., Michelmore, R.W., Kuang, H.H. (2020b). Upregulation of a KN1 homolog by transposon insertion promotes leafy head development in lettuce. Proc Natl Acad Sci U S A. 117(52): 33668-33678. DOI: 10.1073/ pnas.2019698117.
Zhang, W. and Yu, R. (2014). Molecule mechanism of stem cells in Arabidopsis thaliana. Pharmacogn Rev. 8(16): 105-112. DOI: 10.4103/0973-7847.134243.

第二章
許巍瀚,阿拉伯芥中調控細胞分裂與配子體發育相關基因之功能性分析,博士論文,國立中興大學生物科技學研究所,臺中 (2012)。
趙子翔,蝴蝶蘭中抑制生長速度之yippee like genes PaYIP B-1 及 PaYIPB-2之功能性分析,碩士論文,國立中興大學生物科技學研究所,臺中 (2019)。
Ali, S., Khan, N., Xie, L. (2020). Molecular and hormonal regulation of leaf morph- ogenesis in Arabidopsis. Int J Mol Sci. 21(14): 5132. DOI: 10.3390/ijms21145132.
Apelo, S.I.A. and Lamming, D.W. (2016). Rapamycin: an inhibiTOR of aging emerges from the soil of easter island. J Gerontol A Biol Sci Med Sci. 71(7): 841-849. DOI: 10.1093 /gerona/glw090.
Bakshi, A., Moin, M., Madhav, M.S., Kirti, P.B. (2019). Target of rapamycin, a master regulator of multiple signalling pathways and a potential candidate gene for crop improvement. Plant Biol (Stuttg). 21(2): 190-205. DOI: 10.1111/plb.12935.
Bar, M. and Ori, N. (2014). Leaf development and morphogenesis. Development. 141(22): 4219-4230. DOI: 10.1242/dev.106195.
Causier, B., Cook, H., Davies, B. (2003). An antirrhinum ternary complex factor specifically interacts with C-function and SEPALLATA-like MADS-box factors. Plant Mol Biol. 52(5): 1051-1062. DOI: 10.1023/a:1025426016267.
Crespo, J.L. and Hall, M.N. (2002). Elucidating TOR signaling and rapamycin action: lessons from saccharomyces cerevisiae. Microbiol Mol Biol Rev. 66(4): 579-591. DOI: 10.1128/MM BR.66.4.579-591.2002.
Czesnick, H. and Lenhard, M. (2015). Size control in plants—lessons from leaves and flowers. Cold Spring Harb Perspect Biol. 7(8): a019190. DOI: 10.1101/cshperspect. a019190.
Durbak, A., Yao, H., McSteen, P. (2012). Hormone signaling in plant development. Curr Opin Plant Biol. 15(1): 92-96. DOI: 10.1016/j.pbi.2011.12.004.
Du, F., Guan, C.M., Jiao, Y.L. (2018). Molecular mechanisms of leaf morphogenesis. Mol Plant. 11(9): 1117-1134. DOI: 10.1016/j.molp.2018.06.006.
Efroni, I., Eshed, Y., Lifschitz, E. (2010). Morphogenesis of simple and compound leaves: a critical review. Plant Cell. 22(4): 1019-1032. DOI: 10.1105/tpc.109.073601.
Feng, G.P., Qin, Z.X., Yan, J.Z., Zhang, X.R., Hu, Y.X. (2011). Arabidopsis ORGAN SIZE RELATED1 regulates organ growth and final organ size in orchestration with ARGOS and ARL. New Phytol. 191(3): 635-646. DOI: 10.1111/j.1469-8137.2011. 03710.x.
Fujikura, U., Horiguchi, G., Ponce, M.R., Micol, J.L., Tsukaya, H. (2009). Coordination of cell proliferation and cell expansion mediated by ribosome-related processes in the leaves of Arabidopsis thaliana. Plant J. 59(3): 499-508. DOI: 10.1111/ j.1365-313X.2009.03886.x.
Gonzalez, N., Vanhaeren, H., Inzé, D. (2012). Leaf size control: complex coordination of cell division and expansion. Trends Plant Sci. 17(6): 332-340. DOI: 10.1016/j.tplants. 2012.02.003.
Heitman, J., Movva, N.R., Hall, M.N. (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 253(5022): 905-909. DOI: 10.1126/ science.1715094.
Jacinto, E., Facchinetti, V., Liu, D., Soto, N., Wei, SN., Jung, SY., Huang, QJ., Qin, J., Su, B. (2006). SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 127(1): 125-137. DOI: 10.1016/j.cell. 2006.08.033.
Jetha, K., Theißen, G., Melzer, R. (2014). Arabidopsis SEPALLATA proteins differ in cooperative DNA-binding during the formation of floral quartet-like complexes. Nucleic Acids Res. 42(17): 10927-10942. DOI: 10.1093/nar/gku755.
John, F., Roffler, S., Wicker, T., Ringli, C. (2011). Plant TOR signaling components. Plant Signal Behav. 6(11): 1700-1705. DOI: 10.4161/psb.6.11.17662.
Laplante, M. and Sabatini, DM. (2012). mTOR signaling in growth control and disease. Cell. 149(2): 274-293. DOI: 10.1016/j.cell.2012.03.017.
Li, X.J., Cai, W.G., Liu, Y.L., Li, H., Fu, L.W., Liu, Z.Y., Lin, X., Liu, H.T., Xu, T.D., Yan, X. (2017). Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes. Proc Natl Acad Sci U S A. 114(10): 2765-2770. DOI: 10.1073/pnas. 1618782114.
Lu, S.N., Wang, J.Y., Chitsaz, F., Derbyshire, M.K., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Marchler, G.H., Song, J.S., Thanki, N., Yamashita, R.A., Yang, M.Z., Zhang, D.C., Zheng, C.J., Lanczycki, C.J., Marchler-Bauer, A. (2020). CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 48(D1): D265-D268. DOI: 10.1093/nar/gkz991.
Maeda, S., Gunji, S., Hanai, K., Hirano, T., Kazama, Y., Ohbayashi, I., Abe, T., Sawa, S., Tsukaya, H., Ferjani, A. (2014). The conflict between cell proliferation and expansion primarily affects stem organogenesis in Arabidopsis. Plant Cell Physiol. 55(11): 1994-2007. DOI: 10.1093/pcp/ pcu131.
Maegawa, K., Takii, R., Ushimaru, T., Kozaki, A. (2015). Evolutionary conservation of TORC1 components, TOR, Raptor, and LST8, between rice and yeast. Mol Genet Genomics. 290(5): 2019-2030. DOI:10.1007/s00438-015-1056-0.
Moreau, M., Azzopardi, M., Clément, G., Dobrenel, T., Marchive, C., Renne, C., Martin-Magniette, M.L., Taconnat, L., Renou, J.P., Robaglia, C., Meyer, C. (2012). Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. Plant Cell. 24(2): 463-481. DOI: 10.1105/tpc.111.091306.
Oh, W.J., Jacinto, E. (2011). mTOR complex 2 signaling and functions. Cell Cycle. 10(14): 2305-2316. DOI: 10.4161/cc.10.14.16586.
Perrot-Rechenmann, C. (2010). Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol. 2(5): a001446. DOI: 10.1101/cshperspect.a001446.
Schepetilnikov, M., Dimitrova, M., Mancera-Martínez, E., Geldreich, A., Keller, M., Ryabova, L.A. (2013). TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. EMBO J. 32(8): 1087-102. DOI: 10.1038/emboj.2013.61.
Schepetilnikov, M. and Ryabova, L.A. (2017). Auxin signaling in regulation of plant translation reinitiation. Front Plant Sci. 8: 1014. DOI: 10.3389/fpls.2017.01014.
Shi, L., Wu, Y., Sheen, J. (2018). TOR signaling in plants: conservation and innovation. Development. 145(13): dev160887. DOI: 10.1242/dev.160887.
Teo, Z.W.N., Zhou, W., Shen, L.S. (2019). Dissecting the function of MADS-Box transcription factors in orchid reproductive development. Front Plant Sci. 10: 1474. DOI: 10.33 89/fpls.2019.01474.
Tsukaya, H. (2013). Does ploidy level directly control cell size? counterevidence from arabidopsis genetics. PLoS One. 8(12): e83729. DOI: 10.1371/journal.pone.0083729.
Tsukaya, H. and Beemster, G.T.S. (2006). Genetics, cell cycle and cell expansion in organogenesis in plants. J Plant Res. 119(1): 1-4. DOI: 10.1007/s10265-005-0254-y.
Volkenburgh, E.V. (1999). Leaf expansion – an integrating plant behaviour. Plant, Cell and Environment. 22(12): 1463-1473.
Wang, Y. and Chen, R.J. (2014). Regulation of compound leaf development. Plants (Basel). 3(1): 1-17. DOI: 10.3390/plants3010001.
Wang, L. and Ruan, Y.L. (2013). Regulation of cell division and expansion by sugar and auxin signaling. Front Plant Sci. 4: 163. DOI: 10.3389/fpls.2013.00163.
Wang, Y.X., Wu, H., Yang, M. (2008). Microscopy and bioinformatic analyses of lipid metabolism implicate a sporophytic signaling network supporting pollen development in Arabidopsis. Mol Plant. 1(4): 667-674. DOI: 10.1093/mp/ssn027.
Xiong, Y. and Sheen, J. (2014). The role of target of rapamycin signaling networks in plant growth and metabolism. Plant Physiol. 164(2): 499-512. DOI: 10.1104/pp.113. 229948.
Yoon, M.S. (2017). The role of mammalian target of rapamycin (mTOR) in insulin signaling. Nutrients. 9(11): 1176. DOI: 10.3390/nu9111176.
Zou, Z.L., Tao, T., Li, H.M., Zhu, X. (2020). mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci. 10: 31. DOI: 10.1186/s13578-020-00396-1.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊