跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/21 09:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡雨蓉
研究生(外文):Yu-Jung Tsai
論文名稱:利用溫度參數探討烘烤甘藷之理化性質及揮發性化合物與感官品評相關性研究
論文名稱(外文):Effect of different temperatures on the physicochemical properties and the correlation between volatile compositions and sensory evaluation of roasted sweet potatoes
指導教授:江伯源江伯源引用關係
口試委員:江文章林麗雲黃健政劉伯康陳銘鴻
口試日期:2021-07-15
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:164
中文關鍵詞:甘藷烘烤氣象層析儀串聯質譜感官品評
外文關鍵詞:Sweet potatoesBakingGC/MSSensory evaluation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
甘藷 (Sweet potato) 是全世界主要糧食作物之一,每年全球生產超過1.05億公噸,生產收穫量更是國內粗雜糧作物之冠,除供應便利商店現烤甘藷外 (A級品),還有許多規格外 (B、C級品) 之甘藷成為重要加工原料。市售烤甘藷為帶皮烘烤與加工製品經去皮切塊前處理不同,使其於色澤、香氣及風味等方面具較佳表現,且經烘烤可增加甘藷的機能成分,然而過高的烘烤溫度或時間易使其品質劣化,故評估加工條件對烘烤過程甘藷之組成分及風味等品質變化至關重要。雖然目前烤甘藷具年銷上千萬條、創造上億產值之市場潛力,但對其品質變化之相關研究卻相當缺乏,故本研究以國產甘藷 (台農57號) 為原料,探討不同溫度 (溫度100、160、220℃)、時間 (0、0.5、1、1.5、2、2.5、3h)及加工條件 (帶皮及去皮) 於烘烤過程之品質評估:(1) 220℃烘烤之褐變指數隨時間顯著增加 (帶皮:58.30→107.06;去皮:58.30→108.07),產生誘人之色澤、香氣及風味 (2)以220℃ 帶皮烘烤甘藷具有較高之機能性成分(總多酚:0.37→1.01 GAE mg/g DW;類黃酮:0.73→1.36 Quercetin mg/g DW)及自由基清除活性(ABTS: 3.28→21.08;DPPH:0.64→2.00 TE mg/g DW) (3) 由熱性質分析得知,以100℃烘烤處理,帶皮及去皮間的成糊溫度、尖峰黏度有顯著性差異(p<0.05),而以220℃烘烤可使甘藷較快達到糊化程度 (0.5h),導致黏度在過程中幾乎不變 (4) 因烘烤過程澱粉酶的參與使麥芽糖含量顯著增加,在220℃去皮烘烤之麥芽糖含量 (46.16 g / 100 g DW) 顯著高於帶皮烘烤 (38.63 g / 100 g DW ) (5) 經GC/MS分析顯示烤甘藷之香氣主要為Maltol、2-Furanmethanol及Furfural ,提供甜香氣、焦糖香氣,並與β-Ionone、β-Damascenone、Benzeneacetaldehyde及部分倍半萜類化合物,共同組成烤甘藷特有香氣之主要化合物 (6)在消費者感官接受性測試中,烘烤1-2h之甘藷感受到明顯黃色、泥狀、濕潤狀、纖維狀、透亮狀、甜香氣、甘藷香氣、甘藷味、甜味、麥芽糖味、焦糖味、甜餘味等感官特性。另外,烘烤0.5h時帶皮及去皮組別在整體喜歡程度 (分別為4.96、3.84)、香氣 (分別為5.35、4.47)、風味 (分別為4.95、3.85)、口感 (分別為4.98、3.38) 及餘味喜歡程度 (分別為5.20、4.18) 等有顯著性差異 (p < 0.05)。綜上所述,以220℃帶皮烘烤1-2h之烤甘藷具有最佳品質且擁有較高機能性且表現最高的消費者整體喜歡程度、喜好性和購買意願。
Sweet potato is one of the main food crops in the world. The global production of sweet potato exceeded 105 million tons per year and was the highest amount of harvested coarse grains in Taiwan. In addition to being served as baked sweet potatoes in convenience stores (A grade), many of them in B and C grades are also considered important materials in food processing. Commercially baked sweet potatoes are mostly roasted with skins and are different from processed products which are pretreated with peeling and dicing . Baked sweet potatoes with skin showed attractive color, aroma, and flavor, accompanied by increasing functional components. However, the quality of baked sweet potato may be deteriorated by heat; Thus, processing conditions are very important to the quality of sweet potatoes such as functional composition and flavor during the baking process.
Although numerous roasted sweet potatoes are sold every year and produced great deal of profits, the research related to quality changes by roasted is few. Therefore, the quality evaluation of domestic sweet potatoes (Tainong 57) roasted with different temperatures (100℃, 160℃, 220℃), time (0、0.5、1、1.5、2、2.5、3h) and conditions (unpeeled and peeled) was studied. The browning index of 220℃ baked samples increased significantly with increasing time (unpeeled: 58.30→107.06; peeled: 58.30→108.07) and produced attractive color, aroma, and flavor. Roasted sweet potato with the skins at 220℃ showed higher content of functional components (total phenolic compound: 0.37→1.01 GAE mg/g DW; Flavonoids: 0.73→1.36 Quercetin mg/g DW) and free radical scavenging activity (ABTS: 3.28→21.08 TE mg/g DW; DPPH: 0.64→2.00 TE mg/g DW). In thermal properties, pasting temperature and peak viscosity between the unpeeled and peeled treatments at 100 ℃ showed significant differences, and the 220 ℃ treatment facilitated the gelatinization of sweet potato (0.5h), resulting in merely unchanged viscosity during the process. The content of maltose increased significantly due to the presence of amylase during the baking process. With the treatment of peeling and baking at 220 ℃, the maltose content (46.16 g / 100 g DW) was significantly higher than that of unpeeled (38.63 g / 100 g) DW) samples. GC/MS analysis showed that the aroma of roasted sweet potato was mainly composed of Maltol, 2-Furanmethanol, and Furfural, providing sweet and caramel aroma. Meanwhile, these components synergized with β-Ionone, β-Damascenone, Benzeneacetaldehyde, and sesquiterpenes compounds, and the combination of these compounds generated the unique aroma of roasted sweet potatoes. In the sensory evaluation and consumer acceptance tests, sweet potatoes roasted for 1-2 hours presented obvious yellow, muddy, moist, fibrous, translucent, sweet aroma, sweet potato aroma, sweet potato flavor, sweetness, maltose flavor, caramel taste, and sweet aftertaste. In addition, the sensory test of overall acceptance, aroma, flavor, taste, and aftertaste between the unpeeled and peeled groups baked for 0.5h (p <0.05) showed significant differences, which were (4.96, 3.84), (5.35, 4.47), (4.95, 3.85), and (4.98, 3.38). respectively. In summary, the roasted sweet potatoes baked at 220°C for 1-2 hours with the skin have the best quality, higher content of functional components, and the highest score of overall preference and purchase intention of consumers.
摘要 i
Abstract iii
目次 v
圖表索引 x
表次 x
圖次 xii
壹、引言 1
貳、文獻回顧 3
一、 甘藷(Sweet potato)介紹 3
1. 甘藷背景及產量介紹 3
2.甘藷品種簡介 4
3.甘藷組成營養 9
4. 甘藷理化性質 9
5.甘藷各部位利用 12
(1) 塊根 12
(2) 表皮組織 12
(3) 葉 13
6. 機能成分 15
(1) 類胡蘿蔔素 (Carotenoids) 15
(2) 多酚化合物 (Polyphenol compounds) 16
二、 加熱方法 18
1. 蒸煮 (Steaming) 18
2. 水煮 (Boiling) 18
3. 油炸 (Frying) 18
4. 微波 (Microwave) 19
5. 烘烤 (Roasting) 19
三、 熱處理之品質變化 21
1. 酵素性褐變 (Enzymatic browning reaction) 21
2. 梅納反應 (Maillard reaction) 22
3. 焦糖化反應 (Caramelization) 24
4. 類胡蘿蔔素氧化 25
參、實驗目的 30
肆、實驗架構 32
伍、材料與方法 33
一、實驗材料: 33
1.國產甘藷 33
2.實驗藥品 33
3. 實驗器材 34
4. 套裝軟體 35
二、 試驗方法 36
Chapter 1不同烘烤處理對甘藷理化性質之影響 36
1. 樣品製備 36
2. 物理因子分析 36
(1) 外觀拍攝與微細構造 36
(2) 掃瞄式電子顯微鏡 (Scanning electron microscope, SEM) 36
(3) 重量損失率 (Weight loss ratio) 36
(4) 中心溫度 (Center temperature) 37
(5) 可溶性固形物 (Total soluble solids) 37
(6) 總酸度 (Total titratable acidity ,TTA) 37
(7) 色澤分析 (Color) 37
(8) 質地分析儀 (Texture profile analysis, TPA) 38
3. 抗氧化能力及機能成分分析 38
(1) 總多酚測定 (Total phenolic contents) 38
(2) 類黃酮測定 (Flavonoid contents) 39
(3) β-胡蘿蔔素測定 (β-carotene) 39
(4) ABTS+自由基清除能力 (ABTS+ scavenging activity) 39
(5) DPPH 自由基清除能力 (DPPH scavenging activity) 40
Chapter 2烘烤過程甘藷熱性質及醣類組成分變化分析 42
1. 熱性質分析 42
(1) 示差熱掃描分析儀 (Differential scanning calorimetry, DSC) 42
(2) 快速黏度測定儀 (Rapid Visco Analyzer ; RVA) 42
2. 醣類組成分變化 42
(1) 總澱粉含量測定 (Total starch) 42
(2) 醣類水解酵素 44
(3) 糖類組成測定 (單、雙糖) 46
Chapter 3利用GC/MS及描述語對應分析(PCA) 47
1. 頂空固相微萃取 (Headspace solid-phase microextraction, HS-SPME) 47
(1) 樣品製備 47
(2) GC/MS分析條件色譜條件: 47
(3) 主成分分析 (Principal component analysis , PCA) 47
2. 感官品評 (Sensory evaluation) 48
(1) 樣品製備 48
(2) 品評方法與進行方式 48
(a) 9分法 (9-Point hedonic scale) 49
(b) 剛剛好法 (Just-about-right , JAR) 49
(c) 描述分析測試 (Descriptive analysis) 49
(d) 喜好性-順位法 (Preference Ranking) 49
(e) 購買意願 50
(3) 試驗進行 50
(4) 統計分析 50
陸、結果與討論 51
Chapter 1不同烘烤處理對甘藷理化性質之影響 51
一、 烘烤甘藷物性因子分析 52
1. 不同烘烤處理甘藷之物性因子比較分析 52
2. 烘烤甘藷外觀分析 57
3. 烘烤甘藷構造分析 57
4. 烘烤甘藷色澤分析 62
5. 烘烤甘藷質地分析 64
二、 烘烤甘藷機能性成分&抗氧化能力分析 66
1. 烘烤甘藷總多酚&類黃酮 (Total phenolic & Flavonoid contents) 66
2. 烘烤甘藷β-胡蘿蔔素 (β - carotene) 69
3. 烘烤甘藷自由基清除活性測試 (ABTS、DPPH) 71
第一章小結論 74
Chapter 2烘烤過程甘藷熱性質及醣類組成分變化分析 75
一、 烘烤甘藷熱性質分析 76
1. 烘烤甘藷示差掃描熱分析 76
2. 烘烤甘藷連續糊化黏度 82
二、 烤甘藷醣類組成測定 86
1. 烤甘藷總澱粉含量 86
2. 烤甘藷澱粉酶活性 88
3. 烤甘藷糖組成分析 91
第二章小結論 93
Chapter 3利用GC/MS及描述語對應分析(PCA) 94
一、 氣相層析儀串聯質譜儀 (GC/MS) 95
1. 烤甘藷揮發性化合物分析 95
2. 烤甘藷揮發性化合物之主成分分析 97
二、 感官品評 103
1. 帶皮烤甘藷之感官評估 103
(1) 消費者感官品評接受法(九分法) 103
(2) 剛剛好法 (Just-about-right , JAR) 108
(3) 消費者描述特性分析 110
(4) 消費者內部喜好性地圖 114
(5) 消費者喜好性測試 116
(6) 消費者購買意願分析 116
2. 去皮烤甘藷之感官評估 119
(1) 消費者感官品評接受法 (九分法) 119
(2) 剛剛好法 (Just-about-right , JAR) 124
(3) 消費者描述特性分析 126
(4) 消費者內部喜好性地圖 130
(5) 消費者喜好性測試 132
(6) 消費者購買意願分析 132
3. 不同處理之烤甘藷比較 135
(1) 感官接受性比較 135
(2) 消費者描述特性分析比較 139
第三章小結論 141
柒、結論 142
捌、參考文獻 143
許美芳. (2007). 甘藷之營養與加工. 桃園區農業專訊(60), 37-41.
黃筱筑, 2018。 射頻處理參數應用於甘藷保存及其品質變化探討,國立中興大學學士論文,台灣。
黃筱筑, & 江伯源. (2017). 國產紫心甘藷生粉、熟粉及澱粉之理化性質與回凝特性比較. 臺灣農業化學與食品科學, 55(3&4), 121-132.
陳玉群,2018。 紫甘藷機能複合錠研發及其包膜處理、品質評估,國立中興大學碩士論文,台灣。
莊振鈺, 2018。 靜態與動態消費者型感官品評技術於臺灣特色茶感官特性之評估,中臺科技大學碩士論文,台灣。

Agarwal, D., Mui, L., Aldridge, E., McKinney, J., Hewson, L., & Fisk, I. D. (2021). The progression of lipid oxidation, β-carotenes degradation and sensory perception of batch-fried sliced sweet potato crisps during storage. Food & function.

Aigster, A., Duncan, S. E., Conforti, F. D., & Barbeau, W. E. (2011). Physicochemical properties and sensory attributes of resistant starch-supplemented granola bars and cereals. LWT-Food Science and Technology, 44(10), 2159-2165.

Aina, A. J., Falade, K. O., Akingbala, J. O., & Titus, P. (2009). Physicochemical properties of twenty‐one Caribbean sweet potato cultivars. International journal of food science & technology, 44(9), 1696-1704.

Ames, J. M. (1990). Control of the Maillard reaction in food systems. Trends in Food Science & Technology, 1, 150-154.

Bechoff, A., Dhuique-Mayer, C., Dornier, M., Tomlins, K. I., Boulanger, R., Dufour, D., & Westby, A. (2010). Relationship between the kinetics of β-carotene degradation and formation of norisoprenoids in the storage of dried sweet potato chips. Food chemistry, 121(2), 348-357.

Bechoff, A., Westby, A., Owori, C., Menya, G., Dhuique‐Mayer, C., Dufour, D., & Tomlins, K. (2010). Effect of drying and storage on the degradation of total carotenoids in orange‐fleshed sweetpotato cultivars. Journal of the Science of Food and Agriculture, 90(4), 622-629.

Bi, S., Xu, X., Luo, D., Lao, F., Pang, X., Shen, Q., Hu, X., & Wu, J. (2020). Characterization of key aroma compounds in raw and roasted peas (Pisum sativum L.) by application of instrumental and sensory techniques. Journal of Agricultural and Food Chemistry, 68(9), 2718-2727.

Biliaderis, C. G. (1991). The structure and interactions of starch with food constituents. Canadian journal of physiology and pharmacology, 69(1), 60-78.

Binner, S., Jardine, W. G., Renard, C. M. C. G., & Jarvis, M. C. (2000). Cell wall modifications during cooking of potatoes and sweet potatoes. Journal of the Science of Food and Agriculture, 80(2), 216-218.

Blessington, T., Nzaramba, M. N., Scheuring, D. C., Hale, A. L., Reddivari, L., & Miller, J. C. (2010). Cooking methods and storage treatments of potato: Effects on carotenoids, antioxidant activity, and phenolics. American Journal of Potato Research, 87(6), 479-491.

Bonilla-Bird, N., Paez, A., Reyes, A., Hernandez-Viezcas, J., Li, C., Peralta-Videa, J., & Gardea-Torresdey, J. (2018). Two-photon microscopy and spectroscopy studies to determine the mechanism of copper oxide nanoparticle uptake by sweetpotato roots during postharvest treatment. Environmental science & technology, 52(17), 9954-9963.

Boo, H.-O., Hwang, S.-J., Bae, C.-S., Park, S.-H., Heo, B.-G., & Gorinstein, S. (2012). Extraction and characterization of some natural plant pigments. Industrial Crops and Products, 40, 129-135.

Booth, R., & Bason, M. (2007). Principles of operation and experimental techniques. The RVA handbook, 152.

Bordin, K., Tomihe Kunitake, M., Kazue Aracava, K., & Silvia Favaro Trindade, C. (2013). Changes in food caused by deep fat frying-A review. Archivos latinoamericanos de nutricion, 63(1), 5-13.

Bovell‐Benjamin, A. C. (2007). Sweet potato: a review of its past, present, and future role in human nutrition. Advances in food and nutrition research, 52, 1-59.

Burton, G. W., & Ingold, K. (1984). Beta-carotene: an unusual type of lipid antioxidant. Science, 224(4649), 569-573.

Cerny, C. (2008). The aroma side of the Maillard reaction. Annals of the New York Academy of Sciences, 1126(1), 66-71.

Cevallos-Casals, B. A., & Cisneros-Zevallos, L. (2003). Stoichiometric and kinetic studies of phenolic antioxidants from Andean purple corn and red-fleshed sweetpotato. Journal of Agricultural and Food Chemistry, 51(11), 3313-3319.

Chan, C.-F., Chiang, C.-M., Lai, Y.-C., Huang, C.-L., Kao, S.-C., & Liao, W. C. (2014). Changes in sugar composition during baking and their effects on sensory attributes of baked sweet potatoes. Journal of food science and technology, 51(12), 4072-4077.

Chen, M.-X., Chen, X.-S., Wang, X.-G., Ci, Z.-J., Liu, X.-L., He, T.-M., & Zhang, L.-J. (2006). Comparison of headspace solid-phase microextraction with simultaneous steam distillation extraction for the analysis of the volatile constituents in Chinese apricot. Agricultural sciences in China, 5(11), 879-884.

Cheng, G., Liu, Y., Yue, T.-X., & Zhang, Z.-W. (2015). Comparison between aroma compounds in wines from four Vitis vinifera grape varieties grown in different shoot positions. Food Science and Technology, 35(2), 237-246.

Cheng, H., Chen, J., Li, X., Pan, J., Xue, S. J., Liu, D., & Ye, X. (2015). Differentiation of the volatile profiles of Chinese bayberry cultivars during storage by HS-SPME–GC/MS combined with principal component analysis. Postharvest Biology and Technology, 100, 59-72.

Chuang, L., Glew, R. H., Wang, Y. C., Yao, P. W., Lin, C. C., Presley, J. M., Schulze, J., & Hou, C. W. (2011). Comparison of the fatty acid, amino acid, mineral and antioxidant content of sweet potato leaves grown on Matsu island and mainland Taiwan. Glob Sci Books, 5, 43-47.

Collins, J., Liao, J. Y., & Penfield, M. (1995). Chemical, physical and sensory attributes of formed and frozen, baked sweetpotato. Journal of Food Science, 60(3), 465-467.

de Aguiar, C. L., Rocha, A. L. B., Jambassi, J. R., & Sampaio, A. (2015). Factors affecting color formation during storage of white crystal sugar. Focusing on Modern Food Industry, 4, 1-10.

De la Rosa-Millan, J., Agama-Acevedo, E., Osorio-Díaz, P., & Bello-Pérez, L. (2014). Effect of cooking, annealing and storage on starch digestibility and physicochemical characteristics of unripe banana flour. Revista mexicana de ingeniería química, 13(1), 151-163.

Dincer, C., Karaoglan, M., Erden, F., Tetik, N., Topuz, A., & Ozdemir, F. (2011). Effects of baking and boiling on the nutritional and antioxidant properties of sweet potato [Ipomoea batatas (L.) Lam.] cultivars. Plant foods for human nutrition, 66(4), 341-347.

Dobarganes, C., Márquez‐Ruiz, G., & Velasco, J. (2000). Interactions between fat and food during deep‐frying. European Journal of Lipid Science and Technology, 102(8‐9), 521-528.

Dominque, B., Gichuhi, P. N., Rangari, V., & Bovell-Benjamin, A. C. (2013). Sugar profile, mineral content, and rheological and thermal properties of an isomerized sweet potato starch syrup. International journal of food science, 2013.

Donado-Pestana, C. M., Salgado, J. M., de Oliveira Rios, A., dos Santos, P. R., & Jablonski, A. (2012). Stability of carotenoids, total phenolics and in vitro antioxidant capacity in the thermal processing of orange-fleshed sweet potato (Ipomoea batatas Lam.) cultivars grown in Brazil. Plant foods for human nutrition, 67(3), 262-270.

Gandía-Herrero, F., Escribano, J., & García-Carmona, F. (2010). Structural implications on color, fluorescence, and antiradical activity in betalains. Planta, 232(2), 449-460.

Gerardi, C., Frassinetti, S., Caltavuturo, L., Leone, A., Lecci, R., Calabriso, N., Carluccio, M. A., Blando, F., & Mita, G. (2016). Anti-proliferative, anti-inflammatory and anti-mutagenic activities of a Prunus mahaleb L. anthocyanin-rich fruit extract. Journal of Functional Foods, 27, 537-548.

Golon, A., & Kuhnert, N. (2012). Unraveling the chemical composition of caramel. Journal of Agricultural and Food Chemistry, 60(12), 3266-3274.

Grosch, W. (2001). Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. Chemical senses, 26(5), 533-545.

Gunaratne, A., & Corke, H. (2007). Functional properties of hydroxypropylated, cross‐linked, and hydroxypropylated cross‐linked tuber and root starches. Cereal Chemistry, 84(1), 30-37.

Gunaratne, A., & Hoover, R. (2002). Effect of heat–moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydrate polymers, 49(4), 425-437.

Guo, S., Jom, K. N., & Ge, Y. (2019). Influence of roasting condition on flavor profile of sunflower seeds: A flavoromics approach. Scientific reports, 9(1), 1-10.

Hagenimana, V., Carey, E., Gichuki, S., Oyunga, M., & Imungi, J. (1998). Carotenoid contents in fresh, dried and processed sweetpotato products. Ecology of Food and Nutrition, 37(5), 455-473.

HARALAMPU, S. G., & KAREL, M. (1983). Kinetic models for moisture dependence of ascorbic acid and β‐carotene degradation in dehydrated sweet potato. Journal of Food Science, 48(6), 1872-1873.

Harrison, H. F., Peterson, J. K., Snook, M. E., Bohac, J. R., & Jackson, D. M. (2003). Quantity and potential biological activity of caffeic acid in sweet potato [Ipomoea batatas (L.) Lam.] storage root periderm. Journal of Agricultural and Food Chemistry, 51(10), 2943-2948.

He, Q., & Luo, Y. (2007). Enzymatic browning and its control in fresh-cut produce.

He, Q., Luo, Y., & Chen, P. (2008). Elucidation of the mechanism of enzymatic browning inhibition by sodium chlorite. Food chemistry, 110(4), 847-851.

Hernandez‐Uribe, J. P., Agama‐Acevedo, E., Gonzalez‐Soto, R. A., Bello‐Pérez, L. A., & Vargas‐Torres, A. (2011). Isolation and characterization of Mexican chayote tuber (Sechium edule Sw.) starch. Starch‐Stärke, 63(1), 32-41.

Ho, C.-T., Zheng, X., & Li, S. (2015). Tea aroma formation. Food Science and Human Wellness, 4(1), 9-27.

Hou, F., Mu, T., Ma, M., & Blecker, C. (2020). Sensory evaluation of roasted sweet potatoes influenced by different cultivars: A correlation study with respect to sugars, amino acids, volatile compounds, and colors. Journal of Food Processing and Preservation, 44(9), e14646.

Huang, A., Tanudjaja, L., & Lum, D. (1999). Content of alpha-, beta-carotene, and dietary fiber in 18 sweetpotato varieties grown in Hawaii. Journal of Food Composition and Analysis, 12(2), 147-151.

Huang, Y.-C., Chang, Y.-H., & Shao, Y.-Y. (2006). Effects of genotype and treatment on the antioxidant activity of sweet potato in Taiwan. Food chemistry, 98(3), 529-538.

Hurrell, R. F., & Finot, P.-A. (1984). Nutritional consequences of the reactions between proteins and oxidized polyphenolic acids. Nutritional and toxicological aspects of food safety, 423-435.

Ikemiya, M., & Deobald, H. (1966). New characteristic alpha-amylase in sweet potatoes. Journal of Agricultural and Food Chemistry, 14(3), 237-241.

Jansson, T., Clausen, M. R., Sundekilde, U. K., Eggers, N., Nyegaard, S., Larsen, L. B., Ray, C., Sundgren, A., Andersen, H. J., & Bertram, H. C. (2014). Lactose-hydrolyzed milk is more prone to chemical changes during storage than conventional ultra-high-temperature (UHT) milk. Journal of Agricultural and Food Chemistry, 62(31), 7886-7896.

Johnson, R., Padmaja, G., & Moorthy, S. (2009). Comparative production of glucose and high fructose syrup from cassava and sweet potato roots by direct conversion techniques. Innovative Food Science & Emerging Technologies, 10(4), 616-620.

Jousse, F., Jongen, T., Agterof, W., Russell, S., & Braat, P. (2002). Simplified kinetic scheme of flavor formation by the Maillard reaction. Journal of Food Science, 67(7), 2534-2542.

Kamatou, G. P., & Viljoen, A. M. (2010). A review of the application and pharmacological properties of α‐Bisabolol and α‐Bisabolol‐rich oils. Journal of the American oil chemists' society, 87(1), 1-7.

Kanasawud, P., & Crouzet, J. C. (1990). Mechanism of formation of volatile compounds by thermal degradation of carotenoids in aqueous medium. 1.. beta.-Carotene degradation. Journal of Agricultural and Food Chemistry, 38(1), 237-243.

Kang, W., Li, Y., Xu, Y., Jiang, W., & Tao, Y. (2012). Characterization of aroma compounds in Chinese bayberry (Myrica rubra Sieb. et Zucc.) by gas chromatography mass spectrometry (GC‐MS) and olfactometry (GC‐O). Journal of Food Science, 77(10), C1030-C1035.

Kim, H. J., Park, W. S., Bae, J.-Y., Kang, S. Y., Yang, M. H., Lee, S., Lee, H.-S., Kwak, S.-S., & Ahn, M.-J. (2015). Variations in the carotenoid and anthocyanin contents of Korean cultural varieties and home-processed sweet potatoes. Journal of Food Composition and Analysis, 41, 188-193.

Kim, S.-Y., Ko, J.-A., Kang, B.-S., & Park, H.-J. (2018). Prediction of key aroma development in coffees roasted to different degrees by colorimetric sensor array. Food chemistry, 240, 808-816.

King, S. C., Meiselman, H. L., & Carr, B. T. (2010). Measuring emotions associated with foods in consumer testing. Food Quality and Preference, 21(8), 1114-1116.

Kourouma, V., Mu, T.-H., Zhang, M., & Sun, H.-N. (2019). Effects of cooking process on carotenoids and antioxidant activity of orange-fleshed sweet potato. LWT, 104, 134-141.

Krishnamurthy, K., Khurana, H. K., Soojin, J., Irudayaraj, J., & Demirci, A. (2008). Infrared heating in food processing: an overview. Comprehensive reviews in food science and food safety, 7(1), 2-13.

Kurata, R., Adachi, M., Yamakawa, O., & Yoshimoto, M. (2007). Growth suppression of human cancer cells by polyphenolics from sweetpotato (Ipomoea batatas L.) leaves. Journal of Agricultural and Food Chemistry, 55(1), 185-190.

Labuza, T., McNally, L., GALLAGHER, D., Hawkes, J., & Hurtado, F. (1972). Stability of intermediate moisture foods. 1. Lipid oxidation. Journal of Food Science, 37(1), 154-159.

Labuza, T. P., & Tannenbaum, S. R. (1972). Nutrient losses during drying and storage of dehydrated foods. Critical Reviews in Food Science & Nutrition, 3(2), 217-240.

Lai, Y.-C., Huang, C.-L., Chan, C.-F., Lien, C.-Y., & Liao, W. C. (2013). Studies of sugar composition and starch morphology of baked sweet potatoes (Ipomoea batatas (L.) Lam). Journal of food science and technology, 50(6), 1193-1199.

Laurie, S. M., Faber, M., Calitz, F. J., Moelich, E. I., Muller, N., & Labuschagne, M. T. (2013). The use of sensory attributes, sugar content, instrumental data and consumer acceptability in selection of sweet potato varieties. Journal of the Science of Food and Agriculture, 93(7), 1610-1619.

Lavelli, V., Zanoni, B., & Zaniboni, A. (2007). Effect of water activity on carotenoid degradation in dehydrated carrots. Food chemistry, 104(4), 1705-1711.

Lee, D., & Kim, C. Y. (2017). Influence of roasting treatment on the antioxidant activities and color of burdock root tea. Preventive nutrition and food science, 22(1), 21.

Lee, S.-H., Choi, S.-J., Shin, S.-I., Park, K.-H., & Moon, T.-W. (2008). Structural and Rheological Properties of Sweet Potato Starch Modified with 4-$alpha $-Glucanotransferase from Thermus aquaticus. Food Science and Biotechnology, 17(4), 705-712.

Leighton, C. S., Schönfeldt, H., & Kruger, R. (2010). Quantitative descriptive sensory analysis of five different cultivars of sweet potato to determine sensory and textural profiles. Journal of Sensory Studies, 25(1), 2-18.

Leksrisompong, P., Whitson, M., Truong, V. D., & Drake, M. (2012). Sensory attributes and consumer acceptance of sweet potato cultivars with varying flesh colors. Journal of Sensory Studies, 27(1), 59-69.

Lemmens, L., De Vleeschouwer, K., Moelants, K. R., Colle, I. J., Van Loey, A. M., & Hendrickx, M. E. (2010). β-Carotene isomerization kinetics during thermal treatments of carrot puree. Journal of Agricultural and Food Chemistry, 58(11), 6816-6824.

Lewinsohn, E., Sitrit, Y., Bar, E., Azulay, Y., Ibdah, M., Meir, A., Yosef, E., Zamir, D., & Tadmor, Y. (2005). Not just colors—carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit. Trends in Food Science & Technology, 16(9), 407-415.

LIU, J.-w., & HU, Z.-h. (2012). Advances in Research of Functions and Product Development of Purple-fleshed Sweet Potatoes [J]. Food Research and Development, 9.

Liu, Y., Sabboh, H., Kirchhof, G., & Sopade, P. (2010). In vitro starch digestion and potassium release in sweet potato from Papua New Guinea. International journal of food science & technology, 45(9), 1925-1931.

Ludvik, B., Hanefeld, M., & Pacini, G. (2008). Improved metabolic control by Ipomoea batatas (Caiapo) is associated with increased adiponectin and decreased fibrinogen levels in type 2 diabetic subjects. Diabetes, Obesity and Metabolism, 10(7), 586-592.

Lund, M. N., & Ray, C. A. (2017). Control of Maillard reactions in foods: Strategies and chemical mechanisms. Journal of Agricultural and Food Chemistry, 65(23), 4537-4552.

Méndez-Montealvo, G., Solorza-Feria, J., del Valle, M. V., Gómez-Montiel, N., Paredes-López, O., & Bello-Pérez, L. A. (2005). Composición química y caracterización calorimétrica de híbridos y variedades de maíz cultivadas en México. Agrociencia, 39(3), 267-274.

Mccleary, B. V., Gibson, T. S., & Mugford, D. C. (1997). Measurement of total starch in cereal products by amyloglucosidase-α-amylase method: Collaborative study. Journal of AOAC International, 80(3), 571-579.

Mensah, E., Ibok, O., Ellis, W., & Carey, E. (2016). Thermal Stability of β-Amylase Activity and Sugar Profile of Sweet-Potato Varieties during Processing. J Nutr Food Sci, 6(515), 2.

Montejano, J., Hamann, D., & Lanier, T. (1985). Comparison of two instrumental methods with sensory texture of protein gels 2. Journal of Texture Studies, 16(4), 403-424.

Navarre, D. A., Shakya, R., Holden, J., & Kumar, S. (2010). The effect of different cooking methods on phenolics and vitamin C in developmentally young potato tubers. American Journal of Potato Research, 87(4), 350-359.

Nguyen, H. C., Chen, C.-C., Lin, K.-H., Chao, P.-Y., Lin, H.-H., & Huang, M.-Y. (2021). Bioactive compounds, antioxidants, and health benefits of sweet potato leaves. Molecules, 26(7), 1820.

Nicolas, J. J., Richard‐Forget, F. C., Goupy, P. M., Amiot, M. J., & Aubert, S. Y. (1994). Enzymatic browning reactions in apple and apple products. Critical Reviews in Food Science & Nutrition, 34(2), 109-157.

O'Brien, J., Morrissey, P., & Ames, J. (1989). Nutritional and toxicological aspects of the Maillard browning reaction in foods. Critical Reviews in Food Science & Nutrition, 28(3), 211-248.

Oki, T., Masuda, M., Furuta, S., Nishiba, Y., Terahara, N., & Suda, I. (2002). Involvement of anthocyanins and other phenolic compounds in radical‐scavenging activity of purple‐fleshed sweet potato cultivars. Journal of Food Science, 67(5), 1752-1756.

Padda, M. S. (2006). Phenolic composition and antioxidant activity of sweetpotatoes [Ipomoea batatas (L.) Lam].

Padda, M. S., & Picha, D. H. (2008). Phenolic composition and antioxidant capacity of different heat‐processed forms of sweetpotato cv.‘Beauregard’. International journal of food science & technology, 43(8), 1404-1409.

Perez Locas, C., & Yaylayan, V. A. (2008). Isotope labeling studies on the formation of 5-(hydroxymethyl)-2-furaldehyde (HMF) from sucrose by pyrolysis-GC/MS. Journal of Agricultural and Food Chemistry, 56(15), 6717-6723.

Pontis, J. A., Costa, L. A. M. A. d., Silva, S. J. R. d., & Flach, A. (2014). Color, phenolic and flavonoid content, and antioxidant activity of honey from Roraima, Brazil. Food Science and Technology, 34(1), 69-73.

Pu, D., Zhang, H., Zhang, Y., Sun, B., Ren, F., Chen, H. J. J. o. F. P., & Preservation. (2019). Characterization of the key aroma compounds in white bread by aroma extract dilution analysis, quantitation, and sensory evaluation experiments. 43(5), e13933.

Qin, G., Tao, S., Cao, Y., Wu, J., Zhang, H., Huang, W., & Zhang, S. (2012). Evaluation of the volatile profile of 33 Pyrus ussuriensis cultivars by HS-SPME with GC–MS. Food chemistry, 134(4), 2367-2382.

Rahman, M. S., & Al-Farsi, S. A. (2005). Instrumental texture profile analysis (TPA) of date flesh as a function of moisture content. Journal of Food Engineering, 66(4), 505-511.

Ramirez, G. P. (1992). Cultivation harvesting and storage of sweet potato products. Seed, 6(6).

Rao, A. V., & Rao, L. G. (2007). Carotenoids and human health. Pharmacological research, 55(3), 207-216.

Rautenbach, F., Faber, M., Laurie, S., & Laurie, R. (2010). Antioxidant capacity and antioxidant content in roots of 4 sweetpotato varieties. Journal of Food Science, 75(5), C400-C405.

Ravichandran, R. (2002). Carotenoid composition, distribution and degradation to flavour volatiles during black tea manufacture and the effect of carotenoid supplementation on tea quality and aroma. Food chemistry, 78(1), 23-28.

Riu-Aumatell, M., Miró, P., Serra-Cayuela, A., Buxaderas, S., & López-Tamames, E. (2014). Assessment of the aroma profiles of low-alcohol beers using HS-SPME–GC-MS. Food Research International, 57, 196-202.

Rose, I. M., & Vasanthakaalam, H. (2011). Comparison of the nutrient composition of four sweet potato varieties cultivated in Rwanda. American journal of food and nutrition, 1(1), 34-38.

Ruiz-Rodriguez, A., Marín, F. R., Ocaña, A., & Soler-Rivas, C. (2008). Effect of domestic processing on bioactive compounds. Phytochemistry Reviews, 7(2), 345-384.

Ragaee, S., & Abdel-Aal, E.-S. M. J. F. c. (2006). Pasting properties of starch and protein in selected cereals and quality of their food products. 95(1), 9-18.

Sablani, S., Marcotte, M., Baik, O., & Castaigne, F. (1998). Modeling of simultaneous heat and water transport in the baking process. LWT-Food Science and Technology, 31(3), 201-209.

Salazar-González, C., San Martín-González, M. F., López-Malo, A., & Sosa-Morales, M. E. (2012). Recent studies related to microwave processing of fluid foods. Food and Bioprocess Technology, 5(1), 31-46.

Samborska, K., Bonikowski, R., Kalemba, D., Barańska, A., Jedlińska, A., & Edris, A. (2021). Volatile aroma compounds of sugarcane molasses as affected by spray drying at low and high temperature. LWT, 145, 111288.

Sasaki, T., Koshi, E., Take, H., Michihata, T., Maruya, M., & Enomoto, T. (2017). Characterisation of odorants in roasted stem tea using gas chromatography–mass spectrometry and gas chromatography-olfactometry analysis. Food chemistry, 220, 177-183.

Sengar, G., & Sharma, H. K. (2014). Food caramels: a review. Journal of food science and technology, 51(9), 1686-1696.

Shafie, B., Cheng, S., Lee, H., & Yiu, P. (2016). Characterization and classification of whole-grain rice based on rapid visco analyzer (RVA) pasting profile. International Food Research Journal, 23(5).

Sistrunk, W. (1971). Carbohydrate transformations, color and firmness of canned sweet potatoes as influenced by variety, storage, pH and treatment. Journal of Food Science, 36(1), 39-42.

Starowicz, M., & Zieliński, H. (2019). How maillard reaction influences sensorial properties (color, flavor and texture) of food products? Food Reviews International, 35(8), 707-725.

Stratton, S. P., Schaefer, W. H., & Liebler, D. C. (1993). Isolation and identification of singlet oxygen oxidation products of. beta.-carotene. Chemical research in toxicology, 6(4), 542-547.

Sun, H., Mu, T., Xi, L., Zhang, M., & Chen, J. (2014). Sweet potato (Ipomoea batatas L.) leaves as nutritional and functional foods. Food chemistry, 156, 380-389.

Sun, J.-B., Severson, R. F., Schlotzhauer, W. S., & Kays, S. J. (1995). Identifying Critical Volatiles in the Flavor of BakedJewel'Sweetpotatoes [Ipomoea batatas (L.) Lam.]. Journal of the American Society for Horticultural Science, 120(3), 468-474.

SUN, J. B., SEVERSON, R. F., & KAYS, S. J. (1994). Effect of heating temperature and microwave pretreatment on the formation of sugars and volatiles in jewel sweetpotato. Journal of food quality, 17(6), 447-456.

Sunds, A. V., Rauh, V. M., Sørensen, J., & Larsen, L. B. (2018). Maillard reaction progress in UHT milk during storage at different temperature levels and cycles. International Dairy Journal, 77, 56-64.

Taira, J., Taira, K., Ohmine, W., & Nagata, J. (2013). Mineral determination and anti-LDL oxidation activity of sweet potato (Ipomoea batatas L.) leaves. Journal of Food Composition and Analysis, 29(2), 117-125.

Tang, Y., Cai, W., & Xu, B. (2015). Profiles of phenolics, carotenoids and antioxidative capacities of thermal processed white, yellow, orange and purple sweet potatoes grown in Guilin, China. Food Science and Human Wellness, 4(3), 123-132.

Taş, N. G., & Gökmen, V. (2017). Maillard reaction and caramelization during hazelnut roasting: A multiresponse kinetic study. Food chemistry, 221, 1911-1922.

Teow, C. C., Truong, V.-D., McFeeters, R. F., Thompson, R. L., Pecota, K. V., & Yencho, G. C. (2007). Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food chemistry, 103(3), 829-838.

Thoma, J. A., Spradlin, J. E., & Dygert, S. (1971). 6 Plant and animal amylases. In The enzymes (Vol. 5, pp. 115-189). Elsevier.

Tonon, R. V., Baroni, A. F., & Hubinger, M. D. (2007). Osmotic dehydration of tomato in ternary solutions: Influence of process variables on mass transfer kinetics and an evaluation of the retention of carotenoids. Journal of Food Engineering, 82(4), 509-517.

Trancoso-Reyes, N., Ochoa-Martínez, L. A., Bello-Pérez, L. A., Morales-Castro, J., Estévez-Santiago, R., & Olmedilla-Alonso, B. (2016). Effect of pre-treatment on physicochemical and structural properties, and the bioaccessibility of β-carotene in sweet potato flour. Food chemistry, 200, 199-205.

Tumuhimbise, G. A., Namutebi, A., & Muyonga, J. H. (2009). Microstructure and in vitro beta carotene bioaccessibility of heat processed orange fleshed sweet potato. Plant foods for human nutrition, 64(4), 312.

Van Boekel, M. (2006). Formation of flavour compounds in the Maillard reaction. Biotechnology advances, 24(2), 230-233.

Vizzotto, M., Pereira, E. d. S., Vinholes, J. R., Munhoz, P. C., Ferri, N. M. L., Castro, L. A. S. d., & Krolow, A. C. R. (2017). Physicochemical and antioxidant capacity analysis of colored sweet potato genotypes: in natura and thermally processed. Ciencia Rural, 47(4).

Vásquez-Caicedo, A. L., Heller, A., Neidhart, S., & Carle, R. (2006). Chromoplast morphology and β-carotene accumulation during postharvest ripening of mango Cv.‘Tommy Atkins'. Journal of Agricultural and Food Chemistry, 54(16), 5769-5776.

Walter Jr, W. M., & Schadel, W. E. (1981). Distribution of phenols in" Jewel" sweet potato [Ipomoea batatas (L.) Lam.] roots. Journal of Agricultural and Food Chemistry, 29(5), 904-906.

Walter, W. M., Collins, W. W., Truong, V.-D., & Fine, T. I. (1997). Physical, compositional, and sensory properties of French fry-type products from five sweetpotato selections. Journal of Agricultural and Food Chemistry, 45(2), 383-388.

Wang, S., Nie, S., & Zhu, F. (2016). Chemical constituents and health effects of sweet potato. Food Research International, 89, 90-116.

Wang, S., & Zhu, F. (2017). Dietary antioxidant synergy in chemical and biological systems. Critical Reviews in Food Science and Nutrition, 57(11), 2343-2357.

Wang, Y., & Kays, S. (2000). Contribution of Volatile Compounds to the Characteristic Aroma of BakedJewel'Sweetpotatoes. Journal of the American Society for Horticultural Science, 125(5), 638-643.

WANG, Y., & KAYS, S. J. (2001). Effect of cooking method on the aroma constituents of sweet potatoes [Ipomoea batatas (L.) Lam.]. Journal of food quality, 24(1), 67-78.

Waramboi, J. G., Dennien, S., Gidley, M. J., & Sopade, P. A. (2011). Characterisation of sweetpotato from Papua New Guinea and Australia: Physicochemical, pasting and gelatinisation properties. Food chemistry, 126(4), 1759-1770.

Whitaker, J. R., & Lee, C. Y. (1995). Recent advances in chemistry of enzymatic browning: an overview.

Wu, X., Gu, L., Holden, J., Haytowitz, D. B., Gebhardt, S. E., Beecher, G., & Prior, R. L. (2004). Development of a database for total antioxidant capacity in foods: a preliminary study. Journal of Food Composition and Analysis, 17(3-4), 407-422.

Williams, P. J. J. F. S. S. P., Acree, T. T., & Teranishi, R. (1993). Hydrolytic flavor release in fruit and wines through hydrolysis of nonvolatile precursors. 287-308.

Yang, K.-M., & Chiang, P.-Y. (2019). Effects of smoking process on the aroma characteristics and sensory qualities of dried longan. Food chemistry, 287, 133-138.

Ye, S., Li, X., & Shao, Y. (2013). Protective effect of purple sweet potato flavonoids on CCL4-induced acute liver injury in mice. Journal of Zhejiang University (Medical Science), 42(6), 649-653+ 684.

Yilmaz, Y., & Toledo, R. (2005). Antioxidant activity of water-soluble Maillard reaction products. Food chemistry, 93(2), 273-278.

Yuan, F., & Qian, M. C. (2016). Aroma potential in early-and late-maturity Pinot noir grapes evaluated by aroma extract dilution analysis. Journal of Agricultural and Food Chemistry, 64(2), 443-450.

Zepka, L. Q., & Mercadante, A. Z. (2009). Degradation compounds of carotenoids formed during heating of a simulated cashew apple juice. Food chemistry, 117(1), 28-34.

Zhao, J.-G., Yan, Q.-Q., Xue, R.-Y., Zhang, J., & Zhang, Y.-Q. (2014). Isolation and identification of colourless caffeoyl compounds in purple sweet potato by HPLC-DAD–ESI/MS and their antioxidant activities. Food chemistry, 161, 22-26.

Zhou, H., Luo, D., Gholamhosseini, H., Li, Z., Han, B., He, J., & Wang, S. (2019). Aroma characteristic analysis of Amomi fructus from different habitats using machine olfactory and gas chromatography-mass spectrometry. Pharmacognosy Magazine, 15(63), 392.

Zhu, F., & Wang, S. (2014). Physicochemical properties, molecular structure, and uses of sweetpotato starch. Trends in Food Science & Technology, 36(2), 68-78.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊