跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/26 14:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:紀容甄
研究生(外文):Rong-Jhen Ji
論文名稱:添加明膠及不同填充密度對3D列印巧克力之影響
論文名稱(外文):Properties of 3D-printed chocolate with added gelatin and various infill density settings
指導教授:蔡碩文蔡碩文引用關係
口試委員:邱致穎林哲安
口試日期:2021-07-23
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:106
中文關鍵詞:3D列印巧克力明膠填充密度跨越距離懸空堆疊角度
外文關鍵詞:3D printingchocolategelatininfill densitybridging distanceoverhang stacking angle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
近年來市面上已經有許多商業販售的巧克力3D列印機,除了能夠客製化圖形,還能夠透過切片軟體設定填充密度形成空心結構以節省列印時間與材料成本。然而受限於巧克力物性,目前巧克力3D列印的應用仍侷限於客製化的2D文字圖形堆疊或是印製較簡單的立體模型,難以與已經奠定穩定的消費族群的傳統注模製造巧克力競爭。因此本研究添加明膠於巧克力中以改善其物性,並以懸空跨越距離與懸空堆疊角度做為評估指標。結果顯示,添加適量明膠的巧克力其硬度顯著增加,可使3D列印巧克力之最大懸空跨越距離從13.5 mm增加到16.0 mm,而平台設計之跨越距離最大值為16 mm,意即添加明膠之巧克力的跨越距離可能更大,而最大懸空堆疊角度則可以從65°提高至70°。另一方面,以消費者試驗分析不同填充密度對感官特性的影響,發現填充密度越高硬度及脆度越高,但是消費者接受性沒有顯著差異,且由於內部結構空隙大小影響融化速度的關係,甜味與可可風味感受到的強度以及出現時間略有不同。整體而言,添加明膠以改善列印品質是具有潛力的方法,並且能夠增加巧克力之機械強度。而填充密度會影響巧克力的質地以及風味等感官特性,表示以相同原料透過3D列印可以讓消費者有不同的感受。因此,基於此研究之結果以3D列印技術來印製巧克力不僅能夠製作出更複雜精美的立體結構,還能夠在味覺上給予消費者不同的感受。
In recent years, several commercially used chocolate 3D printers have already been released to the market. In addition to customized design, 3D printing technology can also decrease printing time and material cost by fabricating the internal structure of model by setting infill density in the slicing software. However, traditional cast chocolate has established stable consumer base, and 3D-printed chocolate is still limited to customized 2D design or simple stereoscopic models, therefore, it is hard for 3D-printed chocolate to differentiate in highly competitive market. The study evaluates the printing quality by bridging distance and overhang stacking angle of chocolate material for 3D printing with gelatin solution. The result shows that adding gelatin solution increases bridging distance from 13.5 mm to 16.0 mm, and the maximum bridging distance of piers is 16 mm, indicating that the maximum bridging distance of chocolate material for 3D printing might be more than 16 mm. Also, overhang stacking angle increases from 65°to 70°. On the other hand, sensory properties of various infill density setting were analyzed by consumer test. The result shows that the higher infill density leads to higher hardness and crunchiness, and consumer’s acceptance has no significant difference among different infill density. Also, the gap of internal structure affects the rate of melting and resulting in difference of level and release time of sweetness and cocoa flavor. Overall, adding gelatin solution is a potential method for improving printing quality, and can also enhance mechanical strength of chocolate. Different infill density affects sensory properties include texture and flavor, indicating that using the same material can cause different feeling by 3D printing. Thus, manufacturing chocolate by 3D printing technology can not only develop intricate stereoscopic models but also bring about different taste.
摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vi
第一章 前言 1
1.1 食品3D列印 1
1.1.1 3D列印技術概述 1
1.1.2 食品3D列印擠出原理 2
1.1.3 巧克力3D列印 4
1.2 巧克力 11
1.2.1 巧克力之簡介 11
1.3 食用膠 14
1.3.1 食用膠之概述 14
1.3.2 明膠(Gelatin) 15
1.4 食品感官品評 17
1.5 研究動機及目的 18
第二章 材料與方法 19
2.1 研究架構 19
2.2 實驗材料 20
2.3 實驗儀器設備 20
2.4 電腦軟體 20
2.5 實驗方法 21
2.5.1 堆疊及懸角測試 21
2.5.2 巧克力配方之調配 23
2.5.3 差示掃描量熱分析 29
2.5.4 水分含量測定 30
2.5.5 黏度測定 31
2.5.6 質地分析 32
2.5.7 跨越距離極限測定 33
2.5.8 懸空堆疊測定 36
2.5.9 填充密度之品評試驗 38
2.6 統計分析 45
第三章 結果與討論 46
3.1 堆疊及懸角測試 46
3.2 理想配方之評估 48
3.2.1 預備實驗 48
3.2.2 物性分析 51
3.2.3 列印品質評估 62
3.3 填充密度之品評試驗 73
3.3.1 重量測定 73
3.3.2 質地分析 75
3.3.3 感官品評 77
3.4 列印成品展示 97
第四章 結論與未來展望 100
第五章 參考文獻 101
附錄(一)品評員之樣品順序 104
附錄(二)剛剛好法之平均值(主成分分析) 106
1.鄭正元, 3D列印 : 積層製造技術與應用 / 鄭正元等編著. 積層製造技術與應用. 2017: 全華.
2.Standard Terminology for Additive Manufacturing – General Principles – Terminology.
3.蔡富吉 and 蔡坤哲, 3D印表機自造全書 / 蔡富吉, 蔡坤哲著. GOTOP ; EH0017. 2014: 碁峰資訊.
4.郭少豪 and 呂振, 改變人類的全新技術 : 啟動3D列印 / 郭少豪,呂振著. 啟動3D列印. 2017: 佳魁資訊.
5.Sun, J., et al., Extrusion-based food printing for digitalized food design and nutrition control. Journal of Food Engineering, 2018. 220: p. 1-11.
6.McClements, D.J., Food Architecture: Building Better Foods, in Future Foods: How Modern Science Is Transforming the Way We Eat. 2019, Springer International Publishing: Cham. p. 27-60.
7.Sun, J., et al., An Overview of 3D Printing Technologies for Food Fabrication. Food and Bioprocess Technology, 2015. 8(8): p. 1605-1615.
8.Takagishi, K., Y. Suzuki, and S. Umezu, The high precision drawing method of chocolate utilizing electrostatic ink-jet printer. Journal of Food Engineering, 2018. 216: p. 138-143.
9.Lanaro, M., M.R. Desselle, and M.A. Woodruff, Chapter 6 - 3D Printing Chocolate: Properties of Formulations for Extrusion, Sintering, Binding and Ink Jetting, in Fundamentals of 3D Food Printing and Applications, F.C. Godoi, et al., Editors. 2019, Academic Press. p. 151-173.
10.Edge, C. About Choc Edge. Available from: http://chocedge.com/about.html#creator.
11.Machines, N. Foodni. Available from: https://www.naturalmachines.com/.
12.CHOCOFORMER. SHOWCASES. Available from: https://chocoformer.com/wp/.
13.ChocoL3d. ChocoL3d-chocolate printing. Available from: http://chocol3d.com/chocolate_us/.
14.mycusini. Create Infinity Possible. Available from: https://www.qts.tw/mycusini_tw.html.
15.Mantihal, S., S. Prakash, and B. Bhandari, Textural modification of 3D printed dark chocolate by varying internal infill structure. Food Research International, 2019. 121: p. 648-657.
16.Mantihal, S., S. Prakash, and B. Bhandari, Texture-modified 3D printed dark chocolate: Sensory evaluation and consumer perception study. 2019. 50(5): p. 386-399.
17.ICCO. Quarterly Bulletin of Cocoa Statistics. 2021; Available from: https://www.icco.org/wp-content/uploads/Grindings_QBCS-XLVII-No.-1.pdf.
18.露莎妲 and 林怡君, 巧克力全書 露莎妲(Patricia Lousada)著;林怡君譯. 新生活圖鑑 18. 2005: 貓頭鷹出版 家庭傳媒城邦分公司發行.
19.Jahurul, M.H.A., et al., Cocoa butter replacers from blends of mango seed fat extracted by supercritical carbon dioxide and palm stearin. Food Research International, 2014. 65: p. 401-406.
20.Lipp, M. and E. Anklam, Review of cocoa butter and alternative fats for use in chocolate—Part A. Compositional data. Food Chemistry, 1998. 62(1): p. 73-97.
21.Zaidul, I.S.M., et al., Blending of supercritical carbon dioxide (SC-CO2) extracted palm kernel oil fractions and palm oil to obtain cocoa butter replacers. Journal of Food Engineering, 2007. 78(4): p. 1397-1409.
22.Abigor, R.D., et al., Production of cocoa butter-like fats by the lipase-catalyzed interesterification of palm oil and hydrogenated soybean oil. 2003. 80(12): p. 1193-1196.
23.Verstringe, S., et al., 18 - Enzymatic and Other Modification Techniques to Produce Cocoa Butter Alternatives, in Cocoa Butter and Related Compounds, N. Garti and N.R. Widlak, Editors. 2012, AOCS Press. p. 443-474.
24.Zhang, Z., et al., Characterization of enzymatically interesterified palm oil-based fats and its potential application as cocoa butter substitute. Food Chemistry, 2020. 318: p. 126518.
25.Watanabe, S., S. Yoshikawa, and K. Sato, Formation and properties of dark chocolate prepared using fat mixtures of cocoa butter and symmetric/asymmetric stearic-oleic mixed-acid triacylglycerols: Impact of molecular compound crystals. Food Chemistry, 2021. 339: p. 127808.
26.Berger, K.G., PALM KERNEL OIL, in Encyclopedia of Food Sciences and Nutrition (Second Edition), B. Caballero, Editor. 2003, Academic Press: Oxford. p. 4322-4324.
27.Liu, C., et al., Comparative analysis of graded blends of palm kernel oil, palm kernel stearin and palm stearin. Food Chemistry, 2019. 286: p. 636-643.
28.Suri, T. and S. Basu, Heat resistant chocolate development for subtropical and tropical climates: a review. Critical Reviews in Food Science and Nutrition, 2021: p. 1-20.
29.Li, J.-M. and S.-P. Nie, The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocolloids, 2016. 53: p. 46-61.
30.Manzoor, M., et al., Food hydrocolloids: Functional, nutraceutical and novel applications for delivery of bioactive compounds. International Journal of Biological Macromolecules, 2020. 165: p. 554-567.
31.Williams, P.A. and G.O. Phillips, Chapter 1 - Introduction to food hydrocolloids, in Handbook of Hydrocolloids (Third Edition), G.O. Phillips and P.A. Williams, Editors. 2021, Woodhead Publishing. p. 3-26.
32.Hanani, Z.A.N., Gelatin, in Encyclopedia of Food and Health, B. Caballero, P.M. Finglas, and F. Toldrá, Editors. 2016, Academic Press: Oxford. p. 191-195.
33.Wypych, G., GEL gelatin, in Handbook of Polymers (Second Edition), G. Wypych, Editor. 2016, ChemTec Publishing. p. 149-150.
34.Mariod, A.A. and H.J.A.S.P.T.A. Fadul, Gelatin, source, extraction and industrial applications. 2013. 12(2): p. 135-147.
35.Poppe, J., Gelatin, in Thickening and Gelling Agents for Food, A.P. Imeson, Editor. 1997, Springer US: Boston, MA. p. 144-168.
36.Haug, I.J. and K.I. Draget, 5 - Gelatin, in Handbook of Food Proteins, G.O. Phillips and P.A. Williams, Editors. 2011, Woodhead Publishing. p. 92-115.
37.Ogunwolu, S.O. and C.O. Jayeola, Development of non‐conventional thermo‐resistant chocolate for the tropics. British Food Journal, 2006. 108(6): p. 451-455.
38.Penfield, M.P. and A.M. Campbell, CHAPTER 4 - EVALUATING FOOD BY SENSORY METHODS, in Experimental Food Science (Third Edition), M.P. Penfield and A.M. Campbell, Editors. 1990, Academic Press: San Diego. p. 51-77.
39.劉伯康, 食品感官品評 : 理論與實務 = Principles and practices of sensory evaluation of food. 2020[民109], 新北市: 新文京開發.
40.Li, L. and G. Liu, Corn oil-based oleogels with different gelation mechanisms as novel cocoa butter alternatives in dark chocolate. Journal of Food Engineering, 2019. 263: p. 114-122.
41.Ibrahim, S.F., et al., Quantification of physicochemical and microstructure properties of dark chocolate incorporated with palm sugar and dates as alternative sweetener. Materials Today: Proceedings, 2020. 31: p. 366-371.
42.Biswas, N., et al., Physical, rheological and sensorial properties, and bloom formation of dark chocolate made with cocoa butter substitute (CBS). LWT - Food Science and Technology, 2017. 82: p. 420-428.
43.Rahman, J.M.H., et al., Rheological and mechanical properties of edible gel materials for 3D food printing technology. Heliyon, 2020. 6(12): p. e05859.
44.Rando, P. and M. Ramaioli, Food 3D printing: Effect of heat transfer on print stability of chocolate. Journal of Food Engineering, 2021. 294: p. 110415.
45.Kiumarsi, M., et al., Comparative study of instrumental properties and sensory profiling of low-calorie chocolate containing hydrophobically modified inulin. Part 1: Rheological, thermal, structural and external preference mapping. Food Hydrocolloids, 2020. 104: p. 105698.
46.Mantihal, S., et al., Effect of additives on thermal, rheological and tribological properties of 3D printed dark chocolate. Food Research International, 2019. 119: p. 161-169.
47.Konar, N., et al., Rapid tempering of sucrose-free milk chocolates by βV seeding: textural, rheological and melting properties. European Food Research and Technology, 2017. 243(10): p. 1849-1860.
48.Lanaro, M., et al., 3D printing complex chocolate objects: Platform design, optimization and evaluation. Journal of Food Engineering, 2017. 215: p. 13-22.
49.Processing effects on the rheological, textural and melting properties during chocolate manufacture, in Chocolate Science and Technology. 2016. p. 236-296.
50.Mantihal, S., et al., Optimization of chocolate 3D printing by correlating thermal and flow properties with 3D structure modeling. Innovative Food Science & Emerging Technologies, 2017. 44: p. 21-29.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top