跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/24 04:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁致成
研究生(外文):Leung Chi Shing Kingsley
論文名稱:聚苯胺/帶狀奈米石墨烯/三氧化二銦奈米複合材料之網板印刷氨氣感測器之製備及效能分析
論文名稱(外文):Fabrication and Gas Sensing Properties of Ammonia Gas Sensor Using Screen Printing with Polyaniline /Graphene Nanoribbons /Indium Trioxide
指導教授:吳宗明吳宗明引用關係
指導教授(外文):Tzong-Ming Wu
口試委員:蔡毓楨廖建勛
口試委員(外文):Yu-Chen TsaiChien-Shiun Liao
口試日期:2021-06-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:114
中文關鍵詞:聚苯胺帶狀奈米石墨烯三氧化二銦PEDOT:PSS網板印刷氨氣感測器
外文關鍵詞:PolyanilineGraphene nanoribbonIndium oxidePEDOT:PSSScreen Printing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本研究透過網板印刷將利用原位聚合法合成出之具有良好包覆性聚苯胺(PANI)/ 帶狀奈米石墨烯 (GNR)以及三氧化二銦(In2O3)三元複合材料,並通過添加PEDOT:PSS (PE)製備出用於網板印刷之複合材料墨水並印刷於氨氣感測器上以用作感測層,並對PEDOT:PSS之添加量及網印層數對氨氣感測之影響進行探討。
本研究分別藉由TEM、SEM、FTIR、X-ray分析圖鑑及BET,對PANI/GNR二元複合材料及PANI/GNR/In2O3進行材料表面型態、化學型態分析及比表面積之分析。於PANI/GNR二元複合材料發現隨著GNR的添加量,複材表面有變得更粗糙化的趨勢,於10wt%添加量下,複材表面具有最粗糙表面,經由BET檢測其比表面積為57.43m2/g;而添加In2O3複材之比表面積大幅提升,其中10G3IP之比表面積大幅提升至64.55 m2/g。
爾後,透過加入不同重量比例之PEDOT:PSS以製備出聚苯胺墨水以探討PEDOT:PSS之添加量及不同網印層數對對氨氣感測器表現之影響。在1ppm氨氣濃度下,添加2wt% PEDOT:PSS之聚苯胺墨水擁有最佳之響應值較未添加之高出1.43倍;而在二元複合材料10GP及三元複合材料10G3IP中,響應值分別較聚苯胺墨水高出2倍及2.8倍,顯示出碳材及金屬氧化物之加入可有效提升感測器之靈敏性。同時透過SEM及AFM可觀察出印刷5層之氨氣感測器有較好分散性而厚度為550nm。
In this work, a room temperature ammonia gas sensor based on Polyaniline (PANI)/Graphene nanoribbon (GNR)/Indium oxide (In2O3) nanocomposite with adding PEDOT:PSS will be using as ink in the Screen-printing process and defind the sensing performance of added PEDOT:PSS and number of screen printed layer.
For morography, chemical structure and specific surface area of PANI/GNR/In2O3 nanocomposite will analyze by Transmission Electron Microscopy (TEM), Scanning Electron Microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray Diffraction (XRD) and Specific Surface Area and Porosimetry Analyzer (BET). In PANI/GNR nanocomposite, more roughtness surface have observed with added GNR, with the analyze of BET showed 10GP with the highest specific surface area 57.43m2/g, after added In2O3, nanocomposite showed increasing specific surface area in 10G3IP specific surface area increased to 64.55 m2/g.
The gas sensing performance under 1ppm ammonia with added difference percentage by weight PEDOT:PSS and number of screen printed layer,PANI with adding 2 wt% PEDOT:PSS showed a better performance with 1.43 times higher than pure PANI, with the addition of GNR and In2O3, PANI/GNR nanocomposite and PANI/GNR/ In2O3 nanocomposite showed a better sensitivity compared to PANI,with response two times and 2.8 times higher, respectively. For the Screen printing performance will observed by using Atomic Force Microscope (AFM) and Scanning Electron Microscope, it showed gas sensor with five screen printed layer having a better dispersion with thickness 550nm.
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 5
1.3 研究目的與方向 6
第二章 文獻回顧與基礎理論 7
2.1 氣體感測器 7
2.1.1 半導體氣體感測器(Metal Oxide Semiconductor Gas Sensor) 8
2.2 導電高分子 ( Conductive polymer ) 9
2.2.1 導電高分子簡介 9
2.2.2 基本能帶理論 12
2.2.3 偏極子 (polaron)、雙偏極子(bipolaron) 13
2.3 聚苯胺(Polyaniline, PANI) 15
2.3.1 聚苯胺的簡介 15
2.3.2 聚苯胺之合成方式 17
2.3.3 聚苯胺之氨氣感測機制 18
2.4 帶狀奈米石墨烯(Graphene Nanoribbon) 19
2.5 三氧化二銦 (Indium Trioxide,In2O3) 21
2.5.1 三氧化二銦簡介 21
2.5.2 三氧化二銦的製備方法 22
2.6 氨氣感測器於醫療用途上之發展與研究潛力 26
2.6.1 聚苯胺/聚吡咯複合材料之氨氣感機制 27
2.6.2 聚苯胺/碳材複合材料於氨氣感測之表現 28
2.6.3 聚苯胺/金屬氧化物複合材料於氨氣感測之表現 31
2.6.4 聚苯胺/碳材/金屬氧化物複合材料於氨氣感測之表現 34
2.7 氣體感測器之製程手法 38
2.7.1 網板印刷 38
2.7.2 基於網板印刷之氣體感測器 39
2.7.3 PEDOT:PSS對聚苯胺/碳材複合材料分散性之影響 41
2.7.4 PSS對聚苯胺於氨氣感測表現之影響 42
第三章 實驗方法與步驟 43
3.1 實驗材料 43
3.2 實驗儀器 45
3.3 實驗架構 46
3.4 實驗方法與步驟 47
3.4.1 帶狀奈米石墨烯(GNR)之製成 47
3.4.2 聚苯胺/帶狀奈米石墨烯之置備 49
3.4.3 聚苯胺/帶狀奈米石墨烯/三氧化二銦複合材料之置備 51
3.4.4 氣體感測電極之置備 54
3.4.5 氣體感測實驗 55
3.5 實驗儀器分析 57
3.5.1 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectrometer,FTIR) 57
3.5.2 拉曼光譜儀 (Raman Spectrometer) 57
3.5.3 X光繞射儀(X-ray diffractometer,XRD) 58
3.5.4 紫外線/可見光分光光譜儀( Ultraviolet/Visible Spectrophoto-meter,UV-Vis) 58
3.5.4 場發射式電子顯微鏡 (Field-emmision Scanning Electron Microscopy, FESEM) 59
3.5.5 穿透式電子顯微鏡 (Transmission Electron Microscope,TEM) 59
3.5.6 數位萬用電表(Digital multimeter) 60
3.5.7 高效能氣體吸附比表面積及孔徑分析儀 (Gas Sorption Analyzer ) 60
第四章 結果與討論 61
4.1 化學製備帶狀奈米石墨烯(GNR)之性質分析 61
4.2 固定聚苯胺之添加量與帶狀奈米石墨烯形成二元複合材料 67
4.2.1 聚苯胺/帶狀奈米石墨烯二元複合材料之基本性質分析 68
4.3 改變三氧化二銦添加量與聚苯胺/帶狀奈米石墨烯形成三元複合材料 76
4.3.1 帶狀奈米石墨烯/三氧化二銦性質分析 77
4.3.2 聚苯胺/帶狀奈米石墨烯/三氧化二銦三元複合材料之性質分析 82
4.4 網板印刷之氣體感測器效能分析 87
4.4.1 氣體感測分析介紹 87
4.4.2 PEDOT:PSS添加量對氣體感測效果之影響 89
4.4.3 網印層數對氣體感測分析之影響 90
4.4.4 聚苯胺/帶狀奈米石墨烯複合材料氣體感測分析 94
4.4.5 聚苯胺/帶狀奈米石墨烯/三氧化二銦三元複材之氣體感測分析 96
4.5與文獻製程方法之比較 104
第五章 結論 105
第六章 參考文獻 107
[1]M. Righettoni, A. Amann, and S. E. Pratsinis, "Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors," Materials Today, vol. 18, no. 3, pp. 163-171, 2015/04/01/ 2015.
[2]L. Pauling, A. B. Robinson, R. Teranishi, and P. Cary, "Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography," (in eng), Proc Natl Acad Sci U S A, vol. 68, no. 10, pp. 2374-6, Oct 1971.
[3]M. Shirasu and K. Touhara, "The scent of disease: volatile organic compounds of the human body related to disease and disorder," (in eng), J Biochem, vol. 150, no. 3, pp. 257-66, Sep 2011.
[4]中華民國行政院衛生福利部統計處, "108 年死因統計結果分析," 2019.
[5]衛生福利部中央健康保險署, "2019年國人全民健康保險就醫疾病資訊," 2019.
[6]C. Mangan, M. C. Stott, and R. Dhanda, "Renal physiology: blood flow, glomerular filtration and plasma clearance," Anaesthesia & Intensive Care Medicine, vol. 19, no. 5, pp. 254-257, 2018/05/01/ 2018.
[7]S. Davies, P. Spanel, and D. Smith, "Quantitative analysis of ammonia on the breath of patients in end-stage renal failure," Kidney International, vol. 52, no. 1, pp. 223-228, 1997/07/01/ 1997.
[8]M. L. Simenhoff, J. F. Burke, J. J. Saukkonen, A. T. Ordinario, R. Doty, and S. Dunn, "Biochemical Profile of Uremic Breath," New England Journal of Medicine, vol. 297, no. 3, pp. 132-135, 1977/07/21 1977.
[9]B. Karunagaran, P. Uthirakumar, S. J. Chung, S. Velumani, and E. K. Suh, "TiO2 thin film gas sensor for monitoring ammonia," Materials Characterization, vol. 58, no. 8, pp. 680-684, 2007/08/01/ 2007.
[10]P. Le Maout et al., "Polyaniline nanocomposites based sensor array for breath ammonia analysis. Portable e-nose approach to non-invasive diagnosis of chronic kidney disease," Sensors and Actuators B: Chemical, vol. 274, pp. 616-626, 2018/11/20/ 2018.
[11]M. Eising, C. E. Cava, R. V. Salvatierra, A. J. G. Zarbin, and L. S. Roman, "Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor," Sensors and Actuators B: Chemical, vol. 245, pp. 25-33, 2017/06/01/ 2017.

[12]L. Kumar, I. Rawal, A. Kaur, and S. Annapoorni, "Flexible room temperature ammonia sensor based on polyaniline," Sensors and Actuators B: Chemical, vol. 240, pp. 408-416, 2017/03/01/ 2017.
[13]G. P. Evans, D. J. Buckley, N. T. Skipper, and I. P. Parkin, "Single-walled carbon nanotube composite inks for printed gas sensors: enhanced detection of NO2, NH3, EtOH and acetone," RSC Advances, 10.1039/C4RA09568E vol. 4, no. 93, pp. 51395-51403, 2014.
[14]H. Malkeshi and H. Milani Moghaddam, "Ammonia gas-sensing based on polythiophene film prepared through electrophoretic deposition method," Journal of Polymer Research, vol. 23, no. 6, p. 108, 2016/05/04 2016.
[15]B. Pandey, "POLYANILINE AND ITS BLENDS FOR VOC SENSORS," p. 47.
[16]廖信, "網版印刷在微光機電系統製程之應用," 中華印刷科技, vol. 24, 2008.
[17]Z. Bielecki, T. Stacewicz, J. Smulko, and J. Wojtas, "Ammonia Gas Sensors: Comparison of Solid-State and Optical Methods," Applied Sciences, vol. 10, no. 15, 2020.
[18]X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, "A survey on gas sensing technology," (in eng), Sensors (Basel, Switzerland), vol. 12, no. 7, pp. 9635-9665, 2012.
[19]M. V. Nikolic, V. Milovanovic, Z. Z. Vasiljevic, and Z. Stamenkovic, "Semiconductor Gas Sensors: Materials, Technology, Design, and Application," Sensors, vol. 20, no. 22, 2020.
[20]V. Chakrapani, "Semiconductor Junctions, Solid-Solid Junctions," 2014, pp. 1882-1893.
[21]N. Bârsan, M. Huebner, and U. Weimar, "2 - Conduction mechanism in semiconducting metal oxide sensing films: impact on transduction," in Semiconductor Gas Sensors, R. Jaaniso and O. K. Tan, Eds.: Woodhead Publishing, 2013, pp. 35-63.
[22]S. Cui, "Metal-Semiconductors Contacts," Libertexts, 2020/10/21 2020.
[23]D. Feldman, "Polymer History," Designed Monomers and Polymers, vol. 11, no. 1, pp. 1-15, 2008/01/01 2008.
[24]黃桂武, "共軛性導電高分子材料技術簡介," 工業材料雜誌, vol. 288, 2010.
[25]Y. Li, D. Lu, and C. P. Wong, "Intrinsically Conducting Polymers (ICPs)," in Electrical Conductive Adhesives with Nanotechnologies, Y. Li, D. Lu, and C. P. Wong, Eds. Boston, MA: Springer US, 2010, pp. 361-424.
[26]T. O. Magu, A. U. Agobi, L. HITLER, and P. M. Dass, "A Review on Conducting Polymers-Based Composites for Energy Storage Application %J Journal of Chemical Reviews," vol. 1, no. 1, pp. 19-34, 2019.
[27]H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, "Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)," Journal of the Chemical Society, Chemical Communications, 10.1039/C39770000578 no. 16, pp. 578-580, 1977.
[28]T.-H. Le, Y. Kim, and H. Yoon, "Electrical and Electrochemical Properties of Conducting Polymers," Polymers, vol. 9, p. 150, 04/23 2017.
[29]A. MacDiarmid et al., "The Concept of `Doping' of Conducting Polymers: The Role of Reduction Potentials [and Discussion]," Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 314, 05/30 1985.
[30]N. Mahato, M. Ansari, and M. H. Cho, "Production of Utilizable Energy from Renewable Resources: Mechanism, Machinery and Effect on Environment," vol. 1116, 2015.
[31]何明益, "施體受體型窄能隙高分子的製備暨太陽能電池材料開發與熱電材料上之應用," 國立交通大學 材料科學與工程系 碩士論文, 2009.
[32]J. H. Bombile, M. J. Janik, and S. T. Milner, "Polaron formation mechanisms in conjugated polymers," Physical Chemistry Chemical Physics, 10.1039/C7CP04355D vol. 20, no. 1, pp. 317-331, 2018.
[33]H. Letheby, "XXIX.—On the production of a blue substance by the electrolysis of sulphate of aniline," Journal of the Chemical Society, 10.1039/JS8621500161 vol. 15, no. 0, pp. 161-163, 1862.
[34]S. Rasmussen, "The Early History of Polyaniline: Discovery and Origins," Substantia, vol. 1, pp. 99-109, 10/11 2017.
[35]A. G. Macdiarmid, J. C. Chiang, A. F. Richter, and A. J. Epstein, "Polyaniline: a new concept in conducting polymers," Synthetic Metals, vol. 18, no. 1, pp. 285-290, 1987/02/01/ 1987.
[36]Z. A. Boeva and V. G. Sergeyev, "Polyaniline: Synthesis, properties, and application," Polymer Science Series C, vol. 56, no. 1, pp. 144-153, 2014/09/01 2014.
[37]I. Sapurina and J. Stejskal, "The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures," Polymer International, vol. 57, pp. 1295-1325, 12/01 2008.
[38]P. P. Sengupta, S. Barik, and B. Adhikari, "Polyaniline as a Gas-Sensor Material," Materials and Manufacturing Processes, vol. 21, no. 3, pp. 263-270, 2006/05/01 2006.

[39]G. Sakellariou, E. Pefkianakis, and G. Vougioukalakis, "Chemical synthesis of graphene nanoribbons," ARKIVOC: archive for organic chemistry, vol. 2015, pp. 167-192, 02/26 2015.
[40]D. V. Kosynkin, "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons," Nature, vol. 458, no. 7240, pp. 872-876, 2009/04/01 2009.
[41]M. J. A. C. Marezio, "Refinement of the crystal structure of In2O3 at two wavelengths," vol. 20, pp. 723-728, 1966.
[42]R. L. Weiher and R. P. Ley, "Optical Properties of Indium Oxide," vol. 37, no. 1, pp. 299-302, 1966.
[43]Z. L. Li, J. Y. Zhou, Z. P. Wang, J. H. Gu, Y. W. Zhang, and Y. X. Wei, "Preparation of Flowerlike Indium Oxide Films by a Simple CVD Method," Advanced Materials Research, vol. 567, pp. 41-44, 2012.
[44]J. Chandradass, D. S. Bae, and K. H. Kim, "A simple method to prepare indium oxide nanoparticles: Structural, microstructural and magnetic properties," Advanced Powder Technology, vol. 22, no. 3, pp. 370-374, 2011/05/01/ 2011.
[45]A. Almontasser and A. Parveen, "Synthesis and characterization of indium oxide nanoparticles," vol. 2220, no. 1, p. 020191, 2020.
[46]C. W. Na, "Highly selective and sensitive detection of NO2 using rGO-In2O3 structure on flexible substrate at low temperature," Sensors and Actuators B: Chemical, vol. 255, pp. 1671-1679, 2018/02/01/ 2018.
[47]W.-H. Cheng and W.-J. Lee, "Technology development in breath microanalysis for clinical diagnosis," Journal of Laboratory and Clinical Medicine, vol. 133, no. 3, pp. 218-228, 1999/03/01/ 1999.
[48]S. Weng, J. Zhou, and Z. Lin, "Preparation of one-dimensional (1D) polyaniline–polypyrrole coaxial nanofibers and their application in gas sensor," Synthetic Metals, vol. 160, no. 11, pp. 1136-1142, 2010/06/01/ 2010.
[49]Z. Wu, "Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite," Sensors and Actuators B: Chemical, vol. 178, pp. 485-493, 2013/03/01/ 2013.
[50]S. Bai, "Ultrasensitive room temperature NH3 sensor based on a graphene–polyaniline hybrid loaded on PET thin film," Chemical Communications, 10.1039/C5CC01241D vol. 51, no. 35, pp. 7524-7527, 2015.
[51]L. Wang, "Enhanced Sensitivity and Stability of Room-Temperature NH3 Sensors Using Core–Shell CeO2 Nanoparticles@Cross-linked PANI with p–n Heterojunctions," ACS Applied Materials & Interfaces, vol. 6, no. 16, pp. 14131-14140, 2014/08/27 2014.
[52]S. Li, "Room temperature gas sensor based on tin dioxide@ polyaniline nanocomposite assembled on flexible substrate: ppb-level detection of NH3," Sensors and Actuators B: Chemical, vol. 299, p. 126970, 2019/11/15/ 2019.
[53]D. Zhang, Z. Wu, P. Li, X. Zong, G. Dong, and Y. Zhang, "Facile fabrication of polyaniline/multi-walled carbon nanotubes/molybdenum disulfide ternary nanocomposite and its high-performance ammonia-sensing at room temperature," Sensors and Actuators B: Chemical, vol. 258, pp. 895-905, 2018/04/01/ 2018.
[54]J. Dai, "Printed gas sensors," Chemical Society Reviews, 10.1039/C9CS00459A vol. 49, no. 6, pp. 1756-1789, 2020.
[55]A. Tomchenko, "Printed Chemical Sensors: from Screen-Printing to Microprinting," 2006, pp. 279-290.
[56]H. Yu, H. Han, J. Jang, and S. Cho, "Fabrication and Optimization of Conductive Paper Based on Screen-Printed Polyaniline/Graphene Patterns for Nerve Agent Detection," ACS Omega, vol. 4, no. 3, pp. 5586-5594, 2019/03/31 2019.
[57]Y. Liu, "Development of Graphene Oxide/Polyaniline Inks for High Performance Flexible Microsupercapacitors via Extrusion Printing," vol. 28, no. 21, p. 1706592, 2018.
[58]D. Lv, W. Shen, W. Chen, R. Tan, L. Xu, and W. Song, "PSS-PANI/PVDF composite based flexible NH3 sensors with sub-ppm detection at room temperature," Sensors and Actuators B: Chemical, vol. 328, p. 129085, 2021/02/01/ 2021.
[59]A. Shukla, S. D. Bhat, and V. Pillai, "Simultaneous unzipping and sulfonation of multi-walled carbon nanotubes to sulfonated graphene nanoribbons for nanocomposite membranes in polymer electrolyte fuel cells," Journal of Membrane Science, vol. 520, 08/01 2016.
[60]S. Shang, L. Gan, C. W. M. Yuen, S.-x. Jiang, and N. M. Luo, "The synthesis of graphene nanoribbon and its reinforcing effect on poly (vinyl alcohol)," Composites Part A: Applied Science and Manufacturing, vol. 68, pp. 149-154, 2015/01/01/ 2015.
[61]L. Stobinski, "Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods," Journal of Alloys and Compounds, vol. 501, no. 1, pp. 77-84, 2010/07/02/ 2010.
[62]Y. Guo, "Intercalation Polymerization Approach for Preparing Graphene/Polymer Composites," vol. 10, no. 1, p. 61, 2018.

[63]Y. Dong, Y. Zhou, Y. Ding, X. Chu, and C. Wang, "Sensitive detection of Pb(ii) at gold nanoparticle/polyaniline/graphene modified electrode using differential pulse anodic stripping voltammetry," Analytical Methods, 10.1039/C4AY01908C vol. 6, no. 23, pp. 9367-9374, 2014.
[64]H. Xu, J.-X. Wu, Y. Chen, J.-L. Zhang, and B.-Q. Zhang, "Facile synthesis of polyaniline/NiCo2O4 nanocomposites with enhanced electrochemical properties for supercapacitors," Ionics, vol. 21, no. 9, pp. 2615-2622, 2015/09/01 2015.
[65]V. Talwar, O. Singh, and R. C. Singh, "ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor," Sensors and Actuators B: Chemical, vol. 191, pp. 276-282, 2014/02/01/ 2014.
[66]鍾尹之, "以瞬間蒸發法製備奈米微粒之研究," 東海大學 應用物理學系 碩士論文, 2017.
[67]X. Li, W. Qi, D. Mei, M. L. Sushko, I. Aksay, and J. Liu, "Functionalized Graphene Sheets as Molecular Templates for Controlled Nucleation and Self-Assembly of Metal Oxide-Graphene Nanocomposites," vol. 24, no. 37, pp. 5136-5141, 2012.
[68]S. Li, "Enhanced room temperature gas sensor based on Au-loaded mesoporous In2O3 nanospheres@polyaniline core-shell nanohybrid assembled on flexible PET substrate for NH3 detection," Sensors and Actuators B: Chemical, vol. 276, pp. 526-533, 2018/12/10/ 2018.
[69]Y. Wang et al., "NH3 gas sensing performance enhanced by Pt-loaded on mesoporous WO3," Sensors and Actuators B: Chemical, vol. 238, pp. 473-481, 2017/01/01/ 2017.
[70]S. Bera, S. Kundu, H. Khan, and S. Jana, "Polyaniline coated graphene hybridized SnO2 nanocomposite: Low temperature solution synthesis, structural property and room temperature ammonia gas sensing," Journal of Alloys and Compounds, vol. 744, pp. 260-270, 2018/05/05/ 2018.
[71]Z. Pang, Q. Nie, A. Wei, J. Yang, F. Huang, and Q. Wei, "Effect of In2O3 nanofiber structure on the ammonia sensing performances of In2O3/PANI composite nanofibers," Journal of Materials Science, vol. 52, no. 2, pp. 686-695, 2017/01/01 2017.
[72]C. Liu, H. Tai, P. Zhang, Z. Ye, Y. Su, and Y. Jiang, "Enhanced ammonia-sensing properties of PANI-TiO2-Au ternary self-assembly nanocomposite thin film at room temperature," Sensors and Actuators B: Chemical, vol. 246, pp. 85-95, 2017/07/01/ 2017.

[73]B. Fasolt, M. Hodgins, G. Rizzello, and S. Seelecke, "Effect of screen printing parameters on sensor and actuator performance of dielectric elastomer (DE) membranes," Sensors and Actuators A Physical, vol. 265, pp. 10-19, 10/01 2017.
[74]S. Mikhaylov, N. Ogurtsov, N. Redon, P. Coddeville, J. L. Wojkiewicz, and A. Pud, "The PANI-DBSA content and dispersing solvent as influence parameters in sensing performances of TiO 2 /PANI-DBSA hybrid nanocomposites to ammonia," RSC Advances, vol. 6, pp. 82625–82634, 08/26 2016.
[75]L.-M. Huang, W.-R. Tang, and T.-C. Wen, "Spatially electrodeposited platinum in polyaniline doped with poly(styrene sulfonic acid) for methanol oxidation," Journal of Power Sources, vol. 164, no. 2, pp. 519-526, 2007/02/10/ 2007.
[76]S. H. Lee et al., "Sonochemical synthesis of PEDOT:PSS intercalated ammonium vanadate nanofiber composite for room-temperature NH3 sensing," Sensors and Actuators B: Chemical, vol. 327, p. 128924, 2021/01/15/ 2021.
[77]Q. Zhang et al., "Electrospinning of Ultrafine Conducting Polymer Composite Nanofibers with Diameter Less than 70 nm as High Sensitive Gas Sensor," vol. 11, no. 9, p. 1744, 2018.
[78]J. Yang et al., "In situ fabricated PEDOT:PSS:PANI with enhanced thermoelectric performance by organic solvent and CSA treatment," Synthetic Metals, vol. 269, p. 116546, 2020/11/01/ 2020.
[79]R. H. Vignesh, K. V. Sankar, S. Amaresh, Y. S. Lee, and R. K. Selvan, "Synthesis and characterization of MnFe2O4 nanoparticles for impedometric ammonia gas sensor," Sensors and Actuators B: Chemical, vol. 220, pp. 50-58, 2015/12/01/ 2015.
[80]D. Maity and R. T. R. Kumar, "Polyaniline Anchored MWCNTs on Fabric for High Performance Wearable Ammonia Sensor," ACS Sensors, vol. 3, no. 9, pp. 1822-1830, 2018/09/28 2018.
[81]S. Bai et al., "Polyaniline@SnO2 heterojunction loading on flexible PET thin film for detection of NH3 at room temperature," Sensors and Actuators B: Chemical, vol. 226, pp. 540-547, 2016/04/01/ 2016.
[82]C.-Y. Ting, P.-L. Wu, C.-C. Huang, C.-Y. Su, and Y.-C. Tsai, "Flexible ammonia sensor integrated with polyaniline/zinc oxide/graphene composite membrane materials," Japanese Journal of Applied Physics, vol. 59, no. SI, p. SIID04, 2020/04/16 2020.
[83]G. Manjunath, S. Pujari, D. R. Patil, and S. Mandal, "A scalable screen-printed high performance ZnO-UV and Gas Sensor: Effect of solution combustion," Materials Science in Semiconductor Processing, vol. 107, p. 104828, 2020/03/01/ 2020.
[84]R. H. B. S. B. Deshmukh, G. E. Patil,D. D. Kajale,G. H. Jain,L. A. Patil, "PREPARATION AND CHARACTERIZATION OF ZIRCONIA BASED THICK FILM RESISTOR AS A AMMONIA GAS SENSOR," International Journal on Smart Sensing and Intelligent Systems., vol. 5, no. 3, p. 18, 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊