跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/22 00:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李家緯
研究生(外文):Chia-Wei Lee
論文名稱:分數階代理滑模控制之氣壓肌肉驅動柔性機械手臂設計
論文名稱(外文):Design of a Pneumatic-Muscle-Driven Flexible Manipulator Using Fractional-Order Proxy-Based Sliding Mode Control
指導教授:李聯旺李聯旺引用關係
口試委員:蔣欣翰李宜勳盧建余
口試日期:2021-07-06
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:123
中文關鍵詞:串聯機械手臂氣壓肌肉致動器新型代理滑模控制分數階微積分分數階擴張觀測器分數階直接型Lyapunov 穩定準則
外文關鍵詞:ManipulatorPneumatic-muscle actuatorNovel Proxy-based sliding mode controlFractional calculusFractional-order extended state observerFractional-order Lyapunov direct method
相關次數:
  • 被引用被引用:2
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文結合串聯機械手臂工作空間大與氣壓肌肉致動器具備順應性的優點,旨在研製具備順應性之六自由度串聯機械手臂,並進行低能量消耗之安全性控制器的設計。為了改善實驗室原有氣壓肌肉仿人機械手臂功率重量比低及工作空間小的問題,本研究在結構設計部分,以碳纖維管作為上下臂之骨架,重新設計手臂各個關節之驅動方式,以增加手臂的工作空間及降低整體手臂的重量。在運動學分析方面,本研究採用Denavit-Hartenberg座標變換法求解手臂的正逆向運動學方程,並進行工作空間分析與終端軌跡驗證,以確保系統設計可以滿足手臂所需的工作範圍。在控制器設計部分,為提高氣壓肌肉驅動之六自由度串聯機械手臂的控制性能及降低其能量消耗,本研究在實驗室所提出具備安全性能之新型代理滑模控制(Novel-Proxy-Based Sliding Mode Control, NPSMC)的基礎下,導入具有流體特性之分數階微積分,基於分數階擴張觀測器(Fractional Order Extended State Observer, FOESO)提出分數階代理滑模控制(Fractional Order-Proxy-Based Sliding Mode Control, FOPSMC)的設計方法,並以分數階直接型Lyapunov穩定準則證明所設計控制器的穩定性。在實驗部分,本論文除了重新研製一台具備順應性之六自由度串聯機械手臂外,亦分別將NPSMC與FOESO-FOPSMC應用在具備順應性之六自由度串聯機械手臂的運動控制上,實驗結果顯示,相較於原有的氣壓肌肉仿人機械手臂,重新優化設計具備順應性之六自由度串聯機械手臂具有較大的功率重量比與工作空間,而且在FOESO-FOPSMC的補償下,其軌跡追蹤精度與能量消耗均優於NPSMC的補償。
This study combined the advantages of a serial manipulator and a pneumatic muscle actuator—large workspace and compliance, respectively—in an attempt to develop a compliant six-degree-of-freedom (6-DOF) serial manipulator and design an energy-efficient safety controller. To improve problems of low power-to-weight ratio and limited workspace observed in the laboratory’s existing pneumatic muscle manipulators, this study used carbon fiber tubes for the structural framework of the manipulator and redesigned the driving method for each joint of the manipulator, thereby increasing the workspace and reducing the overall weight of the manipulator. In terms of kinematics analysis, this study applied Denavit-Hartenberg transformation matrix to solve the forward and inverse kinematics equations of the manipulator and to analyze the workspace and verify the terminal trajectory. By doing so, this study ensured that the system designed met the desired workspace of the manipulator. In terms of controller design, the objective was to improve the control of the 6-DOF serial manipulator driven by pneumatic muscles and reduce its energy consumption. This study incorporated fractional calculus characterized by fluid properties into a safe and novel proxy-based sliding mode control (NPSMC) proposed at the laboratory. The design method of fractional-order proxy-based sliding mode control (FOPSMC) was proposed based on a fractional-order extended state observer (FOESO). Fractional-order Lyapunov direct method was applied to verify the stability of the designed controller. With regard to the experiment, this study reformulated a compliant 6-DOF serial manipulator by applying NPSMC and FOESO-FOPSMC for manipulator motion control. According to the experimental results, the optimized design of the compliant 6-DOF serial manipulator demonstrated a higher power-to-weight ratio and larger workspace compared with the original pneumatic muscle actuator. Trajectory tracking accuracy and energy efficiency were superior under the compensation of FOESO-FOPSMC than under the compensation of NPSMC.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
符號說明 x
第一章 緒論 1
1.1前言 1
1.2文獻回顧 2
1.2.1氣壓肌肉致動器的應用 2
1.2.2 分數階控制發展 4
1.2.3 代理滑模控制 5
1.2.4 干擾抑制的控制對策與應用 7
1.3 研究動機與目的 8
1.4 論文架構 10
第二章 系統架構與實驗設備 11
2.1實驗系統架構 11
2.2 柔性機械手臂設計與分析 15
2.2.1 關節驅動設計 15
2.2.2 手臂結構設計 18
2.3 氣壓肌肉致動系統 22
2.4 嵌入式控制器系統 24
第三章 系統數學模型 28
3.1 氣壓肌肉致動器特性數學模型 28
3.2手臂關節數學模型 30
3.2.1肩關節外展運動數學模型 31
3.2.2屈曲旋轉關節數學模型 33
第四章 運動學分析 36
4.1 正向運動學 36
4.2 逆向運動學 42
4.3 工作空間分析與終端軌跡驗證 46
第五章 控制器設計 51
5.1 分數階微積分 51
5.1.1分數階微積分定義與性質 51
5.1.2分數階微積分之離散表示法 55
5.2 代理滑模控制 60
5.3 線性擴張觀測器 63
5.4 新型代理滑模控制 66
5.5 基於分數階擴張觀測器之分數階代理滑模控制 69
5.5.1 分數階擴張觀測器 70
5.5.2 分數階代理滑模控制 73
5.5.3 穩定性分析 77
第六章 實驗結果 80
6.1單關節軌跡追蹤控制 81
6.1.1肩關節五階軌跡 81
6.1.2肘關節五階軌跡 85
6.1.3腕關節五階軌跡 88
6.2手臂負載實驗 91
6.3控制器安全性測試 104
6.3.1安全係數實驗 104
6.3.2正弦軌跡安全性實驗 107
6.4基於氣壓肌肉致動器驅動之柔性機械手臂運動控制 109
第七章 結論與未來展望 116
7.1 結論 116
7.2未來展望 117
參考文獻 118
[1]J. Battaglia, J. C. Batsale, L. Le Lay, A. Oustaloup, and O. Cois, "Heat flux estimation through inverted non-integer identification models; Utilisation de modeles d'identification non entiers pour la resolution de problemes inverses en conduction," International Journal of Thermal Sciences, vol. 39, no. 3, pp.374-389, 2000.
[2]J. E. Takosoglu, P. A. Laski, S. Blasiak, G. Bracha, and D. Pietrala, "Determining the static characteristics of pneumatic muscles," Measurement and Control, vol. 49, no. 2, pp. 62-71, 2016.
[3]R. H. Gaylord, "Fluid actuated motor system and stroking device," US Patent 2,844,126, 1958.
[4]B. Kalita and S. Dwivedy, "Nonlinear dynamics of a parametrically excited pneumatic artificial muscle (PAM) actuator with simultaneous resonance condition," Mechanism and Machine Theory, vol. 135, pp. 281-297, 2019.
[5]EPW, "Rubber muscles take robotics one step further," Rubber Development, vol. 37, no. 4, pp. 117-119, 1984.
[6]S. R. Company. Shadow Dexterous Robot Hand Technical Specification https://www.shadowrobot.com/
[7]A. Hitzmann, H. Masuda, S. Ikemoto, and K. Hosoda, "Anthropomorphic musculoskeletal 10 degrees-of-freedom robot arm driven by pneumatic artificial muscles," Advanced Robotics, vol. 32, no. 15, pp. 865-878, 2018.
[8]Innophys. "Muscle Suit." https://innophys.jp/.
[9]B. Tondu, V. Boitier, and P. Lopez, "Naturally compliant robot-arms actuated by McKibben artificial muscles," Proceedings of IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2635-2640, 1994.
[10]K. E. Gordon, G. S. Sawicki, and D. P. Ferris, "Mechanical performance of artificial pneumatic muscles to power an ankle–foot orthosis," Journal of biomechanics, vol. 39, no. 10, pp. 1832-1841, 2006.
[11]H. Al-Fahaam, S. Davis, and S. Nefti-Meziani, "Wrist rehabilitation exoskeleton robot based on pneumatic soft actuators," International Conference for Students on Applied Engineering (ICSAE), pp. 491-496,2016.
[12]劉書維,穿戴式腰部輔助外骨骼系統設計與控制,碩士論文,國立中興大學機械工程學系,台中市,2020。
[13]G. Andrikopoulos and G. Nikolakopoulos, "Design, development and control of a human-inspired two-arm robot via Pneumatic Artificial Muscles,"25th Mediterranean Conference on Control and Automation (MED), pp. 241-246, 2017.
[14]G. K. H. S. L. Das, B. Tondu, F. Forget, J. Manhes, O. Stasse, and P. Souères, "Performing Explosive motions using a multi-joint arm actuated by pneumatic muscles with quasi-DDP optimal control," IEEE Conference on Control Applications (CCA), pp. 1104-1110, 2016.
[15]D. Gong, R. He, Y. Wang, and J. Yu, "Bionic Design of a 7-DOF Human-arm-like Manipulator Actuated by Antagonized Pneumatic Artificial Muscles,"IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 1503-1508, 2019.
[16]ShadowHand. https://en.wikipedia.org/wiki/Shadow_Hand.
[17]C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue, and V. Feliu-Batlle, Fractional-order systems and controls: fundamentals and applications. Springer Science & Business Media, 2010.
[18]M. Riesz, "L'intégrale de Riemann-Liouville et le problème de Cauchy," Acta mathematica, vol. 81, pp. 1-222, 1949.
[19]T. Abdeljawad, "On Riemann and Caputo fractional differences," Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1602-1611, 2011.
[20]B. B. Mandelbrot and B. B. Mandelbrot, The fractal geometry of nature. WH Freeman New York, 1982.
[21]A. Oustaloup, J. Sabatier, and P. Lanusse, "From fractal robustness to the CRONE control," Fractional Calculus and Applied Analysis, vol. 2, no. 1, pp. 1-30, 1999.
[22]I. Podlubny, "Fractional-order systems and controllers," IEEE Transactions on automatic control, vol. 44, no. 1, pp. 208-214, 1999.
[23]H. Ren, J. Fan, and O. Kaynak, "Optimal design of a fractional-order proportional-integer-differential controller for a pneumatic position servo system," IEEE Transactions on Industrial Electronics, vol. 66, no. 8, pp. 6220-6229, 2018.
[24]丁攀,分數階自抗擾控制器的設計與應用,碩士論文,北京化工大學控制科學與工程,北京市,2016。
[25]H. Ren, X. Wang, J. Fan, and O. Kaynak, "Fractional order sliding mode control of a pneumatic position servo system," Journal of the Franklin Institute, vol. 356, no. 12, pp. 6160-6174, 2019.
[26]Q. Gao, Y. Hou, J. Liu, R. Hou, M. Lv, L. Wang, and C. Wang "An Extended State Observer Based Fractional Order Sliding‐Mode Control for a Novel Electro‐Hydraulic Servo System with Iso‐Actuation Balancing and Positioning," Asian Journal of Control, vol. 21, no. 1, pp. 289-301, 2019.
[27]R. Kikuuwe and H. Fujimoto, "Proxy-based sliding mode control for accurate and safe position control," IEEE International Conference on Robotics and Automation, pp. 25-30, 2006.
[28]M. Van Damme, B. Vanderborght, B. Verrelst, R. Van Ham, F. Daerden, and D. Lefeber, "Proxy-based sliding mode control of a planar pneumatic manipulator," The International Journal of Robotics Research, vol. 28, no. 2, pp. 266-284, 2009.
[29]G. Gu, L. Zhu, C. Su, H. Ding, and S. Fatikow, "Proxy-based sliding-mode tracking control of piezoelectric-actuated nanopositioning stages," IEEE/ASME Transactions on Mechatronics, vol. 20, no. 4, pp. 1956-1965, 2014.
[30]N. Kashiri, N. G. Tsagarakis, M. Van Damme, B. Vanderborght, and D. G. Caldwell, "Proxy-based sliding mode control of compliant joint manipulators," Informatics in Control, Automation and Robotics, pp. 241-257, 2016.
[31]R. Kikuuwe, "Sliding motion accuracy of proxy-based sliding mode control subjected to measurement noise and disturbance," European Journal of Control, vol. 58, pp. 114-122, 2021.
[32]G. Ding, J. Huang, and Y. Cao, "Proxy Based Sliding Mode Control for a Class of Second-Order Nonlinear Systems,"International Conference on Intelligent Robotics and Applications, pp. 879-888, 2017.
[33]曾子軒,氣壓肌肉致動器與馬達混合驅動之多關節機械手臂設計與控制,碩士論文,國立中興大學機械工程學系,台中市,2020。
[34]J. Huang, Y. Cao, and Y.-W. Wang, "Adaptive proxy-based sliding mode control for a class of second-order nonlinear systems and its application to pneumatic muscle actuators," ISA transactions, 2020.
[35]H. F. Al-Shuka, "Proxy-Based Sliding Mode Vibration Control with an Adaptive Approximation Compensator for Euler-Bernoulli Smart Beams." Journal Européen des Systèmes Automatisés, vol. 53, no. 6, pp. 825-834, 2020.
[36]D. Luenberger, "An introduction to observers," IEEE Transactions on automatic control, vol. 16, no. 6, pp. 596-602, 1971.
[37]S. V. Drakunov, "Sliding-mode observers based on equivalent control method," Proceedings of the 31st IEEE Conference on Decision and Control, pp. 2368-2369, 1992.
[38]C. Hua, C. Yu, and X. Guan, "Neural network observer-based networked control for a class of nonlinear systems," Neurocomputing, vol. 133, pp. 103-110, 2014.
[39]H. S. Kang, Y. Lee, C. H. Hyun, H. Lee, and M. Park, "Design of sliding-mode control based on fuzzy disturbance observer for minimization of switching gain and chattering," Soft Computing, vol. 19, no. 4, pp. 851-858, 2015.
[40]T. Umeno, T. Kaneko, and Y. Hori, "Robust servosystem design with two degrees of freedom and its application to novel motion control of robot manipulators," IEEE Transactions on Industrial Electronics, vol. 40, no. 5, pp. 473-485, 1993.
[41]P. K. Jamwal, S. Q. Xie, S. Hussain, and J. G. Parsons, "An adaptive wearable parallel robot for the treatment of ankle injuries," IEEE/ASME Transactions on mechatronics, vol. 19, no. 1, pp. 64-75, 2012.
[42]Y. Cao, J. Huang, D. Wu, M. Zhang, C. Xiong, and Z. Li, "Integration of Nonlinear Disturbance Observer within Proxy-based Sliding Mode Control for Pneumatic Muscle Actuators," arXiv, 2019.
[43]韓京清,一類不確定對象的擴張狀態觀測器,控制與決策,第10卷,第1期,第85-88頁,1995。
[44]L. A. Castañeda, A. Luviano-Juárez, and I. Chairez, "Robust trajectory tracking of a delta robot through adaptive active disturbance rejection control," IEEE Transactions on Control Systems Technology, vol. 23, no. 4, pp. 1387-1398, 2014.
[45]Z. Gao, "Scaling and bandwidth-parameterization based controller tuning," Proceedings of the American control conference, vol. 6, pp. 4989-4996, 2006.
[46]X. Shao, J. Liu, H. Cao, C. Shen, and H. Wang, "Robust dynamic surface trajectory tracking control for a quadrotor UAV via extended state observer," International Journal of Robust and Nonlinear Control, vol. 28, no. 7, pp. 2700-2719, 2018.
[47]H. Yang, Y. Yu, and J. Zhang, "Angle tracking of a pneumatic muscle actuator mechanism under varying load conditions," Control Engineering Practice, vol. 61, pp. 1-10, 2017.
[48]W. Xue, W. Bai, S. Yang, K. Song, Y. Huang, and H. Xie, "ADRC with adaptive extended state observer and its application to air–fuel ratio control in gasoline engines," IEEE Transactions on Industrial Electronics, vol. 62, no. 9, pp. 5847-5857, 2015.
[49]陳增強,劉俊傑,孫明瑋,一種新型控制方法—自抗擾控制技術及其工程應用綜述,智能系統學報,第13卷,第6期,第865-877頁,2018.
[50]M. Li, D. Li, J. Wang, and C. Zhao, "Active disturbance rejection control for fractional-order system," ISA transactions, vol. 52, no. 3, pp. 365-374, 2013.
[51]Z. Gao, "Active disturbance rejection control for nonlinear fractional‐order systems," International Journal of Robust and Nonlinear Control, vol. 26, no. 4, pp. 876-892, 2016.
[52]肌肉類型與肌肉纖維. http://www.hkpe.net/hkdsepe/human_body/muscle_muscle_fiber_types.htm.
[53]FESTO. DMSP型氣壓肌肉 https://www.festo.com/tw/zh/
[54]FESTO. MAS型氣壓肌肉 https://www.festo.com/tw/zh/
[55]Kübler. 8.KIH40.5442.1024 https://www.kuebler.com/en/
[56]N. Instruments. cRIO-9040 https://www.ni.com/pdf/product-flyers/compactrio-controller.pdf
[57]N. Instruments. NI-介面卡 https://www.ni.com/zh-tw.html
[58]隋立明,包鋼,王祖溫,氣動人工肌肉改進模型研究,液壓氣動與密封,第二卷,第1-4頁,2002。
[59]W. Khalil and E. Dombre, Modeling, identification and control of robots. Butterworth-Heinemann, 2004.
[60]H. Wang, X. Lu, W. Cui, Z. Zhang, Y. Li, and C. Sheng, "General inverse solution of six-degrees-of-freedom serial robots based on the product of exponentials model," Assembly Automation, vol. 38, no. 3, pp. 361-367, 2018.
[61]L. Yang and G. Zhang, "An Analytic Solution Study for a 7-DOF Redundant Robot Manipulator," IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 1057-1061, 2018.
[62]薛定宇,分數階微積分學與分數階控制,科學出版社,北京市,2018。
[63]李文,趙慧敏,分數階控制器控制器設計方法與振動抑制性能研究,科學出版社,北京市,2014。
[64]廖曉鐘,高哲,分數階系統性分析與魯棒控制科學出版社,北京市,2016。
[65]B. Vinagre, I. Podlubny, A. Hernandez, and V. Feliu, "Some approximations of fractional order operators used in control theory and applications," Fractional calculus and applied analysis, vol. 3, no. 3, pp. 231-248, 2000.
[66]A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot, "Frequency-band complex noninteger differentiator: characterization and synthesis," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, no. 1, pp. 25-39, 2000.
[67]D. Xue, C. Zhao, and Y. Chen, "A modified approximation method of fractional order system," International conference on mechatronics and automation, pp. 1043-1048, 2006.
[68]R. Kikuuwe, S. Yasukouchi, H. Fujimoto, and M. Yamamoto, "Proxy-based sliding mode control: a safer extension of PID position control," IEEE Transactions on Robotics, vol. 26, no. 4, pp. 670-683, 2010.
[69]Y. Liu, T. Kung, K. Chang, and S. Chen, "Observer-based adaptive sliding mode control for pneumatic servo system," Precision Engineering, vol. 37, no. 3, pp. 522-530, 2013.
[70]D. Matignon, "Stability properties for generalized fractional differential systems," ESAIM: proceedings, vol. 5, pp. 145-158, 1998.
[71]N. Aguila-Camacho, M. A. Duarte-Mermoud, and J. A. Gallegos, "Lyapunov functions for fractional order systems," Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 9, pp. 2951-2957, 2014.
[72]M. D. Patil, V. A. Vyawahare, and M. K. Bhole, "A new and simple method to construct root locus of general fractional-order systems," ISA transactions, vol. 53, no. 2, pp. 380-390, 2014.
[73]D. Matignon, "Stability results for fractional differential equations with applications to control processing," Computational engineering in systems applications, vol. 2, no. 1, pp. 963-968, 1996.
[74]J. Huang, P. Ma, G. Bao, F. Gao, and X. Shi, "Research on Position Servo System Based on Fractional-Order Extended State Observer," IEEE Access, vol. 8, pp. 102748-102756, 2020.
[75]Q. Zheng, L. Q. Gaol, and Z. Gao, "On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics,"46th IEEE conference on decision and control, pp. 3501-3506, 2007.
[76]M. Yazdani, G. Gamble, G. Henderson, and R. Hecht-Nielsen, "A simple control policy for achieving minimum jerk trajectories," Neural Networks, vol. 27, pp. 74-80, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top