第一章
許巍瀚,阿拉伯芥中調控細胞分裂與配子體發育相關基因之功能性分析,博士論文,國立中興大學生物科技學研究所,臺中 (2012)。Aichinger, E., Kornet, N., Friedrich, T., Laux T. (2012). Plant stem cell niches. Annu Rev Plant Biol. 63: 615-636. DOI: 10.1146/annurev-arplant-042811-105555.
Ali, S., Khan, N., Xie, L. (2020). Molecular and hormonal regulation of leaf morphogenesis in Arabidopsis. Int J Mol Sci. 21(14): 5132. DOI: 10.3390/ijms21145132.
Arnaud, N. and Pautot, V. (2014). Ring the BELL and tie the KNOX: roles for TALEs in gynoecium development. Front Plant Sci. 20(5): 93. DOI: 10.3389/fpls.2014.00093.
Azizi, P., Rafii, M.Y., Maziah, M., Abdullah, S.N.A., Hanafi, M.M., Latif, M.A., Rashid, A.A., Sahebi, M. (2014). Understanding the shoot apical meristem regulation: a study of the phytohormones, auxin and cytokinin, in rice. Mech Dev. 135: 1-15. DOI: 10.1016/j. mod.2014.11.001.
Balanzà, V., Martínez-Fernández, I., Sato, S., Yanofsky, M.F., Ferrándiz, C. (2019). Inflorescence meristem fate is dependent on seed development and fruitful in Arabidopsis thaliana. Front Plant Sci. 18(10): 1622. DOI: 10.3389/fpls.2019.01622.
Banwarth-Kuhn, M., Nematbakhsh, A., Rodriguez, K.W., Snipes, S., Rasmussen, C.G., Reddy, G.V., Alber, M. (2019). Cell-based model of the generation and maintenance of the shape and structure of the multilayered shoot apical meristem of Arabidopsis thaliana. Bull Math Biol. 81(8): 3245-3281. DOI: 10.1007/s11538-018-00547-z.
Belles-Boix, E., Hamant, O., Witiak, S.M., Morin, H., Traas, J., Pautot, V. (2006). KNAT6: an Arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell. 18(8): 1900-1907. DOI: 10.1105/tpc.106.041988.
Benlloch, R., Berbel, A., Mislata, A.S., Madueño, F. (2007). Floral initiation and inflorescence architecture: a comparative view. Ann Bot. 100(3): 659-676. DOI: 10.1093/ aob/mcm146.
Bürglin, T.R. (1997). Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res. 25(21): 4173-4180. DOI: 10.1093/nar/25.21.4173.
Bürglin, T.R. and Affolter, M. (2016). Homeodomain proteins: an update. Chromosoma. 125(3): 497-521. DOI: 10.1007/s00412-015-0543-8.
Box, M.S., Dodsworth, S., Rudall, P.J., Bateman, R.M., Glover, B.J. (2012). Flower-specific KNOX phenotype in the orchid Dactylorhiza fuchsia. J Exp Bot. 63(13): 4811-4819. DOI: 10.1093/jxb/ ers152.
Boller T and Felix G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol. 60: 379-406. DOI: 10.1146/annurev.arplant.57.032905.105346.
Chang, W.W., Guo, Y.H., Zhang, H., Liu, X.G., Guo, L. (2020). Same actor in different stages: genes in shoot apical meristem maintenance and floral meristem determinacy in Arabidopsis. Frontiers. 8: 89. DOI: 10.3389/fevo.2020.00089.
Chongloi, G.L., Prakash, S., Vijayraghavan, U. (2019). Regulation of meristem maintenance and organ identity during rice reproductive development. J Exp Bot. 70(6): 1719-1736. DOI: 10.1093/jxb/erz046.
Fletcher, J.C. (2018). The CLV-WUS stem cell signaling pathway: a roadmap to crop yield optimization. Plants Basel. 7(4): 87. DOI: 10.3390/plants7040087.
Fletcher, J.C., Brand, U., Running, M.P., Simon, R., Meyerowitz, E.M. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science. 283(5409): 1911-1914. DOI: 10.1126/science.283.5409.1911.
Gaillochet, C. and Lohmann, J.U. (2015). The never-ending story: from pluripotency to plant developmental plasticity. Development. 142(13): 2237-2249. DOI: 10.12 42/dev.117614.
Goslin, K., Zheng, B., Serrano-Mislata, A., Rae, L., Ryan, P.T., Kwaśniewska, K., Thomson, B., Ó'Maoiléidigh, D.S., Madueño, F., Wellmer, F., Graciet, E. (2017). Transcription factor interplay between LEAFY and APETALA1/CAULIFLOWER during floral initiation. Plant Physiol. 174(2): 1097-1109. DOI: 10.1104/pp.17.00098.
Greb, T. and Lohmann, J.U. (2016). Plant stem cells. Curr Biol. 26(17): 816-821. DOI: 10.1016/j.cub. 2016.07.070.
Hawkins, C. and Liu, Z.C. (2014). A model for an early role of auxin in Arabidopsis gynoecium morphogenesis. Front Plant Sci. 5: 327. DOI: 10.3389/fpls.2014.00327.
Hamant, O., Nogué, F., Belles-Boix, E., Jublot, D., Grandjean, O., Traas, J., Pautot, V. (2002). The KNAT2 homeodomain protein interacts with ethylene and cytokinin signaling. Plant Physiol. 130(2): 657-665. DOI:10.1104/pp.004564.
Hay, A. and Tsiantis, M. (2010). KNOX genes: versatile regulators of plant development and diversity. Development. 137(19): 3153-3165. DOI: 10.1242/dev.030049.
Hepworth, S.R. and Pautot, V.A. (2015). Beyond the divide: boundaries for patterning and stem cell regulation in plants. Front Plant Sci. 6: 1052. DOI: 10.3389/fpls.2015. 01052.
Hsieh, M.H., Pan, Z.J., Lai, P.H., Lu, H.C., Yeh, H.H., Hsu, C.C., Wu, W.L., Chung, M..C, Wang, S.S., Chen, W.H., Chen, H.H. (2013). Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in Phalaenopsis orchids. J Exp Bot. 64(12): 3869-84. DOI: 10.1093/jxb/ert218.
Jack, T. (2004). Molecular and genetic mechanisms of floral control. Plant Cell. 16 Suppl: S1-17. DOI: 10.1105/tpc.017038.
Jasinski, S., Piazza, P., Craft, J., Hay, A., Woolley, L., Rieu, I., Phillips, A., Hedden, P., Tsiantis, M. (2005). KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol. 15(17): 1560-1565. DOI: 10.1016/j.cub. 2005.07.023.
Kater, M.M., Dreni, L., Colombo, L. (2006). Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot. 57(13): 3433-3444. DOI: 10.1093/jxb/erl097.
Kamiuchi, Y., Yamamoto, K., Furutani, M., Tasaka, M., Aida, M. (2014). The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development. Front Plant Sci. 5: 165. DOI: 10.3389/fpls.2014.00165.
Kimura, S., Koenig, D., Kang, J., Yoong, F.Y., Sinha, N. (2008). Natural variation in leaf morphology results from mutation of a novel KNOX gene. Curr Biol. 18(9): 672-677. DOI: 10.1016/ j.cub.2008.04.008.
Landrein, B., Kiss, A., Sassi, M., Chauvet, A., Das, P., Cortizo, M., Laufs, P., Takeda, S., Aida, M., Traas, J., Vernoux, T., Boudaoud, A., Hamant, O. (2015). Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems. Elife. 4: e07811. DOI: 10.7554/eLife.07811.
Lee, H., Chah, O.K. and Sheen, J. (2011). Stem-cell-triggered immunity through CLV3p –FLS2 signaling. Nature. 473(7347): 376-379. DOI: 10.1038/nature09958.
Lenhard, M., Jürgens, G., Laux, T. (2002). The WUSCHEL and SHOOTM- ERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development. 129(13): 3195-3206.
Lu, H.C., Chen, H.H., Tsai, W.C., Chen, W.H., Su, H.J., Chang, D.C.N., Yeh, H.H. (2007). Strategies for functional validation of genes involved in reproductive stages of orchids. Plant Physiol. 143(2): 558-569. DOI: 10.1104/pp.106.092742.
Magnani, E. and Hake, S. (2008). KNOX lost the OX: the Arabidopsis KNATM gene defines a novel class of KNOX transcriptional regulators missing the homeodomain. Plant Cell. 20(4): 875-887. DOI: 10.1105/tpc.108.058495.
McGinnis, W. and Krumlauf, R. (1992). Homeobox genes and axial patterning. Cell. 68(2): 283-302. DOI: 10.1016/0092-8674 (92)90471-n.
Meng, L.Y., Liu, X.M., He, C.F., Xu, B.Y., Li, Y.X., Hu, Y.K. (2020). Functional divergence and adaptive selection of KNOX gene family in plants. Open Life Sci. 15(1): 346-363. DOI:10.1515/biol-2020-0036.
Murashige T and Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiology. 15(3): 473-497.
Naseem, M., Srivastava, M., Dandekar, T. (2014). Stem-cell-triggered immunity safeguards cytokinin enriched plant shoot apexes from pathogen infection. Front Plant Sci. 5: 588. DOI: 10.3389/fpls.2014.00588.
Nagasaki, H., Sakamoto, T., Sato, Y., Matsuok, M. (2001). Functional analysis of the conserved domains of a rice KNOX homeodomain protein, OSH15. Plant Cell. 13(9): 2085-2098. DOI: 10.1105/TPC.010113.
Pan, Z.J., Chen, Y.Y., Du, J.S,, Chen, Y.Y., Chung, M.C., Tsai, W.C., Wang, C.N., Chen, H.H. (2014). Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes. New Phytol. 202(3): 1024-1042. DOI: 10.1111/nph. 12723.
Pautot, V., Dockx, J., Hamant, O., Kronenberger, J., Grandjean, O., Jublot, D., Traas, J. (2001). KNAT2: evidence for a link between knotted-like genes and carpel development. Plant Cell. 13(8): 1719-1734. DOI: 10.1105/tpc.010184.
Pautler, M., Tanaka, W., Hirano, H.Y., Jackson, D. (2013). Grass meristems I: shoot apical meristem maintenance, axillary meristem determinacy and the floral transition. Plant Cell Physiol. 54(3): 302-312. DOI: 10.1093/pcp/pct025.
Petrov, V., Hille, J., Mueller-Roeber, B., Gechev, T.S. (2015). ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci. 6: 69. DOI: 10.3389/fpls. 2015.00069.
Prusinkiewicz, P., Erasmus, Y., Lane, B., Harder, L.D., Coen, E. (2007). Evolution and development of inflorescence architectures. Science. 316(5830): 1452-1456. DOI: 10.1126/science.1140429.
Reyes-Olalde, J.I., Zuñiga-Mayo, V.M., Montes, R.A.C., Marsch-Martínez, N., Folter, S.D. (2013). Inside the gynoecium: at the carpel margin. Trends Plant Sci. 18(11): 644-655. DOI: 10.1016/j.tplants.2013.08.002.
Roth, O., Alvarez, J.P., Levy, M., Bowman, J.L., Ori, N., Shani, E. (2018). The KNOXI transcription factor SHOOT MERISTEMLESS regulates floral fate in Arabidopsis. Plant Cell. 30(6): 1309-1321. DOI: 10.1105/tpc.18.00222.
Scofield, S., Dewitte, W., Murray, J.A. (2007). The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. The Plant Journal. 3(4): 257-259. DOI: 10.4161/psb.3.4.5194.
Scofield, S., Dewitte, W., Murray, J.A. (2008). A model for Arabidopsis class-1 KNOX gene function. Plant Signal Behav. 3(4): 257-259. DOI: 10.4161/psb.3.4.5194.
Scofield, S., Murison, A., Jones, A., Fozard, J., Aida, M., Band, L.R., Bennett, M., Murray, J.A.H. (2018). Coordination of meristem and boundary functions by transcription factors in the SHOOT MERISTEMLESS regulatory network. Development. 145(9): dev157081. DOI: 10.1242/dev. 157081.
Scott, M.P. and Weiner, A.J. (1984). Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. PNAS. 81(13): 4115-4119. DOI: 10.1073/pnas.81.13.4115.
Su, Y.H., Liu, Y.B., Zhang, X.S. (2011). Auxin-cytokinin interaction regulates meristem development. Mol Plant. 4(4): 616-25. DOI: 10.1093/mp/ssr007.
Tax, F.E. and Durbak, A. (2006). Meristems in the movies: live imaging as a tool for decoding intercellular signaling in shoot apical meristems. Plant Cell. 18(6): 1331-1337. DOI: 10.1105/tpc.106.042572.
Teo, Z.W.N., Zhou, W., Shen, L.S. (2019). Dissecting the function of MADS-Box transcription factors in orchid reproductive development. Front Plant Sci. 10: 1474. DOI: 10.3389/fpls.2019.01474.
Theißen, G., Melzer, R., Rümpler, F. (2016). MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development. 143(18): 3259-3271. DOI: 10.1242/dev.134080.
Tooke, F., Ordidge, M., Chiurugwi, T., Battey, N. (2005). Mechanisms and function of flower and inflorescence reversion. J Exp Bot. 56(420): 2587-2599. DOI: 10.1093/jxb/ eri254.
Truernit, E. and Haseloff, J. (2007). A role for KNAT class II genes in root development. Plant Signal Behav. 2(1): 10-12. DOI:10.4161/psb.2.1.3604.
Vollbrecht, E., Veit, B., Sinha, N., Hake, S. (1991). The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature. 350(6315): 241-243. DOI: 10. 1038/350241a0.
Wang, S., Yamaguchi, M., Grienenberger, E., Martone, P.T., Samuels, A.L., Mansfield, S.D. (2020). The class II KNOX genes KNAT3 and KNAT7 work cooperatively to influence deposition of secondary cell walls that provide mechanical support to Arabidopsis stems. Plant J. 101(2): 293-309. DOI: 10.1111/tpj.14541.
Wingler, A., Schaewen, A.V., Leegood, R.C., Lea, P.J., Quick, W.P. (1998). Regulation of leaf senescence by cytokinin, sugars, and light. Plant Physiol. 116(1): 329-335.
Wu, W.Q., Du, K., Kang, X.Y., Wei, H.R. (2021). The diverse roles of cytokinin in regulating leaf development. Hortic Res. 8(1): 118. DOI: 10.1038/s41438-021-00558-3.
Xue, Z.H., Liu, L.Y., Zhang, C. (2020). Regulation of shoot apical meristem and axillary meristem development in plants. Int J Mol Sci. 21(8): 2917. DOI: 10.3390/ijms21082917.
Yanai, O., Shani, E., Dolezal, K., Tarkowski, P., Sablowski, R., Sandberg, G., Samach, A., Ori, N. (2005). Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol. 15(17): 1566-1571. DOI: 10.1016/j.cub.2005.07.060.
Yu, Y.K., Li, Y.L., Ding, L.N., Sarwar, R., Zhao, F.Y., Tan, X.L. (2020a). Mechanism and regulation of silique dehiscence, which affects oil seed production. Front Plant Sci. 11: 580. DOI: 10.3389/fpls.2020.00580.
Yu, L., Patibanda, V., Smith, H.M.S. (2009). A novel role of BELL1-like homeobox genes, PENNYWISE and POUND-FOOLISH, in floral patterning. Planta. 229(3): 693-707. DOI: 10.1007/s00425-008-0867-1.
Yu, C.C., Yan, C.H., Liu, Y.L., Liu, Y.L., Jia, Y., Lavelle, D., An, G.H., Zhang, W.Y., Zhang, L., Han, R.K., Larkin, R.M., Chen, J.J., Michelmore, R.W., Kuang, H.H. (2020b). Upregulation of a KN1 homolog by transposon insertion promotes leafy head development in lettuce. Proc Natl Acad Sci U S A. 117(52): 33668-33678. DOI: 10.1073/ pnas.2019698117.
Zhang, W. and Yu, R. (2014). Molecule mechanism of stem cells in Arabidopsis thaliana. Pharmacogn Rev. 8(16): 105-112. DOI: 10.4103/0973-7847.134243.
第二章
許巍瀚,阿拉伯芥中調控細胞分裂與配子體發育相關基因之功能性分析,博士論文,國立中興大學生物科技學研究所,臺中 (2012)。趙子翔,蝴蝶蘭中抑制生長速度之yippee like genes PaYIP B-1 及 PaYIPB-2之功能性分析,碩士論文,國立中興大學生物科技學研究所,臺中 (2019)。Ali, S., Khan, N., Xie, L. (2020). Molecular and hormonal regulation of leaf morph- ogenesis in Arabidopsis. Int J Mol Sci. 21(14): 5132. DOI: 10.3390/ijms21145132.
Apelo, S.I.A. and Lamming, D.W. (2016). Rapamycin: an inhibiTOR of aging emerges from the soil of easter island. J Gerontol A Biol Sci Med Sci. 71(7): 841-849. DOI: 10.1093 /gerona/glw090.
Bakshi, A., Moin, M., Madhav, M.S., Kirti, P.B. (2019). Target of rapamycin, a master regulator of multiple signalling pathways and a potential candidate gene for crop improvement. Plant Biol (Stuttg). 21(2): 190-205. DOI: 10.1111/plb.12935.
Bar, M. and Ori, N. (2014). Leaf development and morphogenesis. Development. 141(22): 4219-4230. DOI: 10.1242/dev.106195.
Causier, B., Cook, H., Davies, B. (2003). An antirrhinum ternary complex factor specifically interacts with C-function and SEPALLATA-like MADS-box factors. Plant Mol Biol. 52(5): 1051-1062. DOI: 10.1023/a:1025426016267.
Crespo, J.L. and Hall, M.N. (2002). Elucidating TOR signaling and rapamycin action: lessons from saccharomyces cerevisiae. Microbiol Mol Biol Rev. 66(4): 579-591. DOI: 10.1128/MM BR.66.4.579-591.2002.
Czesnick, H. and Lenhard, M. (2015). Size control in plants—lessons from leaves and flowers. Cold Spring Harb Perspect Biol. 7(8): a019190. DOI: 10.1101/cshperspect. a019190.
Durbak, A., Yao, H., McSteen, P. (2012). Hormone signaling in plant development. Curr Opin Plant Biol. 15(1): 92-96. DOI: 10.1016/j.pbi.2011.12.004.
Du, F., Guan, C.M., Jiao, Y.L. (2018). Molecular mechanisms of leaf morphogenesis. Mol Plant. 11(9): 1117-1134. DOI: 10.1016/j.molp.2018.06.006.
Efroni, I., Eshed, Y., Lifschitz, E. (2010). Morphogenesis of simple and compound leaves: a critical review. Plant Cell. 22(4): 1019-1032. DOI: 10.1105/tpc.109.073601.
Feng, G.P., Qin, Z.X., Yan, J.Z., Zhang, X.R., Hu, Y.X. (2011). Arabidopsis ORGAN SIZE RELATED1 regulates organ growth and final organ size in orchestration with ARGOS and ARL. New Phytol. 191(3): 635-646. DOI: 10.1111/j.1469-8137.2011. 03710.x.
Fujikura, U., Horiguchi, G., Ponce, M.R., Micol, J.L., Tsukaya, H. (2009). Coordination of cell proliferation and cell expansion mediated by ribosome-related processes in the leaves of Arabidopsis thaliana. Plant J. 59(3): 499-508. DOI: 10.1111/ j.1365-313X.2009.03886.x.
Gonzalez, N., Vanhaeren, H., Inzé, D. (2012). Leaf size control: complex coordination of cell division and expansion. Trends Plant Sci. 17(6): 332-340. DOI: 10.1016/j.tplants. 2012.02.003.
Heitman, J., Movva, N.R., Hall, M.N. (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 253(5022): 905-909. DOI: 10.1126/ science.1715094.
Jacinto, E., Facchinetti, V., Liu, D., Soto, N., Wei, SN., Jung, SY., Huang, QJ., Qin, J., Su, B. (2006). SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 127(1): 125-137. DOI: 10.1016/j.cell. 2006.08.033.
Jetha, K., Theißen, G., Melzer, R. (2014). Arabidopsis SEPALLATA proteins differ in cooperative DNA-binding during the formation of floral quartet-like complexes. Nucleic Acids Res. 42(17): 10927-10942. DOI: 10.1093/nar/gku755.
John, F., Roffler, S., Wicker, T., Ringli, C. (2011). Plant TOR signaling components. Plant Signal Behav. 6(11): 1700-1705. DOI: 10.4161/psb.6.11.17662.
Laplante, M. and Sabatini, DM. (2012). mTOR signaling in growth control and disease. Cell. 149(2): 274-293. DOI: 10.1016/j.cell.2012.03.017.
Li, X.J., Cai, W.G., Liu, Y.L., Li, H., Fu, L.W., Liu, Z.Y., Lin, X., Liu, H.T., Xu, T.D., Yan, X. (2017). Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes. Proc Natl Acad Sci U S A. 114(10): 2765-2770. DOI: 10.1073/pnas. 1618782114.
Lu, S.N., Wang, J.Y., Chitsaz, F., Derbyshire, M.K., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Marchler, G.H., Song, J.S., Thanki, N., Yamashita, R.A., Yang, M.Z., Zhang, D.C., Zheng, C.J., Lanczycki, C.J., Marchler-Bauer, A. (2020). CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 48(D1): D265-D268. DOI: 10.1093/nar/gkz991.
Maeda, S., Gunji, S., Hanai, K., Hirano, T., Kazama, Y., Ohbayashi, I., Abe, T., Sawa, S., Tsukaya, H., Ferjani, A. (2014). The conflict between cell proliferation and expansion primarily affects stem organogenesis in Arabidopsis. Plant Cell Physiol. 55(11): 1994-2007. DOI: 10.1093/pcp/ pcu131.
Maegawa, K., Takii, R., Ushimaru, T., Kozaki, A. (2015). Evolutionary conservation of TORC1 components, TOR, Raptor, and LST8, between rice and yeast. Mol Genet Genomics. 290(5): 2019-2030. DOI:10.1007/s00438-015-1056-0.
Moreau, M., Azzopardi, M., Clément, G., Dobrenel, T., Marchive, C., Renne, C., Martin-Magniette, M.L., Taconnat, L., Renou, J.P., Robaglia, C., Meyer, C. (2012). Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. Plant Cell. 24(2): 463-481. DOI: 10.1105/tpc.111.091306.
Oh, W.J., Jacinto, E. (2011). mTOR complex 2 signaling and functions. Cell Cycle. 10(14): 2305-2316. DOI: 10.4161/cc.10.14.16586.
Perrot-Rechenmann, C. (2010). Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol. 2(5): a001446. DOI: 10.1101/cshperspect.a001446.
Schepetilnikov, M., Dimitrova, M., Mancera-Martínez, E., Geldreich, A., Keller, M., Ryabova, L.A. (2013). TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. EMBO J. 32(8): 1087-102. DOI: 10.1038/emboj.2013.61.
Schepetilnikov, M. and Ryabova, L.A. (2017). Auxin signaling in regulation of plant translation reinitiation. Front Plant Sci. 8: 1014. DOI: 10.3389/fpls.2017.01014.
Shi, L., Wu, Y., Sheen, J. (2018). TOR signaling in plants: conservation and innovation. Development. 145(13): dev160887. DOI: 10.1242/dev.160887.
Teo, Z.W.N., Zhou, W., Shen, L.S. (2019). Dissecting the function of MADS-Box transcription factors in orchid reproductive development. Front Plant Sci. 10: 1474. DOI: 10.33 89/fpls.2019.01474.
Tsukaya, H. (2013). Does ploidy level directly control cell size? counterevidence from arabidopsis genetics. PLoS One. 8(12): e83729. DOI: 10.1371/journal.pone.0083729.
Tsukaya, H. and Beemster, G.T.S. (2006). Genetics, cell cycle and cell expansion in organogenesis in plants. J Plant Res. 119(1): 1-4. DOI: 10.1007/s10265-005-0254-y.
Volkenburgh, E.V. (1999). Leaf expansion – an integrating plant behaviour. Plant, Cell and Environment. 22(12): 1463-1473.
Wang, Y. and Chen, R.J. (2014). Regulation of compound leaf development. Plants (Basel). 3(1): 1-17. DOI: 10.3390/plants3010001.
Wang, L. and Ruan, Y.L. (2013). Regulation of cell division and expansion by sugar and auxin signaling. Front Plant Sci. 4: 163. DOI: 10.3389/fpls.2013.00163.
Wang, Y.X., Wu, H., Yang, M. (2008). Microscopy and bioinformatic analyses of lipid metabolism implicate a sporophytic signaling network supporting pollen development in Arabidopsis. Mol Plant. 1(4): 667-674. DOI: 10.1093/mp/ssn027.
Xiong, Y. and Sheen, J. (2014). The role of target of rapamycin signaling networks in plant growth and metabolism. Plant Physiol. 164(2): 499-512. DOI: 10.1104/pp.113. 229948.
Yoon, M.S. (2017). The role of mammalian target of rapamycin (mTOR) in insulin signaling. Nutrients. 9(11): 1176. DOI: 10.3390/nu9111176.
Zou, Z.L., Tao, T., Li, H.M., Zhu, X. (2020). mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci. 10: 31. DOI: 10.1186/s13578-020-00396-1.