跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/30 22:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許文馨
研究生(外文):Wen-Hsin Hsu
論文名稱:性固醇類內泌素對牛子宮內膜上皮細胞之細胞激素調控
論文名稱(外文):Effects of sex steroids on the regulation of cytokines in bovine endometrial epithelial cells
指導教授:王建鎧
口試委員:唐品琦陳珠亮
口試日期:2021-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:75
中文關鍵詞:雌二醇孕酮子宮內膜上皮細胞細胞激素
外文關鍵詞:17β-EstradiolProgesteroneEndometrium epithelial cellCytokine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:67
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
上皮細胞為子宮內膜面對外來物的第一線接觸者,除了提供胚著床也是重要的免疫防線,具備物理性屏障外,還可分泌細胞激素 (Cytokines) 以啟動相關免疫反應。胚屬於半外來物 (Semi-allogeneic),母體透過啟動免疫耐受機制 (Immune tolerance) 接受胚的著床,然若有病原菌進入子宮腔,活化的免疫反應雖可避免感染,但也可能引起對胚的排斥,因而造成早期懷孕失敗。子宮主要受性固醇類內泌素調控,即雌二醇 (17β-Estradiol, E2) 與孕酮 (Progesterone, P4),兩者形成動情週期 (Estrus cycle) 中主要之內泌素,而牛隻早期胚損失 (Early embryonic loss) 主要發生在孕酮主導並輔以低濃度雌二醇的黃體期,但兩者對牛隻子宮生理調控意義目前尚未釐清。本研究目的為探討於黃體中前期之雌二醇及孕酮濃度對牛子宮內膜上皮細胞 (Bovine Endometrial Epithelial Cells, bEECs) 之細胞激素調控機制。試驗一,以黃體期之E2濃度 (50 pg/ml) 及黃體期前期與中期之P4濃度 (5, 10 ng/ml) 單獨或共同刺激bEECs 30小時模擬黃體期子宮環境,使Interleukin-8 (IL-8)、Macrophage colony-stimulating factor (CSF-1) 與Granulocyte-macrophage colony-stimulating factor (CSF-2) 基因表現受E2刺激增加約2倍,而這些基因可能與子宮重建相關。當E2與P4共同作用時,三者的表現皆低於2倍,分析顯示在上述三種基因調節上E2與P4具有拮抗效果,然E2卻有助提高P4受體 (Progesterone receptor, PR) 表現。推測黃體期E2與P4的拮抗作用為子宮重建與免疫耐受性兩種機制的轉換手段,而低劑量E2的存在可能透過上調PR,以協助P4調控子宮環境。試驗二,bEECs受模擬黃體期E2與P4濃度預處理 24小時後,加入 Lipopolysaccharide (LPS, 1 µg/ml) 培養6小時模擬體外感染。結果顯示促發炎激素Interleukin-1beta (IL-1β)、Interleukin-6 (IL-6) 與IL-8基因表現在LPS刺激後大量提高,然經E2 50 pg/ml與P4 10 ng/ml共同預處理後表現下調54%、48% 及62%,但CSF-2表現提高46%,推測P4及E2可降低LPS誘導的急性發炎反應外,還可能促進巨噬細胞往M1型巨噬細胞極化 (Polarization)。綜上所述,在黃體期P4可抑制E2促發炎效果,而E2可透過增加PR協助P4調控子宮環境,且兩者可協同下調LPS誘導之發炎反應,並可能藉由調節細胞激素去增強巨噬細胞之清除能力,以降低子宮中的炎症反應。最後,細胞激素主要的功能為傳遞訊號,未來試驗若能加入免疫細胞或子宮內膜基質細胞 (Endometrial stroma cells) 共同培養,將有助於進一步了解目前試驗中bEECs傳遞出的訊號在子宮環境中的意義。
Uterine endometrial epithelial cells form the frontline that not only accept embryo implantation but also defense microbial infection by forming a physical barrier and secreting pro-cytokines to activate relative immune responses. In order to accept the presence of embryo, a semi-allogeneic organism, the mechanism of maternal immune tolerance would be activated in endometrium. However, uterine lumen occasionally exposes to pathogen invasion, and activates immune functions to prevent infection, which may also result in rejection of embryo implantation and become one major reason of early pregnant failture. The uterine microenvironment is modulated by sex steroids, particularly 17β-estradiol (E2) and progesterone (P4), during estrous cycle. Since early embryonic loss occurs in the luteal phase dominated by P4 with low level E2, and the uterine physiological regulation has not been clarified, the present study is to investigate cytokine regulation under E2 and P4 levels similar to early to mid-luteal phase on bovine endometrial epithelial cells (bEECs). Experiment 1 was to examine the cytokines changes by E2 (50 pg/ml, in the luteal phase) and P4 (5 or 10 ng/ml, in the early and mid-luteal phase) individually or jointly stimulating bEECs for 30 hours. Interleukin-8 (IL-8)、macrophage colony-stimulating factor (CSF-1) and granulocyte-macrophage colony-stimulating factor (CSF-2) gene was increased by 2 times by E2, and these genes might be related to uterine remodeling. In E2 and P4 combined treatment, these E2 induced-gene expression were down-regulated to lower than 2 times. Analysis showed that E2 and P4 had antagonistic effect on these genes. And progesterone receptor (PR) expression was increased by E2. It was speculated that the antagonistic effect of E2 and P4 was for conversion from uterine remodeling to immune tolerance during luteal phase, and low level E2 might help P4 to regulate uterine environment by up-regulating PR. Experiment 2, the bEECs pretreated with E2 (50 pg/ml) and P4 (5 or 10 ng/ml) for 24 hours, and followed treatment of lipopolysaccharide (LPS, 1 µg/ml) for 6 hours to establish an inflammatory status. The pro-inflammatory cytokine interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and IL-8 were significantly up-regulated by LPS. However, the expressions were reduced respectively, 54%, 48% and 62% in P4 10 ng/ml and E2 50 pg/ml combined pretreatment, but CSF-2 was increased 46%. The results showed the LPS-induced pro-inflammatory cytokines expression were suppressed and the macrophages might be polarized to M1 macrophages under E2 and P4 control. In summary, the pro-inflammatory effect of E2 could be inhibited by P4, and E2 might assist P4 to regulate the uterine environment by stimulating PR during the luteal phase, then, LPS induced-inflammatory response could be down-regulated and the phagocytosis of macrophages might be enhanced by E2 and P4 collaboratively to reduce immune response in uterus. Finally, due to the main function of cytokines was to transmit signals, it would help to further understand the ture meaning of signals from bEECs in uterine enrironment under the co-culturing of bEECs and immune cells or endometrial stroma cells in future experiments.
中文摘要 i
Abstract iii
目次 v
表次 viii
圖次 ix
1. 前言 1
2. 文獻探討 2
2.1. 牛隻子宮內膜之構造與功能 2
2.2. 雌二醇 (17β-Estradiol, E2) 4
2.3. 孕酮 (Progesterone, P4) 5
2.4. 性固醇類內泌素受體 6
2.5. 性固醇類內泌素與免疫之交互作用 7
2.5.1. 子宮中的免疫細胞變化 8
2.5.2. 細胞激素 9
2.5.2.1. 介白素-1 β (Interleukin-1 beta, IL-1β) 9
2.5.2.2. 介白素-6 (Interleukin-6, IL-6) 9
2.5.2.3. 介白素-8 (Interleukin-8, IL-8) 10
2.5.2.4. 介白素-10 (Interleukin-10, IL-10) 11
2.5.2.5. 腫瘤壞死因子-α (Tumor necrosis factor-alpha, TNF-α) 11
2.5.2.6. 集落刺激因子 (Colony-stimulating factors, CSFs) 12
2.5.2.7. 單核球趨化蛋白-1 (Monocyte chemoattractant protein-1, MCP-1 ) 13
2.5.2.8. 白血球抑制因子 (Leukemia inhibitory factor, LIF) 14
2.6. 牛隻子宮感染與繁殖 14
2.7. 研究目的 15
3. 材料方法 17
3.1. 細胞培養 17
3.2. 性固醇類內泌素刺激 18
3.3. 脂多醣刺激 19
3.4. 抑制劑刺激 20
3.5. total RNA之萃取與反轉錄 20
3.6. 即時聚合酶鏈鎖反應 (Real-time polymerase chain reaction, qPCR) 21
3.7. Thiazolyl blue tetrazolium bromide 測定 24
3.8. 西方墨點法 (Western Blot) 24
3.8.1. 蛋白質萃取 24
3.8.2. 測量蛋白質含量 24
3.8.3. 蛋白質解構 25
3.8.4. 製膠與跑膠 25
3.8.5. 轉漬 (Transfer) 與封閉 (Blocking) 25
3.8.6. 抗體 26
3.9. 酵素免疫分析法 27
3.10. 統計方式 27
4. 結果 28
4.1. 雌二醇與孕酮對牛隻子宮內膜上皮細胞受體之影響 28
4.2. 雌二醇與孕酮對牛隻子宮內膜上皮細胞免疫之影響 30
4.3. 牛隻子宮內膜上皮細胞對不同時間點之LPS刺激反應與細胞存活率 33
4.4. 雌二醇與孕酮對牛隻子宮內膜上皮細胞調節LPS刺激之影響 35
4.5. ER作為雌二醇調節LPS刺激牛隻子宮內膜上皮細胞之重要性 43
5. 討論 45
5.1. 雌二醇與孕酮劑量對性固醇類內泌素受體表現之影響 45
5.2. 雌二醇與孕酮對細胞激素之影響 46
5.3. 雌二醇與孕酮調節LPS誘導之免疫反應 49
5.3.1. 雌二醇與孕酮下調LPS誘發之免疫反應 50
5.3.2. ER參與雌二醇調節LPS誘導之發炎 55
6. 結論 56
7. 參考文獻 58
Aisemberg, J., C. A. Vercelli, M. V. Bariani, S. C. Billi, M. L. Wolfson, and A. M. Franchi. 2013. Progesterone is essential for protecting against LPS-induced pregnancy loss. LIF as a potential mediator of the anti-inflammatory effect of progesterone. PloS one. 8(2):e56161.
Akira, S., K. Takeda, and T. Kaisho. 2001. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature immunology. 2(8):675-680.
Albrecht, E. D., J. S. Babischkin, Y. Lidor, L. D. Anderson, L. C. Udoff, and G. J. Pepe. 2003. Effect of estrogen on angiogenesis in co-cultures of human endometrial cells and microvascular endothelial cells. Hum. Reprod. 18(10):2039-2047.
Arai, M., S. Yoshioka, Y. Tasaki, and K. Okuda. 2013. Remodeling of bovine endometrium throughout the estrous cycle. Anim. Reprod. Sci. 142(1-2):1-9.
Arici, A., E. Seli, L. M. Senturk, L. S. Gutierrez, E. Oral, and H. S. Taylor. 1998. Interleukin-8 in the human endometrium. J. Clin. Endocrinol. Metab. 83(5):1783-1787.
Bartocci, A., J. Pollard, and E. Stanley. 1986. Regulation of colony-stimulating factor 1 during pregnancy. J. Exp. Med. 164(3):956-961.
Bazer, F. W., T. E. Spencer, G. A. Johnson, R. C. Burghardt, and G. Wu. 2009. Comparative aspects of implantation. Reproduction. 138(2):195-209.
Bettelli, E., Y. Carrier, W. Gao, T. Korn, T. B. Strom, M. Oukka, H. L. Weiner, and V. K. Kuchroo. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH 17 and regulatory T cells. Nature. 441(7090):235-238.
Bhurke, A. S., I. C. Bagchi, and M. K. Bagchi. 2016. Progesterone-Regulated Endometrial Factors Controlling Implantation. Am. J. Reprod. Immunol. 75(3):237-245.
Borges, A. M., G. D. Healey, and I. M. Sheldon. 2012. Explants of intact endometrium to model bovine innate immunity and inflammation ex vivo. Am. J. Reprod. Immunol. 67(6):526-539.
Butler, W. R. 2003. Energy balance relationships with follicular development, ovulation and fertility in postpartum dairy cows. Livest. Prod. Sci. 83(2-3):211-218.
Carswell, E. A., L. J. Old, R. L. Kassel, S. Green, N. Fiore, and B. Williamson. 1975. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA. 72(9):3666-3670.
Carter, A. M. 2007. Animal models of human placentation--a review. Placenta. 28 Suppl A:S41-47.
Carter, F., N. Forde, P. Duffy, M. Wade, T. Fair, M. A. Crowe, A. C. O. Evans, D. A. Kenny, J. F. Roche, and P. Lonergan. 2008. Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers. Reprod. Fertil. Dev. 20(3)
Chapwanya, A., K. G. Meade, M. L. Doherty, J. J. Callanan, and C. O'Farrelly. 2013. Endometrial epithelial cells are potent producers of tracheal antimicrobial peptide and serum amyloid A3 gene expression in response to E. coli stimulation. Vet. Immunol. Immunopathol. 151(1-2):157-162.
Cheng, J., G. Rosario, T. V. Cohen, J. Hu, and C. L. Stewart. 2017. Tissue-Specific Ablation of the LIF Receptor in the Murine Uterine Epithelium Results in Implantation Failure. Endocrinology. 158(6):1916-1928.
Couse, J. F., J. Lindzey, K. Grandien, J.-A. k. Gustafsson, and K. S. J. E. Korach. 1997. Tissue distribution and quantitative analysis of estrogen receptor-α (ERα) and estrogen receptor-β (ERβ) messenger ribonucleic acid in the wild-type and ERα-knockout mouse. Endocrinology. 138(11):4613-4621.
Cromwell, O., Q. Hamid, C. J. Corrigan, J. Barkans, Q. Meng, P. D. Collins, and A. B. Kay. 1992. Expression and generation of interleukin-8, IL-6 and granulocyte-macrophage colony-stimulating factor by bronchial epithelial cells and enhancement by IL-1 beta and tumour necrosis factor-alpha. Immunology. 77(3):330-337.
Cui, L., H. Wang, J. Lin, Y. Wang, J. Dong, J. Li, and J. Li. 2020. Progesterone inhibits inflammatory response in E.coli- or LPS-Stimulated bovine endometrial epithelial cells by NF-κB and MAPK pathways. Dev. Comp. Immunol. 105:103568.
Davidson, J., U. Tiemann, J. Betts, and P. Hansen. 1995. DNA synthesis and prostaglandin secretion by bovine endometrial cells as regulated by interleukin-1. Reprod. Fertil. Dev. 7(5):1037-1043.
Demir, R., A. Yaba, and B. Huppertz. 2010. Vasculogenesis and angiogenesis in the endometrium during menstrual cycle and implantation. Acta Histochem. 112(3):203-214.
Dey, S. K., H. Lim, S. K. Das, J. Reese, B. C. Paria, T. Daikoku, and H. Wang. 2004. Molecular Cues to Implantation. Endocr. Rev. 25(3):341-373.
Diehl, S., and M. Rincón. 2002. The two faces of IL-6 on Th1/Th2 differentiation. Mol. Immunol. 39(9):531-536.
Diener, K. R., S. A. Robertson, J. D. Hayball, and E. L. Lousberg. 2016. Multi-parameter flow cytometric analysis of uterine immune cell fluctuations over the murine estrous cycle. J. Reprod. Immunol. 113:61-67.
Dinarello, C. A. 2011. A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur. J. Immunol. 41(5):1203-1217.
Diskin, M. G., and D. G. Morris. 2008. Embryonic and early foetal losses in cattle and other ruminants. Reprod. Domest. Anim. 43 Suppl 2:260-267.
Dohmen, M., K. Joop, A. Sturk, P. Bols, and J. Lohuis. 2000. Relationship between intra-uterine bacterial contamination, endotoxin levels and the development of endometritis in postpartum cows with dystocia or retained placenta. Theriogenology. 54(7):1019-1032.
Emond, V., L. A. MacLaren, S. Kimmins, J. A. Arosh, M. A. Fortier, and R. D. Lambert. 2004. Expression of cyclooxygenase-2 and granulocyte-macrophage colony-stimulating factor in the endometrial epithelium of the cow is up-regulated during early pregnancy and in response to intrauterine infusions of interferon-tau. Biol. Reprod. 70(1):54-64.
Fahey, J. V., J. A. Wright, L. Shen, J. M. Smith, M. Ghosh, R. M. Rossoll, and C. R. Wira. 2008. Estradiol selectively regulates innate immune function by polarized human uterine epithelial cells in culture. Mucosal. Immunol. 1(4):317-325.
Fair, T. 2016. Embryo maternal immune interactions in cattle. Anim. Reprod. 13(3):346-354.
Farhi, J., A. Weissman, Z. Steinfeld, M. Shorer, H. Nahum, and D. Levran. 2000. Estradiol supplementation during the luteal phase may improve the pregnancy rate in patients undergoing in vitro fertilization-embryo transfer cycles. Fertil. Steril. 73(4):761-766.
Forde, N., F. Carter, T. Fair, M. A. Crowe, A. C. Evans, T. E. Spencer, F. W. Bazer, R. McBride, M. P. Boland, P. O'Gaora, P. Lonergan, and J. F. Roche. 2009. Progesterone-regulated changes in endometrial gene expression contribute to advanced conceptus development in cattle. Biol. Reprod. 81(4):784-794.
Forde, N., C. A. Simintiras, R. Sturmey, S. Mamo, A. K. Kelly, T. E. Spencer, F. W. Bazer, and P. Lonergan. 2014. Amino acids in the uterine luminal fluid reflects the temporal changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle. PLoS One. 9(6):e100010.
Fu, Y., B. Liu, X. Feng, Z. Liu, D. Liang, F. Li, D. Li, Y. Cao, S. Feng, X. Zhang, N. Zhang, and Z. Yang. 2013. Lipopolysaccharide increases Toll-like receptor 4 and downstream Toll-like receptor signaling molecules expression in bovine endometrial epithelial cells. Vet. Immunol. Immunopathol. 151(1-2):20-27.
Ghisletti, S., C. Meda, A. Maggi, and E. Vegeto. 2005. 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol. Cell Biol. 25(8):2957-2968.
Girling, J. E., F. L. Lederman, L. M. Walter, and P. A. Rogers. 2007. Progesterone, but not estrogen, stimulates vessel maturation in the mouse endometrium. Endocrinology. 148(11):5433-5441.
Gärtner, M. A., A. Bondzio, N. Braun, M. Jung, R. Einspanier, and C. Gabler. 2015. Detection and characterisation of Lactobacillus spp. in the bovine uterus and their influence on bovine endometrial epithelial cells in vitro. PLoS One. 10(3):e0119793.
Griffin, J. F. T., P. J. Hartigan, and W. R. Nunn. 1974. Non-specific uterine infection and bovine fertility: I. Infection patterns and endometritis during the first seven weeks post-partum. Theriogenology. 1(3):91-106.
Gruber, C. J., W. Tschugguel, C. Schneeberger, and J. C. Huber. 2002. Production and actions of estrogens. N. Engl. J. Med. 346(5):340-352.
Hamilton, J. A. 2008. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8(7):533-544.
Hamilton, K. J., Y. Arao, and K. S. Korach. 2014. Estrogen hormone physiology: reproductive findings from estrogen receptor mutant mice. Reprod. Biol. 14(1):3-8.
Hanamura, T., E. Asakura, and T. Tanabe. 1997. Macrophage colony-stimulating factor (M-CSF) augments cytokine induction by lipopolysaccharide (LPS)-stimulation and by bacterial infections in mice. Immunopharmacology. 37(1):15-23.
Hansen, T. R., L. D. P. Sinedino, and T. E. Spencer. 2017. Paracrine and endocrine actions of interferon tau (IFNT). Reproduction. 154(5):F45-F59.
Haworth, J. D., M. K. Rollyson, P. Silva, E. W. McIntush, and G. D. Niswender. 1998. Messenger ribonucleic acid encoding monocyte chemoattractant protein-1 is expressed by the ovine corpus luteum in response to prostaglandin F2alpha. Biol. Reprod. 58(1):169-174.
Healy, L. L., J. G. Cronin, and I. M. Sheldon. 2014. Endometrial cells sense and react to tissue damage during infection of the bovine endometrium via interleukin 1. Sci. Rep. 4:7060.
Healy, L. L., J. G. Cronin, and I. M. Sheldon. 2015. Polarized Epithelial Cells Secrete Interleukin 6 Apically in the Bovine Endometrium. Biol. Reprod. 92(6):151.
Henricks, D., J. Dickey, J. Hill, and W. J. E. Johnston. 1972. Plasma estrogen and progesterone levels after mating, and during late pregnancy and postpartum in cows. Endocrinology. 90(5):1336-1342.
Henricks, D. M., and A. K. Torrence. 1977. Endogenous estrogens in bovine tissues. J. Anim. Sci. 45(3):652-658.
Herath, S., D. P. Fischer, D. Werling, E. J. Williams, S. T. Lilly, H. Dobson, C. E. Bryant, and I. M. Sheldon. 2006. Expression and function of Toll-like receptor 4 in the endometrial cells of the uterus. Endocrinology. 147(1):562-570.
Hurst, S. M., T. S. Wilkinson, R. M. McLoughlin, S. Jones, S. Horiuchi, N. Yamamoto, S. Rose-John, G. M. Fuller, N. Topley, and S. A. Jones. 2001. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity. 14(6):705-714.
Hutchins, A. P., D. Diez, and D. Miranda-Saavedra. 2013. The IL-10/STAT3-mediated anti-inflammatory response: recent developments and future challenges. Brief. Funct. Genom. 12(6):489-498.
Jasper, M. J., K. P. Tremellen, and S. A. Robertson. 2007. Reduced expression of IL-6 and IL-1alpha mRNAs in secretory phase endometrium of women with recurrent miscarriage. J. Reprod. Immunol. 73(1):74-84.
Jones, T. C. 1996. The effect of granulocyte-macrophage colony stimulating factor (rGM-CSF) on macrophage function in microbial disease. Med. Oncol. 13(3):141-147.
Koch, A. E., P. J. Polverini, S. L. Kunkel, L. A. Harlow, L. A. DiPietro, V. M. Elner, S. G. Elner, and R. M. Strieter. 1992. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science. 258(5089):1798-1801.
Koga, K., Y. Osuga, O. Tsutsumi, T. Yano, O. Yoshino, Y. Takai, H. Matsumi, H. Hiroi, K. Kugu, M. Momoeda, T. Fujiwara, and Y. Taketani. 2001. Demonstration of Angiogenin in Human Endometrium and Its Enhanced Expression in Endometrial Tissues in the Secretory Phase and the Decidua. J. Clin. Endocrinol. Metab. 86(11):5609-5614.
Koh, Y. Q., M. D. Mitchell, F. B. Almughlliq, K. Vaswani, and H. N. Peiris. 2018. Regulation of inflammatory mediator expression in bovine endometrial cells: effects of lipopolysaccharide, interleukin 1 beta, and tumor necrosis factor alpha. Physiol. Rep. 6(9):e13676.
Kolaczkowska, E., and P. Kubes. 2013. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13(3):159-175.
Lee, R. S., N. Li, A. M. Ledgard, and J. W. Pollard. 2003. Dynamic regulation of expression of colony-stimulating factor 1 in the reproductive tract of cattle during the estrous cycle and in pregnancy. Biol. Reprod. 69(2):518-528.
Leonhardt, S. A., V. Boonyaratanakornkit, and D. P. Edwards. 2003. Progesterone receptor transcription and non-transcription signaling mechanisms. Steroids. 68(10-13):761-770.
Lessey, B. A., A. P. Killam, D. A. Metzger, A. F. Haney, G. L. Greene, and K. S. McCarty, Jr. 1988. Immunohistochemical analysis of human uterine estrogen and progesterone receptors throughout the menstrual cycle. J. Clin. Endocrinol. Metab. 67(2):334-340.
Liu, T., L. Zhang, D. Joo, and S. C. Sun. 2017. NF-kappaB signaling in inflammation. Signal. Transduct. Target. Ther. 2.
Loureiro, B., L. Bonilla, J. Block, J. M. Fear, A. Q. Bonilla, and P. J. Hansen. 2009. Colony-stimulating factor 2 (CSF-2) improves development and posttransfer survival of bovine embryos produced in vitro. Endocrinology. 150(11):5046-5054.
Luk, J., Y. Seval, M. Ulukus, E. C. Ulukus, A. Arici, and U. A. Kayisli. 2010. Regulation of monocyte chemotactic protein-1 expression in human endometrial endothelial cells by sex steroids: a potential mechanism for leukocyte recruitment in endometriosis. Reprod. Sci. 17(3):278-287.
Lukaszuk, K., J. Liss, M. Lukaszuk, and B. Maj. 2005. Optimization of estradiol supplementation during the luteal phase improves the pregnancy rate in women undergoing in vitro fertilization-embryo transfer cycles. Fertil. Steril. 83(5):1372-1376.
Ma, W., J. Tan, H. Matsumoto, B. Robert, D. R. Abrahamson, S. K. Das, and S. K. Dey. 2001. Adult tissue angiogenesis: evidence for negative regulation by estrogen in the uterus. Mol. Endocrinol. 15(11):1983-1992.
Mann, G. E., and G. E. Lamming. 1999. The Influence of Progesterone During Early Pregnancy in Cattle. Reprod. Domest. Anim. 34(3-4):269-274.
Mann, G. E., and G. E. Lamming. 2000. The role of sub-optimal preovulatory oestradiol secretion in the aetiology of premature luteolysis during the short oestrous cycle in the cow. Anim. Reprod. Sci. 64(3):171-180.
Martinez, F. O., A. Sica, A. Mantovani, and M. Locati. 2008. Macrophage activation and polarization. Front. Biosci. 13(1):453-461.
Medina-Estrada, I., N. Alva-Murillo, J. E. López-Meza, and A. Ochoa-Zarzosa. 2018. Immunomodulatory effects of 17β-estradiol on epithelial cells during bacterial infections. J. Immunol. Res. 6098961.
Medzhitov, R., and C. Janeway. 2000. Innate Immunity. N. Engl. J. Med. 343(5):338-344.
Meikle, A., L. Sahlin, A. Ferraris, B. Masironi, J. Blanc, M. Rodrı́guez-Irazoqui, M. Rodrıguez-Pinon, H. Kindahl, and M. Forsberg. 2001. Endometrial mRNA expression of oestrogen receptor α, progesterone receptor and insulin-like growth factor-I (IGF-I) throughout the bovine oestrous cycle. Anim. Reprod. Sci. 68(1-2):45-56.
Menzies, M., and A. Ingham. 2006. Identification and expression of Toll-like receptors 1-10 in selected bovine and ovine tissues. Vet. Immunol. Immunopathol. 109(1-2):23-30.
Metcalfe, S. M. 2011. LIF in the regulation of T-cell fate and as a potential therapeutic. Genes. Immun. 12(3):157-168.
Miyaura, H., and M. Iwata. 2002. Direct and indirect inhibition of Th1 development by progesterone and glucocorticoids. J. Immunol. 168(3):1087-1094.
Mo, X., G. Wu, D. Yuan, B. Jia, C. Liu, S. Zhu, and Y. Hou. 2014. Leukemia inhibitory factor enhances bovine oocyte maturation and early embryo development. Mol. Reprod. Dev. 81(7):608-618.
Mor, G., I. Cardenas, V. Abrahams, and S. Guller. 2011. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann. N. Y. Acad. Sci. 1221:80-87.
Mueller, M. D., D. I. Lebovic, E. Garrett, and R. N. Taylor. 2000. Neutrophils infiltrating the endometrium express vascular endothelial growth factor: potential role in endometrial angiogenesis. Fertil. Steril. 74(1):107-112.
Mulac-Jericevic, B., J. P. Lydon, F. J. DeMayo, and O. M. Conneely. 2003. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc. Natl. Acad. Sci. U.S.A. 100(17):9744-9749.
Mulac-Jericevic, B., R. A. Mullinax, F. J. DeMayo, J. P. Lydon, and O. M. Conneely. 2000. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science. 289(5485):1751-1754.
Nathan, M. R., and P. Schmid. 2017. A Review of Fulvestrant in Breast Cancer. Oncol. Ther. 5(1):17-29.
Nunes, P. P., T. D. M. Martins, A. C. Leite, E. B. M. Silva, T. A. da Paixao, R. L. Santos, and A. M. Borges. 2021. Production of IL-1beta, IL-6 and CXCL8 by endometrium of crossbred heifers stimulated with various pathogen-associated molecular patterns. Anim. Reprod. Sci. 228:106736.
O'Hara, L., N. Forde, F. Carter, D. Rizos, V. Maillo, A. D. Ealy, A. K. Kelly, P. Rodriguez, N. Isaka, A. C. Evans, and P. Lonergan. 2014. Paradoxical effect of supplementary progesterone between Day 3 and Day 7 on corpus luteum function and conceptus development in cattle. Reprod. Fertil. Dev. 26(2):328-336.
O'Hara, L., N. Forde, P. Duffy, F. Randi, A. K. Kelly, A. Valenza, P. Rodriguez, and P. Lonergan. 2016. Effect of combined exogenous progesterone with luteotrophic support via equine chorionic gonadotrophin (eCG) on corpus luteum development, circulating progesterone concentrations and embryo development in cattle. Reprod. Fertil. Dev. 28(3):269-277.
Ochiel, D. O., J. V. Fahey, M. Ghosh, S. N. Haddad, and C. R. Wira. 2008. Innate Immunity in the Female Reproductive Tract: Role of Sex Hormones in Regulating Uterine Epithelial Cell Protection Against Pathogens. Curr. Womens. Health. Rev. 4(2):102-117.
Okumu, L. A., N. Forde, A. G. Fahey, E. Fitzpatrick, J. F. Roche, M. A. Crowe, and P. Lonergan. 2010. The effect of elevated progesterone and pregnancy status on mRNA expression and localisation of progesterone and oestrogen receptors in the bovine uterus. Reproduction. 140(1):143-53.
Oliveira, L. J., and P. J. Hansen. 2008. Deviations in populations of peripheral blood mononuclear cells and endometrial macrophages in the cow during pregnancy. Reproduction. 136(4):481-490.
Oliveira, L. J., N. Mansouri-Attia, A. G. Fahey, J. Browne, N. Forde, J. F. Roche, P. Lonergan, and T. Fair. 2013. Characterization of the Th profile of the bovine endometrium during the oestrous cycle and early pregnancy. PLoS One. 8(10):e75571.
Osborne, C. K., A. Wakeling, and R. I. Nicholson. 2004. Fulvestrant: an oestrogen receptor antagonist with a novel mechanism of action. Br. J. Cancer. 90 Suppl 1:S2-6.
Oshima, K., H. Watanabe, K. Yoshihara, T. Kojima, O. Dochi, N. Takenouchi, M. Fukushima, and M. Komatsu. 2003. Gene expression of leukemia inhibitory factor (LIF) and macrophage colony stimulating factor (M-CSF) in bovine endometrium during early pregnancy. Theriogenology. 60(7):1217-1226.
Paula-Lopes, F. F., A. A. D. Moraes, and P. Hansen. 1999. The presence of interleukin-1beta in the bovine reproductive tract. J. Interferon Cytokine Res. 19(3):279-285.
Pawar, S., E. Starosvetsky, G. D. Orvis, R. R. Behringer, I. C. Bagchi, and M. K. Bagchi. 2013. STAT3 regulates uterine epithelial remodeling and epithelial-stromal crosstalk during implantation. Mol. Endocrinol. 27(12):1996-2012.
Pierro, E., F. Minici, O. Alesiani, F. Miceli, C. Proto, I. Screpanti, S. Mancuso, and A. Lanzone. 2001. Stromal-Epithelial Interactions Modulate Estrogen Responsiveness in Normal Human Endometrium1. Biol. Reprod. 64(3):831-838.
Pimentel, S., C. Pimentel, P. Weston, J. Hixon, and W. Wagner. 1986. Progesterone secretion by the bovine fetoplacental unit and responsiveness of corpora lutea to steroidogenic stimuli at two stages of gestation. Am. J. Vet. Res. 47(9):1967-1971.
Polese, B., V. Gridelet, E. Araklioti, H. Martens, S. Perrier d'Hauterive, and V. Geenen. 2014. The Endocrine Milieu and CD4 T-Lymphocyte Polarization during Pregnancy. Front. Endocrinol. (Lausanne) 5:106.
Rashid, M. B., A. K. Talukder, K. Kusama, S. Haneda, T. Takedomi, H. Yoshino, S. Moriyasu, M. Matsui, M. Shimada, K. Imakawa, and A. Miyamoto. 2018. Evidence that interferon-tau secreted from Day-7 embryo in vivo generates anti-inflammatory immune response in the bovine uterus. Biochem. Biophys. Res. Commun. 500(4):879-884.
Rekawiecki, R., M. K. Kowalik, and J. Kotwica. 2015. Cloning and expression of progesterone receptor isoforms A and B in bovine corpus luteum. Reprod. Fertil. Dev. 27(7):1029-1037.
Rivera, D. L., S. M. Olister, X. Liu, J. H. Thompson, X. J. Zhang, K. Pennline, R. Azuero, D. A. Clark, and M. J. Miller. 1998. Interleukin-10 attenuates experimental fetal growth restriction and demise. Faseb. J. 12(2):189-197.
Robertshaw, I., F. Bian, and S. K. Das. 2016. Mechanisms of uterine estrogen signaling during early pregnancy in mice: an update. J. Mol. Endocrinol. 56(3):R127-138.
Robertson, S. A., G. Mayrhofer, and R. F. Seamark. 1996. Ovarian steroid hormones regulate granulocyte-macrophage colony-stimulating factor synthesis by uterine epithelial cells in the mouse. Biol. Reprod. 54(1):183-196.
Rock, K. L., and H. Kono. 2008. The inflammatory response to cell death. Annu. Rev. Pathol. 3:99-126.
Romero, R., W. Sepulveda, M. Mazor, F. Brandt, D. B. Cotton, C. A. Dinarello, and M. D. Mitchell. 1992. The natural interleukin-1 receptor antagonist in term and preterm parturition. Am. J. Obstet. Gynecol. 167(4 Pt 1):863-872.
Sakumoto, R., K. G. Hayashi, S. Fujii, H. Kanahara, M. Hosoe, T. Furusawa, and K. Kizaki. 2017. Possible Roles of CC- and CXC-Chemokines in Regulating Bovine Endometrial Function during Early Pregnancy. Int. J. Mol. Sci. 18(4)
Sakumoto, R., N. Okamoto, O. M. Al-zi'abi, H. Okada, T. J. Acosta, D. J. Skarzynski, F. Sinowatz, and K. Okuda. 2009. Tumor Necrosis Factor-alpha Is Produced by Endometrial Epithelial Cells and Affects Stromal Cell Function as a Paracrine Regulator in Cattle. Biol. Reprod. 81 (Suppl_1):301-301.
Saut, J. P., G. D. Healey, A. M. Borges, and I. M. Sheldon. 2014. Ovarian steroids do not affect bovine endometrial cytokine or chemokine responses to Escherichia coli or LPS in vitro. Reproduction. 148(6):593-606.
Schaefer, T. M., K. Desouza, J. V. Fahey, K. W. Beagley, and C. R. Wira. 2004. Toll-like receptor (TLR) expression and TLR-mediated cytokine/chemokine production by human uterine epithelial cells. Immunology. 112(3):428-436.
Schaefer, T. M., J. A. Wright, P. A. Pioli, and C. R. Wira. 2005. IL-1beta-mediated proinflammatory responses are inhibited by estradiol via down-regulation of IL-1 receptor type I in uterine epithelial cells. J. Immunol. 175(10):6509-6516.
Scheller, J., A. Chalaris, D. Schmidt-Arras, and S. Rose-John. 2011. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta. 1813(5):878-888.
Scott, J. L., N. Ketheesan, and P. M. Summers. 2009. Spermatozoa and seminal plasma induce a greater inflammatory response in the ovine uterus at oestrus than dioestrus. Reprod. Fertil. Dev. 21(7):817-826.
Sheldon, I. M., J. Cronin, L. Goetze, G. Donofrio, and H. J. Schuberth. 2009. Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biol. Reprod. 81(6):1025-1032.
Sheldon, I. M., and M. H. Roberts. 2010. Toll-like receptor 4 mediates the response of epithelial and stromal cells to lipopolysaccharide in the endometrium. PLoS One. 5(9):e12906.
Silen, M. L., A. Firpo, S. Morgello, S. F. Lowry, and T. Francus. 1989. Interleukin-1 alpha and tumor necrosis factor alpha cause placental injury in the rat. Am. J. Pathol. 135(2):239-244.
Simintiras, C. A., J. M. Sanchez, M. McDonald, T. Martins, M. Binelli, and P. Lonergan. 2019. Biochemical characterization of progesterone-induced alterations in bovine uterine fluid amino acid and carbohydrate composition during the conceptus elongation windowdagger. Biol. Reprod. 100(3):672-685.
Skarzynski, D. J., M. M. Bah, K. M. Deptula, I. Woclawek-Potocka, A. Korzekwa, M. Shibaya, W. Pilawski, and K. Okuda. 2003. Roles of tumor necrosis factor-alpha of the estrous cycle in cattle: an in vivo study. Biol. Reprod. 69(6):1907-1913.
Spencer, T. E., and F. W. Bazer. 2002. Biology of progesterone action during pregnancy recognition and maintenance of pregnancy. Front. Biosci. 7(1-3):d1879-d1898.
Stewart, C. L., P. Kaspar, L. J. Brunet, H. Bhatt, I. Gadi, F. Köntgen, and S. J. Abbondanzo. 1992. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature. 359:76.
Straub, R. H. 2007. The complex role of estrogens in inflammation. Endocr. Rev. 28(5):521-574.
Sugiura, T., S. Akiyoshi, F. Inoue, Y. Yanagawa, M. Moriyoshi, M. Tajima, and S. Katagiri. 2018. Relationship between bovine endometrial thickness and plasma progesterone and estradiol concentrations in natural and induced estrus. J. Reprod. Dev. 2017-2139.
Svensson, J., M. C. Jenmalm, A. Matussek, R. Geffers, G. Berg, and J. Ernerudh. 2011. Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. J. Immunol. 187(7):3671-3682.
Tabibzadeh, S., Q. Kong, A. Babaknia, and L. May. 1995. Progressive rise in the expression of interleukin-6 in human endometrium during menstrual cycle is initiated during the implantation window. Mol. Hum. Reprod. 1(8):407-413.
Tabibzadeh, S., P. Satyaswaroop, M. Von Wolff, and T. Strowitzki. 1999. Regulation of TNF-α mRNA expression in endometrial cells by TNF-α and by oestrogen withdrawal. Mol. Hum. Reprod. 5(12):1141-1149.
Taggart, C. C., S. A. Cryan, S. Weldon, A. Gibbons, C. M. Greene, E. Kelly, T. B. Low, J. O'Neill S, and N. G. McElvaney. 2005. Secretory leucoprotease inhibitor binds to NF-kappaB binding sites in monocytes and inhibits p65 binding. J. Exp. Med. 202(12):1659-1668.
Takahashi, H., S. Haneda, M. Kayano, and M. Matsui. 2016. Differences in progesterone concentrations and mRNA expressions of progesterone receptors in bovine endometrial tissue between the uterine horns ipsilateral and contralateral to the corpus luteum. J. Vet. Med. Sci. 78(4):613-618.
Thaxton, J. E., and S. Sharma. 2010. Interleukin-10: a multi-faceted agent of pregnancy. Am. J. Reprod. Immunol. 63(6):482-491.
Tibbetts, T. A., O. M. Conneely, and B. W. O'Malley. 1999. Progesterone via its receptor antagonizes the pro-inflammatory activity of estrogen in the mouse uterus. Biol. Reprod. 60(5):1158-1165.
Toder, V., A. Fein, H. Carp, and A. Torchinsky. 2003. TNF-α in pregnancy loss and embryo maldevelopment: a mediator of detrimental stimuli or a protector of the fetoplacental unit? J. Assist. Reprod. Genet. 20(2):73-81.
Townson, D. H., C. L. O’Connor, and J. K. Pru. 2002. Expression of monocyte chemoattractant protein-1 and distribution of immune cell populations in the bovine corpus luteum throughout the estrous cycle. Biol. Reprod. 66(2):361-366.
Troedsson, M. 1997. Therapeutic considerations for mating-induced endometritis. Pferdeheilkunde Equine Medicine. 13:516-520.
Tsai, M.-J., and B. W. O'Malley. 1994. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 63(1):451-486.
Ushach, I., and A. Zlotnik. 2016. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J. Leukoc. Biol. 100(3):481-489.
Von Wolff, M., I. Classen-Linke, D. Heid, C. Krusche, K. Beier-Hellwig, C. Karl, and H. Beier. 1999. Tumour necrosis factor-α (TNF-α) in human endometrium and uterine secretion: an evaluation by immunohistochemistry, ELISA and semiquantitative RT–PCR. Mol. Hum. Reprod. 5(2):146-152.
Wang, J. M., S. Colella, P. Allavena, and A. Mantovani. 1987. Chemotactic activity of human recombinant granulocyte-macrophage colony-stimulating factor. Immunology. 60(3):439-444.
Wang, W., N. Sung, A. Gilman-Sachs, and J. Kwak-Kim. 2020. T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses:Th1/Th2/Th9/Th17/Th22/Tfh Cells. Front. Immunol. 11:2025-2025.
Wen, L., L.-H. Chen, H.-Y. Li, S.-P. Chang, C.-Y. Liao, K.-H. Tsui, Y.-J. Sung, and K.-C. Chao. 2009. Roles of Estrogen and Progesterone in Endometrial Hemodynamics and Vascular Endothelial Growth Factor Production. J. Chin. Med. Assoc. 72(4):188-193.
Wira, C. R., J. V. Fahey, M. Ghosh, M. V. Patel, D. K. Hickey, and D. O. Ochiel. 2010. Sex hormone regulation of innate immunity in the female reproductive tract: the role of epithelial cells in balancing reproductive potential with protection against sexually transmitted pathogens. Am. J. Reprod. Immunol. 63(6):544-565.
Wira, C. R., K. S. Grant‐Tschudy, and M. A. Crane‐Godreau. 2005. Epithelial cells in the female reproductive tract: a central role as sentinels of immune protection. Am. J. Reprod. Immunol. 53(2):65-76.
Wira, C. R., M. Rodriguez-Garcia, and M. V. Patel. 2015. The role of sex hormones in immune protection of the female reproductive tract. Nat. Rev. Immunol. 15(4):217-230.
Wira, C. R., and R. M. Rossoll. 1995. Antigen-presenting cells in the female reproductive tract: influence of the estrous cycle on antigen presentation by uterine epithelial and stromal cells. Endocrinology. 136(10):4526-4534.
Wira, C. R., and C. P. Sandoe. 1980. Hormonal regulation of immunoglobulins: influence of estradiol on immunoglobulins A and G in the rat uterus. Endocrinology. 106(3):1020-1026.
Xiao, C., and A. Goff. 1999. Hormonal regulation of oestrogen and progesterone receptors in cultured bovine endometrial cells. Reproduction. 115(1):101-109.
Yadav, A., V. Saini, and S. Arora. 2010. MCP-1: chemoattractant with a role beyond immunity: a review. Clin. Chim. Acta. 411(21-22):1570-1579.
Yan, L., R. Robinson, Z. Shi, and G. Mann. 2016. Efficacy of progesterone supplementation during early pregnancy in cows: A meta-analysis. Theriogenology. 85(8):1390-1398.e1391.
Yang, Z.-M., D.-B. Chen, S.-P. Le, and M. J. K. Harper. 1996. Differential hormonal regulation of leukemia inhibitory factor (LIF) in rabbit and mouse uterus. Mol. Reprod. Dev. 43(4):470-476.
Zarmakoupis, P. N., S. E. Rier, G. B. Maroulis, and J. L. Becker. 1995. Uterus and endometrium: inhibition of human endometrial stromal cell proliferation by interleukin 6. Hum. Reprod. 10(9):2395-2399.
Zarrin, M., O. Wellnitz, H. A. van Dorland, and R. M. Bruckmaier. 2014. Induced hyperketonemia affects the mammary immune response during lipopolysaccharide challenge in dairy cows. J. Dairy Sci. 97(1):330-339.
Zollers, W., H. Garverick, M. Smith, R. Moffatt, B. Salfen, and R. Youngquist. 1993. Concentrations of progesterone and oxytocin receptors in endometrium of postpartum cows expected to have a short or normal oestrous cycle. Reproduction. 97(2):329-337.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊