跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/09/28 10:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:薛宇珺
研究生(外文):Yu-Chun Hsueh
論文名稱:建立無血清與無飼養層之小鼠精原幹細胞培養系統
論文名稱(外文):Establishment of serum- and feeder-free culture system for mouse spermatogonial stem cells
指導教授:唐品琦
指導教授(外文):Pin-Chi Tang
口試委員:鄭旭辰陳銘正
口試日期:2021-01-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:76
中文關鍵詞:神經膠質衍生神經營養因子白血病抑制因子小鼠精原幹細胞
外文關鍵詞:glial cell line-derived neurotrophic factor (GDNF)leukemia inhibitory factor (LIF)mouse spermatogonial stem cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雄性哺乳動物之精原幹細胞(spermatogonial stem cells, SSCs)具有再生與分化之能力,且目前已發展出不同體外培養SSCs系統,其中包括含血清(serum)培養液或是飼養層細胞(feeder layer)之培養系統,然而,此兩種系統之成分複雜且變異頗大,如不同批號血清與相異批次之飼養層細胞,可能含有不同成分或濃度之各式因子,因此雖然一般而言均可使 SSCs 生長,但是卻難以界定維持幹細胞特性之關鍵物質。研究指出,似胜肽類激素(peptide-like hormones)之生長因子(growth factors)可藉由結合其細胞表面之特異受體,調節細胞各類活動與功能,以促進細胞分化與成熟,其中,神經膠質衍生神經營養因子(glial cell line-derived neurotrophic factor, GDNF)具有調控SSCs分化與再生之能力,而白血病抑制因子(leukemia inhibitory factor, LIF)則可調節 SSCs 形成聚落(colony)之能力。故本試驗之目的為建立可維持小鼠精原幹細胞(mouse spermatogonial stem cells, mSSCs)增生與分化能力之無血清與無飼養層之體外培養系統,並檢測LIF與GDNF生長因子,對其生長之影響。5日齡公鼠之睪丸去除被膜(testicular capsules)後,經胰蛋白酶與去氧核糖核酸酶消化清洗後,將分離之細胞分別置於無添加生長因子(Group 1),或添加不同生長因子(Group 2, 103/mL LIF; Group 3, 20 ng/mL GDNF; Group 4, 103/mL LIF + 20 ng/mL GDNF)之mSSCs培養液,觀察並分析各組細胞生長、聚落形成與幹細胞特性(stemness)之差異。試驗一分組培養之結果顯示,雖然各組培養至第五天,mSSCs 之細胞數不具顯著性差異,但Groups 2與4所形成之mSSCs聚落數,則顯著高於其他兩組;然而mSSCs相關指標基因(thy-1, -6 integrin 與 -1 integrin)以及特異性標誌蛋白質(Oct-4與Thy-1)之表現,於各組間均無顯著差異。在後續繼代培養時, 發現Groups 2與4之mSSCs聚落再形成時間較其他組別快約7-14天,且繼代至第二代時,其mSSCs聚落之特異性基因與蛋白質均仍持續表現。試驗二細胞冷凍解凍後之培養結果顯示,Groups 2與4之mSSCs冷凍解凍培養至第五代後,其大部分之特異性基因與蛋白質仍均持續表現,唯thy-1基因於兩組培養條件下皆無法偵測,且不論是否有無冷凍解凍處理, Group 4 之細胞其特異性基因表現量均顯著高於Group 2者。試驗三將體外培養之Groups 2與4 之綠螢光轉基因mSSCs (GFP-mSSCs)移植回不孕模式小鼠體內,檢視 GFP-mSSCs 於體內分化之情形。結果發現,移植 60 天後以免疫組織化學染色法可於睪丸生精小管內檢測到表現綠螢光蛋白質細胞,同時亦可偵測到表現精子分化標誌蛋白質(Stra8)與細胞增生指標蛋白質(PCNA)之細胞,顯示經白消安處理之生殖細胞於75天後可恢復增生與分化能力。綜上所述,為達成建立無血清與無飼養層之mSSCs培養系統,培養液中添加LIF+GDNF為必需之條件,而本試驗建立之系統可維持部分 mSSCs移回體內後之發育能力。
The mammalian spermatogonial stem cells (SSCs) possess self-renewal and differentiation ability. Several in vitro culture systems have been developed for maintenance of SSCs, including serum-containing media, or feeder-layer system. Although it has been reported that serum- or feeder layer-containing culture system could maintain SSCs, the components and their percentages in the culture system might be various and inconsistent due to the different batches of serum or feeder cells. Furthermore, it may hinder the study of key molecules involved in the maintenance of SSCs. Research results indicate that the growth factors of peptide-like hormones could regulate the activity and function of cells to enhance their differentiation and maturation through the specific receptors located on the cell surface. It has been shown that glial cell line-derived neurotrophic factor (GDNF) is able to regulate the differentiation and self-renewal of SSCs, and leukemia inhibitory factor (LIF) is recognized to promote colony formation in SSCs. Therefore, the objective of this study was to establish a serum- and feeder-free culture system for maintenance of proliferation and differentiation in mouse spermatogonial stem cells (mSSCs) in vitro. Additionally, the effect of LIF and GDNF on the growth of mSSCs was evaluated. Testes from 5-day old mice were treated with trypsin and DNase after removal of testicular capsules. The washed cells were allocated into 4 groups, which are Group 1, medium without growth factor; Group 2, medium supplemented with 103/mL LIF; Group 3, medium supplemented with 20 ng/mL GDNF; Group 4, medium supplemented with 103/mL LIF + 20 ng/mL GDNF. During cultivation, the growth, colonization and stemness of mSSCs were analyzed among groups. Experiment I results showed that no significant differences were identified on the cell numbers, the expressions of mSSC marker genes (thy-1, -6 integrin and -1 integrin) and proteins (Oct-4 and Thy-1) among groups 5 days after culture, but the number of colonies was significantly higher in the Groups of 2 and 4. Also, it was noticed that the formation of colonies in Groups of 2 and 4 was 7-14 days faster than the cells in the other groups after passages. The colonies formed in Groups 2 and 4 continuously expressed mSSC marker genes and proteins after 2 passages. Experiment II results indicated that the frozen-thawed mSSCs from Groups 2 and 4 could be maintained to passage 5. The colonies formed in these two groups continuously expressed mSSC marker genes and proteins, but thy-1 was no longer to detect. Additionally, it was found that the expression of SSC marker genes in Group 4 was significantly higher than those in Group 2, no matter in fresh or frozen-thawed mSSCs. Experiment III, the green fluorescent protein-transferred mSSCs (GFP-mSSCs) from Groups 2 and 4 culture conditions were injected into the infertility model mouse testes to further analyze the developmental ability of the cultured GFP-mSSCs. The results showed that some GFP positive cells were identified by immunohistochemistry in the host testes 60 days after transfer. Additionally, meiosis marker protein, Stra8, and cell proliferation marker protein, PCNA, could be detected, indicating that the germ cells restored their developmental ability 75 days after busulfan treatment. In conclusion, it is found that it is necessary to supplement both of LIF and GDNF in the current mSSC culture medium in order to establish serum- and feeder-free culture system. Also the current system partially supports the developmental ability of mSSCs after transfer into host testes.
目次
摘要 i
Abstract iii
目次 v
圖目次 viii
文獻探討 1
一、 精原幹細胞 1
二、 生精細管之微環境 1
三、 神經膠質細胞株衍生神經滋養因子 (GDNF) 2
(一)、 GDNF在細胞中訊號傳遞路徑 3
(二)、 GDNF對於生殖細胞之重要性與影響 4
四、 白血病抑制因子 (LIF) 4
(一) LIF於細胞中之訊號傳遞路徑 5
(二) LIF對於生殖細胞之重要性與影響 6
五、 精原幹細胞主要訊息傳遞路徑 6
(一) JAK/STAT訊息路徑 6
(二) Src 訊息路徑 7
(三) PI3K/Akt 訊息路徑 7
(四) Ras/Erk1/2 訊息路徑 8
(五) Smad 訊息路徑 8
六、 精原幹細胞相關細胞標誌 10
(一) 未分化精原幹細胞之細胞標誌 10
1. Pou5f1 (Octamer-binding transcription factor 4, Oct-4) 10
2. Thy-1 (CD90) 10
3. α6 - integrin (CD49f) 11
4. β1- integrin (CD29) 11
5. Zbtb16 (Zinc finger and BTB domain containing 16, PLZF) 11
(二) 分化之精原幹細胞細胞標誌 12
1. Dazl (Deleted in azoospermia like) 12
2. Stra8 (Stimulated by retinoic acid gene 8) 12
七、 精原幹細胞體外培養與應用 12
(一) 精原幹細胞之含血清 (serum) 與飼養層 (feeder cell layer) 之培養系統 …………………………………………………………………12
(二) 精原幹細胞無血清與飼養層培養系統 13
(三) 精原幹細胞體外培養之應用 13
八、 結論 14
試驗一、精原幹細胞體外培養 15
前言 15
試驗目的 15
材料與方法 16
一、 實驗小鼠來源與飼養管理 16
二、 分離小鼠精原幹細胞 16
三、 精原幹細胞培養液製備 16
四、 精原幹細胞培養與繼代 17
五、 細胞免疫化學染色法 (Immunocytochemistry, ICC) 17
六、 Total RNA 萃取 18
七、 核酸濃度之檢測 19
八、 反轉錄聚合酶鏈鎖反應 (reverse transcription-polymerase chain reaction, RT-PCR) 19
九、 精原幹細胞多能性以及細胞特異性基因表現之分析 20
十、 統計分析 21
結果 22
討論 24
一、 分離精原幹細胞之方法 24
二、 分選精原幹細胞之方法 24
三、 無血清與無飼養層之培養系統比較 25
四、 精原幹細胞挑選後細胞生長遲緩 26
五、 精原幹細胞 mRNA表現量之差異 26
試驗一小結 27
試驗二、體外培養之精原幹細胞冷凍解凍試驗 38
前言 38
試驗目的 38
材料與方法 39
一、 精原幹細胞培養與繼代 39
二、 精原幹細胞冷凍解凍 39
(一) 精原幹細胞冷凍 39
(二) 精原幹細胞解凍 39
三、 細胞免疫化學染色法 (Immunocytochemistry, ICC) 39
四、 Total RNA萃取 39
五、 核酸濃度之檢測 39
六、 反轉錄聚合酶鏈鎖反應 (reverse transcription-polymerase chain reaction, RT-PCR) 40
七、 精原幹細胞多能性以及細胞特異性基因表現之分析 40
八、 統計分析 40
結果 41
討論 43
一、 精原幹細胞不同抗凍劑使用之比較 43
二、 精原幹細胞冷凍解凍後colony形成能力之改變 43
三、 精原幹細胞冷凍解凍後相關基因表現之改變 44
試驗二小結 44
試驗三、精原幹細胞移植試驗 51
前言 51
試驗目的 51
材料與方法 52
一、 製備無內源性生殖幹細胞之模式公鼠 52
二、 綠螢光精原幹細胞之製備 52
三、 小鼠睪丸輸出小管 (Ductuli efferentes) 細胞移植 52
(一) 製作毛細玻璃管細胞移植之注射針 52
(二) 綠螢光精原幹細胞之輸出小管注射 53
四、 蘇木紫&伊紅染色法 54
五、 免疫組織化學染色法 (Immunostaining, IHC) 54
(一) 抗原修復與染色 55
結果 56
討論 57
一、 精原幹細胞移植後形成精子之時間 57
二、 影響精原幹細胞移植至睪丸中成敗之可能因素 57
試驗三小結 58
總結 68
參考書目 69


Abbasi, H., M. Tahmoorespur, S. M. Hosseini, Z. Nasiri, M. Bahadorani, M. Hajian, M. R. Nasiri, and M. H. Nasr-Esfahani. 2013. Thy1 as a reliable marker for enrichment of undifferentiated spermatogonia in the goat. Theriogenology. 80:923-932.
Airaksinen, M. S., and M. Saarma. 2002. The gdnf family: Signalling, biological functions and therapeutic value. Nat. Rev. Neurosci. 3:383-394.
Anderson, E. L., A. E. Baltus, H. L. Roepers-Gajadien, T. J. Hassold, D. G. de Rooij, A. M. M. van Pelt, and D. C. Page. 2008. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proceedings of the National Academy of Sciences of the United States of America. 105:14976-14980.
Anderson, R. A., R. T. Mitchell, T. W. Kelsey, N. Spears, E. E. Telfer, and W. H. B. Wallace. 2015. Cancer treatment and gonadal function: Experimental and established strategies for fertility preservation in children and young adults. Lancet Diabetes & Endocrinology. 3:556-567.
Bahadorani, M., S. M. Hosseini, P. Abedi, M. Hajian, S. E. Hosseini, A. Vahdati, H. Baharvand, and M. H. Nasr-Esfahani. 2012. Short-term in-vitro culture of goat enriched spermatogonial stem cells using different serum concentrations. J Assist Reprod Genet. 29:39-46.
Besser, D. 2004. Expression of nodal, lefty-a, and lefty-b in undifferentiated human embryonic stem cells requires activation of smad2/3. Journal of Biological Chemistry. 279:45076-45084.
Bhartiya, D., S. Kasiviswanathan, S. K. Unni, P. Pethe, J. V. Dhabalia, S. Patwardhan, and H. B. Tongaonkar. 2010. Newer insights into premeiotic development of germ cells in adult human testis using oct-4 as a stem cell marker. Journal of Histochemistry & Cytochemistry. 58:1093-1106.
Blume-Jensen, P., G. Q. Jiang, R. Hyman, K. F. Lee, S. O'Gorman, and T. Hunter. 2000. Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3 '-kinase is essential for male fertility. Nature Genetics. 24:157-162.
Bowles, J., D. Knight, C. Smith, D. Wilhelm, J. Richman, S. Mamiya, K. Yashiro, K. Chawengsaksophak, M. J. Wilson, J. Rossant, H. Hamada, and P. Koopman. 2006. Retinoid signaling determines germ cell fate in mice. Science. 312:596-600.
Brawley, C., and E. Matunis. 2004. Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science. 304:1331-1334.
Braydich-Stolle, L., N. Kostereva, M. Dym, and M. C. Hofmann. 2007. Role of src family kinases and n-myc in spermatogonial stem cell proliferation. Developmental Biology. 304:34-45.
Buaas, F. W., A. L. Kirsh, M. Sharma, D. J. McLean, J. L. Morris, M. D. Griswold, D. G. de Rooij, and R. E. Braun. 2004. Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet. 36:647-652.
Costoya, J. A., R. M. Hobbs, M. Barna, G. Cattoretti, K. Manova, M. Sukhwani, K. E. Orwig, D. J. Wolgemuth, and P. P. Pandolfi. 2004. Essential role of plzf in maintenance of spermatogonial stem cells. Nat Genet. 36:653-659.
Curley, M., L. Milne, S. Smith, N. Atanassova, D. Rebourcet, A. Darbey, P. W. F. Hadoke, S. Wells, and L. B. Smith. 2018. Leukemia inhibitory factor-receptor is dispensable for prenatal testis development but is required in sertoli cells for normal spermatogenesis in mice. Scientific Reports. 8:13.
Dann, C. T., A. L. Alvarado, L. A. Molyneux, B. S. Denard, D. L. Garbers, and M. H. Porteus. 2008. Spermatogonial stem cell self-renewal requires oct4, a factor downregulated during retinoic acid-induced differentiation. Stem Cells. 26:2928-2937.
Das, A., D. Bhuyan, P. P. Das, S. Kolishik, B. Das, A. Phookan, S. D. Kharche, S. P. Singh, and M. S. Chauhan. 2020. Comparing the stemness and morphobiometry of spermatogonial stem cells from doom pig on different days of culture. Czech J. Anim. Sci. 65:66-76.
de Rooij DG, R. L. 2000. All you wanted to know about spermatogonia but were afraid to ask. Journal of Andrology. 21:776-798.
Dolci, S., M. Pellegrini, S. Di Agostino, R. Geremia, and P. Rossi. 2001. Signaling through extracellular signal-regulated kinase is required for spermatogonial proliferative response to stem cell factor. Journal of Biological Chemistry. 276:40225-40233.
Dorval-Coiffec, I., J. G. Delcros, H. Hakovirta, J. Toppari, B. Jegou, and C. Piquet-Pellorce. 2005. Identification of the leukemia inhibitory factor cell targets within the rat testis. Biol. Reprod. 72:602-611.
Ebata, K. T., X. F. Zhang, and M. C. Nagano. 2005. Expression patterns of cell-surface molecules on male germ line stem cells during postnatal mouse development. Molecular Reproduction and Development. 72:171-181.
Ezzati, M., D. Shanehbandi, K. Hamdi, S. Rahbar, and M. Pashaiasl. 2020. Influence of cryopreservation on structure and function of mammalian spermatozoa: An overview. Cell and Tissue Banking. 21:1-15.
Feng, L. X., N. Ravindranath, and M. Dym. 2000. Stem cell factor/c-kit up-regulates cyclin d3 and promotes cell cycle progression via the phosphoinositide 3-kinase/p70 s6 kinase pathway in spermatogonia. Journal of Biological Chemistry. 275:25572-25576.
Filipponi, D., R. M. Hobbs, S. Ottolenghi, P. Rossi, E. A. Jannini, P. P. Pandolfi, and S. Dolci. 2007. Repression of kit expression by plzf in germ cells. Molecular and Cellular Biology. 27:6770-6781.
Ghasemi Hamidabadi, H., and M. Nazm Bojnordi. 2018. Co-culture of mouse spermatogonial stem cells with sertoli cell as a feeder layer, stimulates the proliferation and spermatogonial stemness profile. Middle East Fertility Society Journal. 23:107-111.
Gilmore, J. A., J. Liu, D. Y. Gao, and J. K. Critser. 1997. Determination of optimal cryoprotectants and procedures for their addition and removal from human spermatozoa. Human Reproduction. 12:112-118.
Gul, M., S. Hildorf, L. H. Dong, J. Thorup, E. R. Hoffmann, C. F. S. Jensen, J. Sonksen, D. Cortes, J. Fedder, C. Y. Andersen, and E. Goossens. 2020. Review of injection techniques for spermatogonial stem cell transplantation. Hum. Reprod. Update. 26:368-391.
Guo, Y., Y. A. Hai, Y. H. Gong, Z. Li, and Z. P. He. 2014. Characterization, isolation, and culture of mouse and human spermatogonial stem cells. J. Cell. Physiol. 229:407-413.
Hammoud, S. S., D. H. P. Low, C. Yi, C. L. Lee, J. M. Oatley, C. J. Payne, D. T. Carrell, E. Guccione, and B. R. Cairns. 2015. Transcription and imprinting dynamics in developing postnatal male germline stem cells. Genes & Development. 29:2312-2324.
Han, S. Y., M. K. Gupta, S. J. Uhm, and H. T. Lee. 2009. Isolation and in vitro culture of pig spermatogonial stem cell. Asian-Australasian Journal of Animal Sciences. 22:187-193.
Haneji, T., M. Maekawa, and Y. Nishimune. 1983. Retinoids induce differentiation of type-a spermatogonia invitro - organ-culture of mouse cryptorchid testes. Journal of Nutrition. 113:1119-1123.
He, Z. P., J. J. Jiang, M. Kokkinaki, N. Golestaneh, M. C. Hofmann, and M. Dym. 2008. Gdnf upregulates c-fos transcription via the ras/erk1/2 pathway to promote mouse spermatogonial stem cell proliferation. Stem Cells. 26:266-278.
He, Z. P., M. Kokkinaki, and M. Dym. 2009. Signaling molecules and pathways regulating the fate of spermatogonial stem cells. Microsc. Res. Tech. 72:586-595.
Heidari, B., M. Rahmati-Ahmadabadi, M. M. Akhondi, A. H. Zarnani, M. Jeddi-Tehrani, A. Shirazi, M. M. Naderi, and B. Behzadi. 2012. Isolation, identification, and culture of goat spermatogonial stem cells using c-kit and pgp9.5 markers. Journal of Assisted Reproduction and Genetics. 29:1029-1038.
Hermann, B. P., M. Sukhwani, D. R. Simorangkir, T. J. Chu, T. M. Plant, and K. E. Orwig. 2009. Molecular dissection of the male germ cell lineage identifies putative spermatogonial stem cells in rhesus macaques. Human Reproduction. 24:1704-1716.
Hofmann, M.-C. 2008. Gdnf signaling pathways within the mammalian spermatogonial stem cell niche. Mol. Cell. Endocrinol. 288:95-103.
Huckins, C. 1971. Spermatogonial stem cell population in adult rats .1. Their morphology, proliferation and maturation. Anat. Rec. 169:533-&.
Itman, C., and K. L. Loveland. 2008. Smad expression in the testis: An insight into bmp regulation of spermatogenesis. Developmental Dynamics. 237:97-111.
Jaenisch, R., and R. Young. 2008. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell. 132:567-582.
James, D., A. J. Levine, D. Besser, and A. Hemmati-Brivanlou. 2005. Tgf beta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem. Development. 132:1273-1282.
Kala, S., R. Kaushik, K. P. Singh, P. H. Kadam, M. K. Singh, R. S. Manik, S. K. Singla, P. Palta, and M. S. Chauhan. 2012. In vitro culture and morphological characterization of prepubertal buffalo (bubalus bubalis) putative spermatogonial stem cell. Journal of Assisted Reproduction and Genetics. 29:1335-1342.
Kanatsu-Shinohara, M., K. Inoue, N. Ogonuki, H. Miki, S. Yoshida, S. Toyokuni, J. Y. Lee, A. Ogura, and T. Shinohara. 2007. Leukemia inhibitory factor enhances formation of germ cell colonies in neonatal mouse testis culture. Biol. Reprod. 76:55-62.
Kanatsu-Shinohara, M., K. Inoue, N. Ogonuki, H. Morimoto, A. Ogura, and T. Shinohara. 2011. Serum- and feeder-free culture of mouse germline stem cells. Biol Reprod. 84:97-105.
Kanatsu-Shinohara, M., H. Miki, K. Inoue, N. Ogonuki, S. Toyokuni, A. Ogura, and T. Shinohara. 2005. Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol Reprod. 72:985-991.
Kanatsu-Shinohara, M., H. Morimoto, and T. Shinohara. 2016. Enrichment of mouse spermatogonial stem cells by the stem cell dye cdy1. Biol Reprod. 94:13.
Kanatsu-Shinohara, M., N. Ogonuki, K. Inoue, H. Miki, A. Ogura, S. Toyokuni, and T. Shinohara. 2003. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod. 69:612-616.
Kanatsu-Shinohara, M., N. Ogonuki, S. Matoba, H. Morimoto, A. Ogura, and T. Shinohara. 2014. Improved serum- and feeder-free culture of mouse germline stem cells. Biol Reprod. 91:88.
Kanatsu-Shinohara, M., M. Takehashi, S. Takashima, J. Lee, H. Morimoto, S. Chuma, A. Raducanu, N. Nakatsuji, R. Fässler, and T. Shinohara. 2008. Homing of mouse spermatogonial stem cells to germline niche depends on β1-integrin. Cell Stem Cell. 3:533-542.
Kiger, A. A., D. L. Jones, C. Schulz, M. B. Rogers, and M. T. Fuller. 2001. Stem cell self-renewal specified by jak-stat activation in response to a support cell cue. Science. 294:2542-2545.
Kissel, H., I. Timokhina, M. P. Hardy, G. Rothschild, Y. Tajima, V. Soares, M. Angeles, S. R. Whitlow, K. Manova, and P. Besmer. 2000. Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses. Embo Journal. 19:1312-1326.
Klippel, A., M. A. Escobedo, M. S. Wachowicz, G. Apell, T. W. Brown, M. A. Giedlin, W. M. Kavanaugh, and L. T. Williams. 1998. Activation of phosphatidylinositol 3-kinase is sufficient for cell cycle entry and promotes cellular changes characteristic of oncogenic transformation. Molecular and Cellular Biology. 18:5699-5711.
Kolasa, A., K. Misiakiewicz, M. Marchlewicz, and B. Wiszniewska. 2012. The generation of spermatogonial stem cells and spermatogoma in mammals. Reproductive Biology. 12:5-23.
Koubova, J., D. B. Menke, Q. Zhou, B. Capel, M. D. Griswold, and D. C. Page. 2006. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proceedings of the National Academy of Sciences of the United States of America. 103:2474-2479.
Kubota, H., M. R. Avarbock, and R. L. Brinster. 2003. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proceedings of the National Academy of Sciences. 100:6487-6492.
Kubota, H., M. R. Avarbock, and R. L. Brinster. 2004. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proceedings of the National Academy of Sciences. 101:16489-16494.
Kubota, H., and R. L. Brinster. 2018. Spermatogonial stem cells. Biol. Reprod. 99:52-74.
Lee, J., M. Kanatsu-Shinohara, K. Inoue, N. Ogonuki, H. Miki, S. Toyokuni, T. Kimura, T. Nakano, A. Ogura, and T. Shinohara. 2007. Akt mediates self-renewal division of mouse spermatogonial stem cells. Development. 134:1853-1859.
Lee, J., and T. Shinohara. 2011. Epigenetic modifications and self-renewal regulation of mouse germline stem cells. Cell Res. 21:1164-1171.
Lee, Y. A., Y. H. Kim, B. J. Kim, M. S. Jung, J. H. Auh, J. T. Seo, Y. S. Park, S. H. Lee, and B. Y. Ryu. 2013. Cryopreservation of mouse spermatogonial stem cells in dimethylsulfoxide and polyethylene glycol. Biol. Reprod. 89
Lin, Y. F., and D. C. Page. 2005. Dazl deficiency leads to embryonic arrest of germ cell development in xy c57bl/6 mice. Developmental Biology. 288:309-316.
Medrano, J. V., C. Rombaut, C. Simon, A. Pellicer, and E. Goossens. 2016. Human spermatogonial stem cells display limited proliferation in vitro under mouse spermatogonial stem cell culture conditions. Fertil. Steril. 106:1539-+.
Meng, X. J., M. Lindahl, M. E. Hyvonen, M. Parvinen, D. G. de Rooij, M. W. Hess, A. Raatikainen-Ahokas, K. Sainio, H. Rauvala, M. Lakso, J. G. Pichel, H. Westphal, M. Saarma, and H. Sariola. 2000. Regulation of cell fate decision of undifferentiated spermatogonia by gdnf. Science. 287:1489-1493.
Nagano, M., M. R. Avarbock, E. B. Leonida, C. J. Brinster, and R. L. Brinster. 1998. Culture of mouse spermatogonial stem cells. Tissue & Cell. 30:389-397.
Nasiri, Z., S. M. Hosseini, M. Hajian, P. Abedi, M. Bahadorani, H. Baharvand, and M. H. Nasr-Esfahani. 2012. Effects of different feeder layers on short-term culture of prepubertal bovine testicular germ cells in-vitro. Theriogenology. 77:1519-1528.
Oakberg, E. F. 1957. Duration of spermatogenesis in the mouse. Nature. 180:1137-1138.
Oatley, J. M., M. R. Avarbock, and R. L. Brinster. 2007. Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on src family kinase signaling. Journal of Biological Chemistry. 282:25842-25851.
Oatley, J. M., M. R. Avarbock, A. I. Telaranta, D. T. Fearon, and R. L. Brinster. 2006. Identifying genes important for spermatogonial stem cell self-renewal and survival. Proceedings of the National Academy of Sciences of the United States of America. 103:9524-9529.
Oatley, J. M., and M. D. Griswold. 2017. The biology of mammalian spermatogonia. Springer.
Oatley, J. M., A. V. Kaucher, M. R. Avarbock, and R. L. Brinster. 2010. Regulation of mouse spermatogonial stem cell differentiation by stat3 signaling. Biol. Reprod. 83:427-433.
Onishi, K., and P. W. Zandstra. 2015. Lif signaling in stem cells and development. Development. 142:2230-2236.
Parekh, P. A., T. X. Garcia, and M.-C. Hofmann. 2019. Regulation of gdnf expression in sertoli cells. Reproduction. 157:R95-R107.
Pellegrini, M., P. Grimaldi, P. Rossi, R. Geremia, and S. Dolci. 2003. Developmental expression of bmp4/alk3/smad5 signaling pathway in the mouse testis: A potential role of bmp4 in spermatogonia differentiation. Journal of Cell Science. 116:3363-3372.
Perez-Sala, D., and A. Rebollo. 1999. Novel aspects of ras proteins biology: Regulation and implications. Cell Death and Differentiation. 6:722-728.
Pesce, M., X. Y. Wang, D. J. Wolgemuth, and H. Scholer. 1998. Differential expression of the oct-4 transcription factor during mouse germ cell differentiation. Mechanisms of Development. 71:89-98.
Phillips, B. T., K. Gassei, and K. E. Orwig. 2010. Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci. 365:1663-1678.
Piquet-Pellorce, C., I. Dorval-Coiffec, M. D. Pham, and B. Jegou. 2000. Leukemia inhibitory factor expression and regulation within the testis. Endocrinology. 141:1136-1141.
Pramod, R. K., and A. Mitra. 2014. In vitro culture and characterization of spermatogonial stem cells on sertoli cell feeder layer in goat (capra hircus). J. Assist Reprod Genet. 31:993-1001.
Reding, S. C., A. L. Stepnoski, E. W. Cloninger, and J. M. Oatley. 2010. Thy1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis. Reproduction. 139:893-903.
Sauzay, C., K. Voutetakis, A. Chatziioannou, E. Chevet, and T. Avril. 2019. Cd90/thy-1, a cancer-associated cell surface signaling molecule. Frontiers in Cell and Developmental Biology. 7
Schlatt, S., and J. Ehmcke. 2014. Regulation of spermatogenesis: An evolutionary biologist's perspective. Semin Cell Dev Biol. 29:2-16.
Schrans-Stassen, B., P. T. K. Saunders, H. J. Cooke, and D. G. de Rooij. 2001. Nature of the spermatogenic arrest in dazl -/- mice. Biol. Reprod. 65:771-776.
Schrans-Stassen, B., H. J. G. Van de Kant, D. G. De Rooij, and A. M. M. Van Pelt. 1999. Differential expression of c-kit in mouse undifferentiated and differentiating type a spermatogonia. Endocrinology. 140:5894-5900.
Shima, J. E., D. J. McLean, J. R. McCarrey, and M. D. Griswold. 2004. The murine testicular transcriptome: Characterizing gene expression in the testis during the progression of spermatogenesis. Biol. Reprod. 71:319-330.
Shinohara, T., M. R. Avarbock, and R. L. Brinster. 1999. Β1-and α6-integrin are surface markers on mouse spermatogonial stem cells. Proceedings of the National Academy of Sciences. 96:5504-5509.
Shinohara, T., Avarbock, M. R., and Brinster, R. L. 1999. B1- and a6-integrin are surface markers on mouse spermatogonial stem cells. Proceedings of the National Academy of Sciences. 96:5504-5509.
Silvan, U., A. Diez-Torre, P. Moreno, J. Arluzea, R. Andrade, M. Silio, and J. Arechaga. 2013. The spermatogonial stem cell niche in testicular germ cell tumors. Int J Dev Biol. 57:185-195.
Small, C. L., J. E. Shima, M. Uzumcu, M. K. Skinner, and M. D. Griswold. 2005. Profiling gene expression during the differentiation and development of the murine embryonic gonad. Biol. Reprod. 72:492-501.
Tournaye, H., G. R. Dohle, and C. L. R. Barratt. 2014. Fertility preservation in men with cancer. Lancet. 384:1295-1301.
Trupp, M., R. Scott, S. R. Whittemore, and C. F. Ibanez. 1999. Ret-dependent and -independent mechanisms of glial cell line-derived neurotrophic factor signaling in neuronal cells. Journal of Biological Chemistry. 274:20885-20894.
Tulina, N., and E. Matunis. 2001. Control of stem cell self-renewal in drosophila spermatogenesis by jak-stat signaling. Science. 294:2546-2549.
Valli, H., M. Sukhwani, S. L. Dovey, K. A. Peters, J. Donohue, C. A. Castro, T. Chu, G. R. Marshall, and K. E. Orwig. 2014. Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertil Steril. 102:566-580 e567.
Wittinghofer, A. 1998. Signal transduction via ras. Biological Chemistry. 379:933-937.
Yamamoto, T., S. Taya, and K. Kaibuchi. 1999. Ras-induced transformation and signaling pathway. Journal of Biochemistry. 126:799-803.
Yoon, S., and R. Seger. 2006. The extracellular signal-regulated kinase: Multiple substrates regulate diverse cellular functions. Growth Factors. 24:21-44.
Zheng, Y., Y. He, J. H. An, J. Z. Qin, Y. H. Wang, Y. Q. Zhang, X. E. Tian, and W. X. Zeng. 2014. Thy1 is a surface marker of porcine gonocytes. Reproduction Fertility and Development. 26:533-539.
Zhou, Q., and M. D. Griswold. 2008. Regulation of spermatogonia, Stembook, Cambridge (MA).
電子全文 電子全文(網際網路公開日期:20240824)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top