跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/09 07:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪嘉謙
研究生(外文):Jia-Cian Hong
論文名稱:個人高空安全防墜之鋁合金護具熱處理與機械性質研究
論文名稱(外文):The Study on Heat Treatment and Mechanical Properties of Safety Aluminum Component for Personal Fall Protection
指導教授:汪俊延
口試委員:林宏茂林俊凱
口試日期:2021-03-15
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:126
中文關鍵詞:鋁合金鋁合金熱處理田口方法品質特性最佳化
外文關鍵詞:Quality engineeringaluminum of heat treatmentTaguchi methoddesign of process parametersoptimization of multiple quality characteristics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究透過控制鋁合金個人防墜護具之熱處理生產參數的方式,以硬度及拉伸試驗,探討不同時效製程參數對 AA6066 鋁合金微結構與機械性質之影響,並以光學顯微鏡(OM)、電子顯微鏡(SEM)等觀察鋁合金之微結構。選定鋁合金熱處理程序中的固溶溫度、固溶時間、時效溫度及時效時間四個因子及分別三種水準為(530℃, 545℃, 560℃)、(60, 70, 80分)、(160℃, 175℃, 190℃)、(8, 10, 12小時)。實驗結果顯示,固溶處理溫度越高時,Mg2Si相晶出物細化,Al-Fe-Mn-Cu-Si相形貌由碎片狀轉變為團狀,破斷面從層狀轉為窩旋狀。在拉伸性質部分,隨著提高固溶處理溫度,拉伸強度上升。硬度測試在時效溫度175 ‎°C 達到平均最高值 HRB 81.7,較現有參數硬度值平均高出9%:拉力測試在時效溫度180 ‎°C 達到平均最高值 29.6 kN,較現有參數拉力值平均高出9.1%,拉伸強度提升作用。從拉伸破斷面推測,提高固溶溫度材較佳之韌、延性,具有更高之使用壽命,若同時提高固溶溫度及延長時效溫度會使硬度上升。
多數產業對於新材料或製程參數較常使用試誤法,只考量單一品質特性的參數設計最佳化,本研究透過是品質工程於製程參數改善設計時,常會使用到的田口方法,使用田口法來進行參數設計時,進行品質特性的製程參數設計改善。首先設計一個四因子三水準實驗驗證多品質特性最佳化參數,接著將選定之每一品質特性的損失值求出,得出品質特性 SN 比(Signal to Noise Ratio),便可依據品質特性 SN 比值決定品質特性下的最佳製程參數水準組合。由實驗結果在田口法得到最佳參數是固溶溫度560℃、固溶時間70分、時效溫度190℃及時效時間12小時並分別在實驗爐及企業量產爐進行參數驗證,確認實驗所得之最佳化參數實際應用的表現。
In this study, control the heat treatment of aluminum fall protection D-ring, observing the microstructure by OM and SEM and mechanical properties (e.g. hardness, tensile test) under different parameter of heat treatment. Selected factors as solution temperature, solution duration, ageing temperature and ageing duration; selected levels as (530℃, 545℃, 560℃), (60, 70, 80 minutes), (160℃,175℃,190℃), (8, 10, 12 hours).The results indicates that when solution temperature is high, Mg2Si phase precipitates become finer, Al -Fe-Mn-Cu-Si phase turn fragment into cluster, the surface of fracture turn layer into dimple. The Strength increases with higher solution temperature, and reach highest average hardness HRB 81.7 at ageing temperature 175℃ which increases 9% compares to existing parameter; the tensile test reach highest average 29.6kN which increases 9.1% compares to existing parameter. The observation of surfaces of fracture indicate that toughness and elongation are better with higher solution temperature, if solution temperature and ageing duration rise simultaneously that the hardness will increase.
Most industrials use the try and error method for seeking recipe of new process or material and may consider with a single quality character. In this study, using the Taguchi method that is often used when optimizing the design of process parameters and in quality engineering. First, set up 4 factors and 3 level experiment in order to get the optimal parameters, and then select quality factors and level and finally the quality characteristic SN ratio is obtained (Signal to Noise Ratio). The optimal combination of process parameter and levels under quality characteristics can be determined according to the SN ratio. In accordance with results of experiment, the optimal parameter obtained as: solution temperature 560℃, solution duration 70 minutes, ageing temperature 190℃ageing duration 12 hours. Verify above optimal parameters by experimental furnace and mass production furnace to ensure feasibility of optimal parameter.
第一章 前言 1

第二章 文獻回顧 3
2-1 鋁合金簡介 3
2-1-1 鋁合金名稱及種類 3
2-1-2 熱處理型鋁合金種類 5
2-1-3 合金元素組成之影響 8
2-1-3-1 元素影響 8
2-1-3-2 腐蝕特性影響 16
2-1-3-3 生產製程影響 17
2-1-4 熱處理程序 21
2-2 田口方法 24
2-3 田口方法的工具24
2-3-1 直交表 25
2-3-2 品質損失函數25

第三章 實驗步驟與方法28
3-1 測試樣品29
3-2 熱處理條件29
3-3 拉伸測試 29
3-4 硬度測試 30
3-5 微觀組織觀察 30
3-6 成分元素分析 30

第四章 結果與討論 48
4-1 田口法熱處理選定參數於實驗多口爐驗證 48
4-1-1-1 排列方式-站立 48

4-1-1-2 最佳參數預測驗證-站立排列 50
4-1-2-1 排列方式-重疊排列 50
4-1-2-2 最佳參數預測驗證-重疊 51
4-1-3-1 排列方式-散重疊 51
4-1-3-2 最佳參數預測驗證-散重疊52
4-1-4 田口法結論與探討 52
4-2 田口法量產參數驗證 54
4-2-1 量產生產驗證 54
4-2-2 追加量產生產驗證 54
4-3 多口爐實驗與量產生產差異可能原因探討 55

第五章 結論 91

未來研究方向 92

第六章 參考資料 93

附錄 96
[1] [ J. R. Davis, ASM Speciality Handbook : Aluminum and Aluminum Alloys, ASM International, pp. 360, 2001.
[2] J. R. Davis, ASM Speciality Handbook : Aluminum and Aluminum Alloys, ASM International, pp. 362, 2001
[3] J. R. Davis, ASM Speciality Handbook : Aluminum and Aluminum Alloys, ASM International, pp. 363, 2001
[4] J. R. Davis, ASM Speciality Handbook : Aluminum and Aluminum Alloys, ASM International, pp. 374, 2001
[5] J. R. Davis, ASM Speciality Handbook : Aluminum and Aluminum Alloys, ASM International, pp. 379, 2001
[6] J. R. Davis, ASM Speciality Handbook : Aluminum and Aluminum Alloys, ASM International, pp. 376, 2001
[7] J. R. Davis, ASM Speciality Handbook : Aluminum and Aluminum Alloys, ASM International, pp. 378, 2001
[8 ] J. R. Davis, ASM Speciality Handbook : Aluminum and Aluminum Alloys, ASM International, pp. 386, 2001
[9] J. R. Davis, ASM Speciality Handbook : Aluminum and Aluminum Alloys, ASM International, pp. 387, 2001
[10] J. R. Davis, ASM Speciality Handbook : Aluminum and Aluminum Alloys, ASM International, pp. 396, 2001
[11] J. R. Davis, ASM Speciality Handbook : Aluminum and Aluminum Alloys, ASM International, pp. 369, 2001
[12] J. R. Davis, ASM Speciality Handbook : Aluminum and Aluminum Alloys, ASM International, pp. 409, 2001
[13] J. R. Davis, ASM Speciality Handbook : Aluminum and Aluminum Alloys, ASM International, pp. 409, 2001
[14] J. R. Davis, ASM Speciality Handbook : Aluminum and Aluminum Alloys, ASM International, pp. 411, 2001
[15] Robert E. Reed-Hill, Reza Abbaschian, Physical Metallurgy Principles,4th ed.pp, 241.
[16] 楊伯文 "退火熱處理對加工後2024Al-Cu-Mg合金軋延板料晶粒成長機構之探討",碩士論文, 國立中興大學,民國99年。
[17] J. Peel, B. Evans, C. A. Baker, D. A. Bennett, and P. J. Gregson, “The developmentand application of improved aluminum-lithium alloys, ” Proceeding of the second International Aluminum-Lithium Conference, The Metallurgy Society of AIME, California USA, April, pp. 363-392, 1983.
[18] J. Peel, B. Evans, C. A. Baker, D. A. Bennett, and P. J. Gregson, “The developmentand application of improved aluminum-lithium alloys, ” Proceeding of the second International Aluminum-Lithium Conference, The Metallurgy Society of AIME, California USA, April, pp. 363-392, 1983.
[19] R. E. Reed-Hill,and R. Abbaschian: “ Physical Metallurgy Principles,”3rd ed.,Boston, PWS Publishing Company, pp. 515-535, 1991.
[20] 劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,“工程材料科學”,全華科技圖書出 版,第339-342頁,民國88年
[21] A. Guinier, Compte Rend. Vol. 206, pp. 164, 1938.
[22] ASTM E18-19, Standard Test Methods for Rockwell Hardness of Metallic Materials, ASTM International, West Conshohocken, PA, www.astm.org, 2019.
[23] 廖婕如 "一般固溶熱處理與過高溫固溶處理對6066鋁合金時效材拉伸性質與拉伸可靠度之影響",碩士論文,國立成功大學,民國101年。
[24] David A. Porter, K. E. Easterling, Mohamed Y. SherifPhase Transformations in Metals and Alloys, 2nd edition, CRC Press, 2008.
[25]汪俊延, 國立中興大學輕金屬產學技術聯盟網站,老汪說書, 第十四至十八集 鋁合金的表面腫泡 https://sites.google.com/site/nchulmiata/home
[26] Miao, W. F., & Laughlin, D. E. Effects of Cu content and preaging on precipitation characteristics in aluminum alloy 6022. Metallurgical and Materials Transactions A, 31(2), 361-371, 2000.
[27] Zhong, H., Rometsch, P. A., Cao, L., & Estrin, Y.. The influence of Mg/Si ratio and Cu content on the stretch formability of 6xxx aluminium alloys. Materials Science and Engineering: A, 651, 688-697, 2016.
[28] Wu, H. C., Wen C.Y. & Lin, H. C. Mechanical Properties and Microstructure Characteristics of 6XXX Series and 7XXX Series Wrought Aluminum Alloys
[29] G.Mrowka-Nowotnik,"Influence of chemical composition variation and heat treatment on microstructure and mechanical properties of 6xxx alloys", Archives of Materials Science and Engineering,Vol.46, pp.98-107.
[30] A. Guinier, Compte Rend. Vol. 206, pp. 164, 1938.
[31] 劉國雄、林樹均、葉均蔚, “鋁及鋁合金的製造”,全華科技圖書出版,民國74。
[32] R. E. Smallman and A. H. W. Ngan. Physical Metallurgy and Advanced Materials. Elsevier, 2007.
[33] 黃振賢,機械材料,新文京開發,337-354,2000。
[34] ASTM Standards E112-96,“Standar Test Method for Detemining Average Grain
Size, 2003.
[35] Robert E. Reed-Hill, Reza Abbaschian,Physical Metallurgy Principles,4th ed. ,pp. 697.。
[36] ASM, "Properties and Selection: Nonferrous Alloys and Special-Purpose Materials", 9 ed. vol. 2, pp. 118-119, ASM International, 1986.
[37] Christian B. Fuller, Albert R. Krause, David C. Dunand, David N. Seidman Microstructure and mechanical properties of a 5754 aluminum alloy modified by Sc and Zr additions, Materials Science and Engineering A338 , 2002.
[38] E. TAN, "The Effect of Hot-deformation on Mechanical Properties and Age Hardening Characteristics of Al-Mg-Si Based Wrought Aluminum Alloys", Natural and Applied Sciences of Middle East Technical University, Chap. 2, 2006. [39] Evren TAN, Bilgehan OGEL, Influence of Heat Treatment on Mechanical Properties of AA6066 Alloy, Turkish J. Eng. Env. Sci. 31, PP 53-60, 2007.
[40] John Wiley & Sons, Inc.,Montgomery, D.C., Introduction to Statistical Quality Control, 6th Ed., 2009.
[41] 李輝煌著, 田口方法品質設計的原理與實務(Taguchi methods principles and practices of quality design.),高立圖書有限公司,臺北縣五股工業區,三版ed. 2008
[42] 戴搖廷, 蘇武昌, 應用田口方法至 TFT-LCD黑色矩陣檢測缺陷之參數設計, 國立中興大學電機工程學系, 2014
[43] 莊東漢著, 材料破損分析. 五南圖書出版股份有限公司, 2007。
[44] 汪建民, 材料分析, 中國材料科學學會, 民87。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊