跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/03 08:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周民權
研究生(外文):Min-Chuan Chou
論文名稱:腎損傷標記蛋白-嗜中性白血球明膠酶相關脂質運載蛋白之電化學檢測平台開發
論文名稱(外文):The development of Kidney injury protein marker - neutrophil gelatinase-associated lipocalin electrochemical detection platform
指導教授:王國禎
口試委員:徐維莉范育睿
口試日期:2021-07-13
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:60
中文關鍵詞:奈/微米複合結構金電極電化學免疫生物感測器腎臟損傷嗜中性白血球明膠酶相關脂質運載蛋白(NGAL)電化學阻抗分析(EIS)
外文關鍵詞:nano/micron hybrid structure gold electrodeelectrochemical immunosensorneutrophil gelatinase-associated lipocalin (NGAL)kidney injuryElectrochemical Impedance Spectroscopy (EIS)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
腎臟損傷為動物常見的疾病之一,儘管目前的醫療科技發展快速,依然無法有效的檢測,故需找出方便即時檢測之方法用於腎臟疾病嚴重性評估和臨床應用。本研究開發出一種奈/微米複合結構生物感測電極,應用於無標記檢測嗜中性白血球明膠酶相關脂質運載蛋白(Neutrophil gelatinase-associated lipocalin, NGAL)。本研究先以黃光微影技術於矽基板上製作微米半球結構陣列母模,再以電鑄法製作鎳模具,接著利用熱壓印將微米半球結構熱壓印於聚對苯二甲酸乙二酯 (polyethylene terephthalate, PET)上,再於微米半球結構陣列上濺鍍一層金薄膜後,以自組裝的方式將帶有硫基的醇類化合物1,6-hexanedithol與奈米金顆粒依序均勻沉積於PET試片上,形成奈/微米複合結構生物感測電極,接附NGAL抗體後以電化學阻抗分析法(Electrochemical Impedance Spectroscopy, EIS)量測NGAL濃度。實驗結果結果顯示本研究所提出之方法可檢測NGAL濃度之線性範圍為5 ng/mL至100 ng/mL,線性度為0.986,檢測極限為1.286 ng/mL,檢測時間約為2分鐘。相較於傳統的酵素結合免疫吸附分析法(Enzyme-linked immunosorbent assay, ELISA),本研究之方法具有不需昂貴的專業分析儀器及相關專業技術人員的操作、檢測成本低與檢測時間短等優勢。後續能夠進一步結合智慧手機,進行定點照護檢驗(Point-of-care testing, POCT),有極大之臨床應用可行性。
Kidney damage is one of the common diseases in animals. Despite the rapid development of current medical technology, it is still not possible to quickly detect kidney damage. Therefore, it is necessary to find a convenient and instant detection method for the severity assessment and clinical application of kidney disease. In this study, a nano/micron composite structure biosensing electrode is developed for label-free detection of neutrophil gelatinase-associated lipocalin (NGAL). We first use semiconductor lithography technology to fabricate micron hemispherical structure array on a silicon wafer. Then electroforming is used to make a nickel mold, followed by transferring the micron hemispherical structure onto a polyethylene terephthalate (PET) film using the hot embossing process. A layer of gold film was sputtered on the micron hemispherical structure array, and then 1,6-hexanedithol and gold nano particles are uniformly deposited on the PET membrane to form a sensing electrode of nano/micro hybrid structure. After attaching the NGAL antibody, the NGAL concentrations are measured by Electrochemical Impedance Spectroscopy (EIS). The experimental results show that the method proposed in this study can detect the concentration of NGAL in a broad linear range from 5 ng/mL to 100 ng/mL with linearity and a detection limit of 0.986 and 1.286 ng/mL, respectively. The detection can be completed in 2 min. Compared with the traditional enzyme-linked immunosorbent assay (ELISA), the method proposed in this research has the advantages of not requiring expensive analytical instruments and related professional technical operators, low detection cost and short detection time. The technology of this study can be further combined with smart phones to conduct Point-of-care testing (POCT), hence has great clinical application feasibility.
摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
第二章 文獻回顧 3
2.1 腎臟疾病簡介 3
2.1.1 急性腎損傷(Acute Kidney Injury, AKI) 3
2.1.2 慢性腎臟病(Chronic kidney disease, CKD) 4
2.1.3 診斷腎臟疾病之方法 4
2.2 嗜中性白血球明膠酶相關脂質運載蛋白(NGAL) 6
2.3 嗜中性白血球明膠酶相關脂質運載蛋白(NGAL)之檢測方法 7
2.3.1化學發光微粒免疫分析法 (Chemiluminescent microparticle immunoassay, CLIA) 8
2.3.2顆粒增強比濁免疫分析法 (Particle-enhanced turbidimetric immunoassay, PETIA) 8
2.3.3 酵素結合免疫吸附分析法 (Enzyme-linked immunosorbent assay, ELISA) 9
2.3.4免疫墨點分析法 (Western blot analysis) 9
2.3.5電化學免疫分析法 (Electrochemistry Immunoassay) 10
2.4 電化學生物感測器 10
2.4.1 電化學分析法 11
2.4.2 電化學阻抗分析法(Electrochemical Impedance Spectroscopy, EIS) 12
2.4.3 循環伏安法(Cyclic Voltammetry, CV) 15
第三章 實驗材料與方法 17
3.1 實驗藥品表 19
3.2 溶液配製 21
3.3 實驗設備與分析儀器 22
3.4 檢測電極試片製作 24
3.4.1 微米半球陣列結構製備 24
3.5 膠體奈米金顆粒製備與定量 27
3.6 電極表面之奈米金顆粒修飾 29
3.7 抗體-抗原自組裝製備 29
3.8 電化學阻抗譜分析 32
第四章 結果與討論 34
4.1 微米半球陣列結構表面形貌觀察 34
4.2 奈米金顆粒修飾表面形貌觀察 35
4.3感測電極表面修飾MUA 37
4.4電極表面修飾EN (EDC/NHS)結果 38
4.5 Anti-NGAL抗體飽和濃度探討 39
4.6非專一性鍵結阻斷 (Blocking) 41
4.7 NGAL檢測標準曲線 42
4.8 NGAL真實樣本分析與測定 44
第五章 結論與未來展望 48
5.1 結論 48
5.2 未來展望 50
文獻參考 52
[1]M. E. Wasung, L. S. Chawla, and M. Madero, "Biomarkers of renal function, which and when?," Clinica Chimica Acta, vol. 438, pp. 350-357, 2015.
[2]胡譽嚴, "以NGAL蛋白濃度評估犬隻急性腎損傷," 國立中興大學獸醫學系碩士學位論文, 2011.
[3]S. S. Soni, D. Cruz, I. Bobek, C. Y. Chionh, F. Nalesso, P. Lentini, M. de Cal, V. Corradi, G. Virzi, and C. Ronco, "NGAL: a biomarker of acute kidney injury and other systemic conditions," International Urology and Nephrology, vol. 42, no. 1, pp. 141-150, 2010.
[4]J. Rysz, A. Gluba-Brzózka, B. Franczyk, Z. Jabłonowski, and A. Ciałkowska-Rysz, "Novel Biomarkers in the Diagnosis of Chronic Kidney Disease and the Prediction of Its Outcome," International Journal of Molecular Sciences, vol. 18, no. 8, 2017.
[5]林怡杉, "犬NGAL抗體製備及腎衰竭犬隻NGAL濃度與臨床進展的關聯性," 國立中興大學獸醫學系碩士學位論文, 2011.
[6]黃尚志、黃瑞仁、蔡維謀, "急性腎損傷處置共識," 台灣急救加護醫學會, 2020.
[7]台中榮民總醫院, "急性腎損傷," 2018.
[8]許育瑞, "認識慢性腎臟病," 三軍總醫院腎臟內科, 2016.
[9]張浤榮, "認識慢性腎臟疾病," 中山醫訊, 2020.
[10]X. Ariza, I. Graupera, M. Coll, E. Solà, R. Barreto, E. García, R. Moreira, C. Elia, M. Morales-Ruiz, M. Llopis, P. Huelin, C. Solé, N. Fabrellas, E. Weiss, F. Nevens, A. Gerbes, J. Trebicka, F. Saliba, C. Fondevila, V. Hernández-Gea, J. Fernández, M. Bernardi, V. Arroyo, W. Jiménez, C. Deulofeu, M. Pavesi, P. Angeli, R. Jalan, R. Moreau, P. Sancho-Bru, and P. Ginès, "Neutrophil gelatinase-associated lipocalin is a biomarker of acute-on-chronic liver failure and prognosis in cirrhosis," Journal of Hepatology, vol. 65, no. 1, pp. 57-65, 2016.
[11]S. M. Alharazy, N. C. T. Kong, M. Mohd, S. A. Shah, A. H. Abdul Gafor, and A. Ba´in, "The role of urinary neutrophil gelatinase-associated lipocalin in lupus nephritis," Clinica Chimica Acta, vol. 425, pp. 163-168, 2013.
[12]J. Mishra, Q. Ma, C. Kelly, M. Mitsnefes, K. Mori, J. Barasch, and P. Devarajan, "Kidney NGAL is a novel early marker of acute injury following transplantation," Pediatric Nephrology, vol. 21, no. 6, pp. 856-863, 2006.
[13]A. Buemi, F. Musuamba, S. Frederic, A. Douhet, M. De Meyer, L. De Pauw, T. Darius, N. Kanaan, P. Wallemacq, and M. Mourad, "Is plasma and urine neutrophil gelatinase-associated lipocalin (NGAL) determination in donors and recipients predictive of renal function after kidney transplantation?," Clinical Biochemistry, vol. 47, no. 15, pp. 68-72, 2014.
[14]L. Y. Cui, X. Zhu, S. Yang, J. S. Zhou, H. X. Zhang, L. Liu, and J. Zhang, "Prognostic Value of Levels of Urine Neutrophil Gelatinase-associated Lipocalin and Interleukin-18 in Patients With Delayed Graft Function After Kidney Transplantation," Transplantation Proceedings, vol. 47, no. 10, pp. 2846-2851, 2015.
[15]J. Kanter, S. Beltran, D. Molina, J. Vallecillo, A. Sancho, E. Gavela, A. Avila, P. Molina, J. L. Gorriz, and L. Pallardo, "Urinary Neutrophil Gelatinase-Associated Lipocalin After Kidney Transplantation: Is It a Good Biomarker to Assess Delayed Graft Function?," Transplantation Proceedings, vol. 45, no. 4, pp. 1368-1370, 2013.
[16]J. Malyszko, H. Bachorzewska-Gajewska, J. S. Malyszko, K. Pawlak, and S. Dobrzycki, "Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in hypertensive and normotensive patients with coronary artery disease," Nephrology, vol. 13, no. 2, pp. 153-156, 2008.
[17]L. Gouweleeuw, P. J. W. Naudé, M. Rots, M. J. L. DeJongste, U. L. M. Eisel, and R. G. Schoemaker, "The role of neutrophil gelatinase associated lipocalin (NGAL) as biological constituent linking depression and cardiovascular disease," Brain, Behavior, and Immunity, vol. 46, pp. 23-32, 2015.
[18]L. B. Daniels, E. Barrett-Connor, P. Clopton, G. A. Laughlin, J. H. Ix, and A. S. Maisel, "Plasma Neutrophil Gelatinase–Associated Lipocalin Is Independently Associated With Cardiovascular Disease and Mortality in Community-Dwelling Older Adults: The Rancho Bernardo Study," Journal of the American College of Cardiology, vol. 59, no. 12, pp. 1101-1109, 2012.
[19]T. H. Flo, K. D. Smith, S. Sato, D. J. Rodriguez, M. A. Holmes, R. K. Strong, S. Akira, and A. Aderem, "Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron," Nature, vol. 432, no. 7019, pp. 917-921, 2004.
[20]P. Venge, L. D. Håkansson, D. Garwicz, C. Peterson, S. Xu, and K. Pauksen, "Human neutrophil lipocalin in fMLP-activated whole blood as a diagnostic means to distinguish between acute bacterial and viral infections," Journal of Immunological Methods, vol. 424, pp. 85-90, 2015.
[21]Z. Yu, H. Jing, P. Hongtao, J. Furong, J. Yuting, S. Xu, and P. Venge, "Distinction between bacterial and viral infections by serum measurement of human neutrophil lipocalin (HNL) and the impact of antibody selection," Journal of Immunological Methods, vol. 432, pp. 82-86, 2016.
[22]M. Kusaka, F. Iwamatsu, Y. Kuroyanagi, M. Nakaya, M. Ichino, S. Marubashi, H. Nagano, R. Shiroki, H. Kurahashi, and K. Hoshinaga, "Serum Neutrophil Gelatinase Associated Lipocalin During the Early Postoperative Period Predicts the Recovery of Graft Function After Kidney Transplantation From Donors After Cardiac Death," The Journal of Urology, vol. 187, no. 6, pp. 2261-2267, 2012.
[23]M. Garcia-Alvarez, N. J. Glassford, A. J. Betbese, J. Ordoñez, V. Baños, M. Argilaga, A. Martínez, S. Suzuki, A. G. Schneider, G. M. Eastwood, M. Victoria Moral, and R. Bellomo, "Urinary Neutrophil Gelatinase-Associated Lipocalin as Predictor of Short- or Long-Term Outcomes in Cardiac Surgery Patients," Journal of Cardiothoracic and Vascular Anesthesia, vol. 29, no. 6, pp. 1480-1488, 2015.
[24]V. Barresi, L. Reggiani-Bonetti, C. Di Gregorio, E. Vitarelli, M. Ponz De Leon, and G. Barresi, "Neutrophil gelatinase-associated lipocalin (NGAL) and matrix metalloproteinase-9 (MMP-9) prognostic value in stage I colorectal carcinoma," Pathology - Research and Practice, vol. 207, no. 8, pp. 479-486, 2011.
[25]S. Chakraborty, S. Kaur, S. Guha, and S. K. Batra, "The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer," Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol. 1826, no. 1, pp. 129-169, 2012.
[26]C. A. Fernández, L. Yan, G. Louis, J. Yang, J. L. Kutok, and M. A. Moses, "The Matrix Metalloproteinase-9/Neutrophil Gelatinase-Associated Lipocalin Complex Plays a Role in Breast Tumor Growth and Is Present in the Urine of Breast Cancer Patients," Clinical Cancer Research, vol. 11, no. 15, p. 5390, 2005.
[27]R. Lim, N. Ahmed, N. Borregaard, C. Riley, R. Wafai, E. W. Thompson, M. A. Quinn, and G. E. Rice, "Neutrophil gelatinase-associated lipocalin (NGAL) an early-screening biomarker for ovarian cancer: NGAL is associated with epidermal growth factor-induced epithelio-mesenchymal transition," International Journal of Cancer, vol. 120, no. 11, pp. 2426-2434, 2007.
[28]E. P. Slater, V. Fendrich, K. Strauch, S. Rospleszcz, A. Ramaswamy, E. Mätthai, B. Chaloupka, T. M. Gress, P. Langer, and D. K. Bartsch, "LCN2 and TIMP1 as Potential Serum Markers for the Early Detection of Familial Pancreatic Cancer," Translational Oncology, vol. 6, no. 2, pp. 99-103, 2013.
[29]A. Palazzuoli, G. Ruocco, M. Pellegrini, C. De Gori, G. Del Castillo, B. Franci, R. Nuti, and C. Ronco, "Comparison of Neutrophil Gelatinase-Associated Lipocalin Versus B-Type Natriuretic Peptide and Cystatin C to Predict Early Acute Kidney Injury and Outcome in Patients With Acute Heart Failure," The American Journal of Cardiology, vol. 116, no. 1, pp. 104-111, 2015.
[30]G. P. Otto, M. Busch, M. Sossdorf, and R. A. Claus, "Impact of sepsis-associated cytokine storm on plasma NGAL during acute kidney injury in a model of polymicrobial sepsis," Critical Care, vol. 17, no. 2, p. 419, 2013.
[31]K. D. Liu, W. Yang, A. S. Go, A. H. Anderson, H. I. Feldman, M. J. Fischer, J. He, R. R. Kallem, J. W. Kusek, S. R. Master, E. R. Miller, S. E. Rosas, S. Steigerwalt, K. Tao, M. R. Weir, and C.-y. Hsu, "Urine Neutrophil Gelatinase-Associated Lipocalin and Risk of Cardiovascular Disease and Death in CKD: Results From the Chronic Renal Insufficiency Cohort (CRIC) Study," American Journal of Kidney Diseases, vol. 65, no. 2, pp. 267-274, 2015.
[32]N. A. Bhavsar, A. Köttgen, J. Coresh, and B. C. Astor, "Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Kidney Injury Molecule 1 (KIM-1) as Predictors of Incident CKD Stage 3: The Atherosclerosis Risk in Communities (ARIC) Study," American Journal of Kidney Diseases, vol. 60, no. 2, pp. 233-240, 2012.
[33]P. C. Sprenkle, J. Wren, A. C. Maschino, A. Feifer, N. Power, T. Ghoneim, I. Sternberg, M. Fleisher, and P. Russo, "Urine Neutrophil Gelatinase-Associated Lipocalin as a Marker of Acute Kidney Injury After Kidney Surgery," The Journal of Urology, vol. 190, no. 1, pp. 159-164, 2013.
[34]M. R. Pinsky, L. Brochard, J. Mancebo, and G. Hedenstierna, Applied physiology in intensive care medicine. Springer, 2006.
[35]G. Wagener, M. Jan, M. Kim, K. Mori, Jonathan M. Barasch, Robert N. Sladen, and H T. Lee, "Association between Increases in Urinary Neutrophil Gelatinase–associated Lipocalin and Acute Renal Dysfunction after Adult Cardiac Surgery," Anesthesiology, vol. 105, no. 3, pp. 485-491, 2006.
[36]J. D. Conger, "Interventions in clinical acute renal failure: What are the data?," American Journal of Kidney Diseases, vol. 26, no. 4, pp. 565-576, 1995.
[37]R. S. A. Lima, C. N. Marques, G. B. Silva Júnior, A. S. Barbosa, E. S. Barbosa, R. M. S. Mota, S. M. H. A. Araújo, O. A. Gutiérrez-Adrianzén, A. B. Libório, and E. F. Daher, "Comparison between early and delayed acute kidney injury secondary to infectious disease in the intensive care unit," International Urology and Nephrology, vol. 40, no. 3, pp. 731-739, 2008.
[38]S. Uchino, J. A. Kellum, R. Bellomo, G. S. Doig, H. Morimatsu, S. Morgera, M. Schetz, I. Tan, C. Bouman, E. Macedo, N. Gibney, A. Tolwani, C. Ronco, Beginning, and f. t. Ending Supportive Therapy for the Kidney Investigators, "Acute Renal Failure in Critically Ill PatientsA Multinational, Multicenter Study," JAMA, vol. 294, no. 7, pp. 813-818, 2005.
[39]C. R. Parikh, J. Mishra, H. Thiessen-Philbrook, B. Dursun, Q. Ma, C. Kelly, C. Dent, P. Devarajan, and C. L. Edelstein, "Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery," Kidney International, vol. 70, no. 1, pp. 199-203, 2006.
[40]Y. Liu, W. Guo, J. Zhang, C. Xu, S. Yu, Z. Mao, J. Wu, C. Ye, C. Mei, and B. Dai, "Urinary Interleukin 18 for Detection of Acute Kidney Injury: A Meta-analysis," American Journal of Kidney Diseases, vol. 62, no. 6, pp. 1058-1067, 2013.
[41]N. Miao, F. Yin, H. Xie, Y. Wang, Y. Xu, Y. Shen, D. Xu, J. Yin, B. Wang, Z. Zhou, Q. Cheng, P. Chen, H. Xue, L. Zhou, J. Liu, X. Wang, W. Zhang, and L. Lu, "The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury," Kidney International, vol. 96, no. 5, pp. 1105-1120, 2019.
[42]P. Devarajan, Emerging Biomarkers of Acute Kidney Injury.
[43]A. Banai, K.-L. Rozenfeld, D. Lewit, I. Merdler, I. Loewenstein, S. Banai, and Y. Shacham, "Neutrophil gelatinase-associated lipocalin (NGAL) for the prediction of acute kidney injury in chronic kidney disease patients treated with primary percutaneous coronary intervention," IJC Heart & Vasculature, vol. 32, p. 100695, 2021.
[44]J. Mishra, Q. Ma, A. Prada, M. Mitsnefes, K. Zahedi, J. Yang, J. Barasch, and P. Devarajan, "Identification of Neutrophil Gelatinase-Associated Lipocalin as a Novel Early Urinary Biomarker for Ischemic Renal Injury," Journal of the American Society of Nephrology, vol. 14, no. 10, p. 2534, 2003.
[45]X.-W. Zhen, N.-P. Song, L.-H. Ma, L.-N. Ma, L. Guo, and X.-D. Yang, "Calprotectin and Neutrophil Gelatinase-Associated Lipocalin as Biomarkers of Acute Kidney Injury in Acute Coronary Syndrome," The American Journal of the Medical Sciences, 2020.
[46]M. T. Nguyen and P. Devarajan, "Biomarkers for the early detection of acute kidney injury," Pediatric Nephrology, vol. 23, no. 12, pp. 2151-2157, 2008.
[47]S. Herget-rosenThal, G. Marggraf, J. Hüsing, F. Göring, F. Pietruck, O. Janssen, T. Philipp, and A. Kribben, "Early detection of acute renal failure by serum cystatin C," Kidney International, vol. 66, no. 3, pp. 1115-1122, 2004.
[48]O. Mosa, M. Sinna, F. Altaf, M. Skitek, and A. Jerin, "The possibility of serum and urine cystatin C and NGAL as discriminative biomarkers for early stage AKI and CKD among hospitalized and renal outpatients," Clinica Chimica Acta, vol. 493, pp. S460-S461, 2019.
[49]S. Linghong and B. He, "GW25-e2326 Cystatin C combined with creatinine seems to be a better early predictor of CI-AKI in patients undergoing PCI," Journal of the American College of Cardiology, vol. 64, no. 16, Supplement, p. C145, 2014.
[50]P. Devarajan, "Review: Neutrophil gelatinase-associated lipocalin: A troponin-like biomarker for human acute kidney injury," Nephrology, vol. 15, no. 4, pp. 419-428, 2010.
[51]P. Devarajan, "Neutrophil gelatinase-associated lipocalin: a promising biomarker for human acute kidney injury," Biomarkers in Medicine, vol. 4, no. 2, pp. 265-280, 2010.
[52]S. K. Vashist, "Graphene-based immunoassay for human lipocalin-2," Analytical Biochemistry, vol. 446, pp. 96-101, 2014.
[53]J. Yang, D. Goetz, J.-Y. Li, W. Wang, K. Mori, D. Setlik, T. Du, H. Erdjument-Bromage, P. Tempst, R. Strong, and J. Barasch, "An Iron Delivery Pathway Mediated by a Lipocalin," Molecular Cell, vol. 10, no. 5, pp. 1045-1056, 2002.
[54]J. Rysz, A. Gluba-Brzózka, B. Franczyk, Z. Jabłonowski, and A. Ciałkowska-Rysz, "Novel Biomarkers in the Diagnosis of Chronic Kidney Disease and the Prediction of Its Outcome," International Journal of Molecular Sciences, vol. 18, no. 8, p. 1702, 2017.
[55]M. R. Cullen, P. T. Murray, and M. C. Fitzgibbon, "Establishment of a reference interval for urinary neutrophil gelatinase-associated lipocalin," Annals of Clinical Biochemistry, vol. 49, no. 2, pp. 190-193, 2012.
[56]L. Roszyk and V. Sapin, "Neutrophil gelatinase-associated lipocalin (NGAL) : caractéristiques immuno-analytiques," Immuno-analyse & Biologie Spécialisée, vol. 27, no. 6, pp. 365-368, 2012.
[57]E. Singer, A. Elger, S. Elitok, R. Kettritz, T. L. Nickolas, J. Barasch, F. C. Luft, and K. M. Schmidt-Ott, "Urinary neutrophil gelatinase-associated lipocalin distinguishes pre-renal from intrinsic renal failure and predicts outcomes," Kidney International, vol. 80, no. 4, pp. 405-414, 2011.
[58]B. M. Beker, M. G. Corleto, C. Fieiras, and C. G. Musso, "Novel acute kidney injury biomarkers: their characteristics, utility and concerns," International Urology and Nephrology, vol. 50, no. 4, pp. 705-713, 2018.
[59]M. Harpole, J. Davis, and V. Espina, "Current state of the art for enhancing urine biomarker discovery," Expert Review of Proteomics, vol. 13, no. 6, pp. 609-626, 2016.
[60]S. Prasad, A. K. Tyagi, and B. B. Aggarwal, "Detection of inflammatory biomarkers in saliva and urine: Potential in diagnosis, prevention, and treatment for chronic diseases," Experimental Biology and Medicine, vol. 241, no. 8, pp. 783-799, 2016.
[61]G. Cangemi, S. Storti, M. Cantinotti, A. Fortunato, M. Emdin, M. Bruschettini, D. Bugnone, G. Melioli, and A. Clerico, "Reference values for urinary neutrophil gelatinase-associated lipocalin (NGAL) in pediatric age measured with a fully automated chemiluminescent platform," (in English), Clinical Chemistry and Laboratory Medicine (CCLM), vol. 51, no. 5, pp. 1101-1105, 2013.
[62]E. Krzeminska, A. Wyczalkowska-Tomasik, N. Korytowska, and L. Paczek, "Comparison of Two Methods for Determination of NGAL Levels in Urine: ELISA and CMIA," Journal of Clinical Laboratory Analysis, vol. 30, no. 6, pp. 956-960, 2016.
[63]E. Singer, E. V. Schrezenmeier, A. Elger, E. R. Seelow, A. Krannich, F. C. Luft, and K. M. Schmidt-Ott, "Urinary NGAL-Positive Acute Kidney Injury and Poor Long-term Outcomes in Hospitalized Patients," Kidney International Reports, vol. 1, no. 3, pp. 114-124, 2016.
[64]A. Noto, F. Cibecchini, V. Fanos, and M. Mussap, "NGAL and Metabolomics: The Single Biomarker to Reveal the Metabolome Alterations in Kidney Injury," BioMed Research International, vol. 2013, p. 612032, 2013.
[65]K. Makris, D. Stefani, E. Makri, I. Panagou, M. Lagiou, A. Sarli, M. Lelekis, and C. Kroupis, "Evaluation of a particle enhanced turbidimetric assay for the measurement of neutrophil gelatinase-associated lipocalin in plasma and urine on Architect-8000: Analytical performance and establishment of reference values," Clinical Biochemistry, vol. 48, no. 18, pp. 1291-1297, 2015.
[66]G. L. Salvagno, A. Ferrari, M. Gelati, G. Brocco, and G. Lippi, "Analytical validation of Gentian NGAL particle-enhanced enhanced turbidimetric immunoassay (PETIA)," Practical Laboratory Medicine, vol. 8, pp. 60-64, 2017.
[67]S. B. Hoffman, A. N. Massaro, Á. A. Soler-García, S. Perazzo, and P. E. Ray, "A novel urinary biomarker profile to identify acute kidney injury (AKI) in critically ill neonates: a pilot study," Pediatric Nephrology, vol. 28, no. 11, pp. 2179-2188, 2013.
[68]M. R. Khatami, M. R. P. Sabbagh, N. Nikravan, Z. Khazaeipour, M. A. Boroumand, S. Sadeghian, and B. Davoudi, "The role of neutrophil-gelatinase-associated lipocalin in early diagnosis of contrast nephropathy," (in eng), Indian J Nephrol, vol. 25, no. 5, pp. 292-296, 2015.
[69]A. Gombert, I. Prior, L. Martin, J. Grommes, M. E. Barbati, A. C. Foldenauer, G. Schälte, G. Marx, T. Schürholz, A. Greiner, M. J. Jacobs, and J. Kalder, "Urine neutrophil gelatinase–associated lipocalin predicts outcome and renal failure in open and endovascular thoracic abdominal aortic aneurysm surgery," Scientific Reports, vol. 8, no. 1, p. 12676, 2018.
[70]F. C. Grenier, S. Ali, H. Syed, R. Workman, F. Martens, M. Liao, Y. Wang, and P.-Y. Wong, "Evaluation of the ARCHITECT urine NGAL assay: Assay performance, specimen handling requirements and biological variability," Clinical Biochemistry, vol. 43, no. 6, pp. 615-620, 2010.
[71]C. H. Cho, J. H. Kim, D.-K. Song, T. J. Park, and J. P. Park, "An affinity peptide-incorporated electrochemical biosensor for the detection of neutrophil gelatinase-associated lipocalin," Biosensors and Bioelectronics, vol. 142, p. 111482, 2019.
[72]D. C. Christodouleas, B. Kaur, and P. Chorti, "From Point-of-Care Testing to eHealth Diagnostic Devices (eDiagnostics)," ACS Central Science, vol. 4, no. 12, pp. 1600-1616, 2018.
[73]S. C. B. Gopinath, T.-H. Tang, M. Citartan, Y. Chen, and T. Lakshmipriya, "Current aspects in immunosensors," Biosensors and Bioelectronics, vol. 57, pp. 292-302, 2014.
[74]W. Wen, X. Yan, C. Zhu, D. Du, and Y. Lin, "Recent Advances in Electrochemical Immunosensors," Analytical Chemistry, vol. 89, no. 1, pp. 138-156, 2017.
[75]F. S. Felix and L. Angnes, "Electrochemical immunosensors – A powerful tool for analytical applications," Biosensors and Bioelectronics, vol. 102, pp. 470-478, 2018.
[76]H. J. Hwang, M. Y. Ryu, C. Y. Park, J. Ahn, H. G. Park, C. Choi, S.-D. Ha, T. J. Park, and J. P. Park, "High sensitive and selective electrochemical biosensor: Label-free detection of human norovirus using affinity peptide as molecular binder," Biosensors and Bioelectronics, vol. 87, pp. 164-170, 2017.
[77]禪普科技, "Zensor R&D Technology-1.1 Electrochemical System."
[78]D. A. Aikens, "Electrochemical methods, fundamentals and applications," Journal of Chemical Education, vol. 60, no. 1, p. A25, 1983.
[79]N. Bonanos, B. Steele, E. Butler, J. Macdonald, W. Johnson, W. Worrell, G. Niklasson, S. Malmgren, M. Strømme, S. Sundaram, M. McKubre, D. Macdonald, G. Engelhardt, Y. Barsukov, B. Conway, W. Pell, N. Wagner, C. Roland, and R. Eisenberg, "Applications of Impedance Spectroscopy: Theory, Experiment, and Applications," 2018, pp. 175-478.
[80]E. Randviir and C. Banks, "Electrochemical impedance spectroscopy: An overview of bioanalytical applications," Analytical methods, vol. 5, pp. 1098-1115, 2013.
[81]L. G. Dias, S. G. Meirinho, A. C. A. Veloso, L. R. Rodrigues, and A. M. Peres, "13 - Electronic tongues and aptasensors," in Bioinspired Materials for Medical Applications, L. Rodrigues and M. Mota Eds.: Woodhead Publishing, 2017, pp. 371-402.
[82]Y.-J. Lee, Y.-Y. Hu, Y.-S. Lin, C.-T. Chang, F.-Y. Lin, M.-L. Wong, H. Kuo-Hsuan, and W.-L. Hsu, "Urine neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute canine kidney injury," BMC Veterinary Research, vol. 8, no. 1, p. 248, 2012.
[83]M. Bennett, C. L. Dent, Q. Ma, S. Dastrala, F. Grenier, R. Workman, H. Syed, S. Ali, J. Barasch, and P. Devarajan, "Urine NGAL Predicts Severity of Acute Kidney Injury After Cardiac Surgery: A Prospective Study," Clinical Journal of the American Society of Nephrology, vol. 3, no. 3, p. 665, 2008.
[84]P. Kannan, H. Y. Tiong, and D.-H. Kim, "Highly sensitive electrochemical determination of neutrophil gelatinase-associated lipocalin for acute kidney injury," Biosensors and Bioelectronics, vol. 31, no. 1, pp. 32-36, 2012.
[85]G. Aydoğdu Tığ and Ş. Pekyardımcı, "An electrochemical sandwich-type aptasensor for determination of lipocalin-2 based on graphene oxide/polymer composite and gold nanoparticles," Talanta, vol. 210, p. 120666, 2020.
[86]J. Yukird, T. Wongtangprasert, R. Rangkupan, O. Chailapakul, T. Pisitkun, and N. Rodthongkum, "Label-free immunosensor based on graphene/polyaniline nanocomposite for neutrophil gelatinase-associated lipocalin detection," Biosensors and Bioelectronics, vol. 87, pp. 249-255, 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top