跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/28 13:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何俊傑
研究生(外文):Maximilian Hoebing
論文名稱:電力對天然氣技術作為再生能源過剩時期可持續商業案例的潛力:分析電力和天然氣部門耦合技術以儲存過剩能源和減少溫室氣體排放
論文名稱(外文):The potential of Power to Gas technologies as a sustainable business case for periods of surplus renewable energy: An analysis of a power and gas sector coupling technology to store surplus energy and reduce greenhouse gas emissions
指導教授(外文):Santos Saenz Delgado
口試委員(外文):Carlos Alberto Carvasco Sanchez
口試日期:2019-09-23
學位類別:碩士
校院名稱:國立中興大學
系所名稱:全球事務研究跨洲碩士學位學程
學門:社會及行為科學學門
學類:國際事務學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:63
中文關鍵詞:電轉氣扇區耦合剩餘能源
外文關鍵詞:Power to GasSector couplingSurplus energy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Climate change is omnipresent in politics, industry as well as the society and has gained more and more attention in Germany in the past decade. Not only since the "Paris Agreement" renewable energies have gained considerable impact on the German electricity mix. This development is favourable in terms of subsidising conventional power plants based on fossil energy carriers and lowering the overall CO2 emissions from electricity generation. However, renewable energies bring about various questions including storage of surplus energy and grid balancing activities resulting from its volatile character. So far, the storage of electricity in a larger scale is relatively limited and would require huge amounts of batteries. Power to gas technologies present a solution to utilise surplus electricity and realise a coupling of the power and gas sector by using electricity to split water in hydrogen and oxygen. The focus of the master thesis at hand is to give an overview of the available technology and present state of the art structure and efficiencies that have been proven to reach 80%. A potential analysis is conducted in order to specify the regional surplus energy of wind onshore in Germany and information about available capacities within a year are outlined. A regional focus is set on the state of Schleswig Holstein where most of the German shut down energy of renewable energies occurred in 2018. A time series analysis for the post code area with the most shut down energy within Schleswig Holstein is carried out in order to show the availability of certain surplus electric power levels.
In a second step the information about technology, political and infrastructural frameworks and the findings of the potential analysis are merged in an economic analysis and are translated in production cost per KWhth. A sensitivity analysis further outlined the impact of changing input parameters on the production cost per KWhth. Four different scenarios are presented in a multilevel sensitivity analysis in order to show under which circumstances production cost reach profitability. In this context, the strong influence on regulatory surcharges and taxation systems as well as the development of investment cost turn out to be decisive factors for the future success of power to gas systems.
Acknowledgements i
Abstract ii
Table of Contents iii
List of Tables vi
List of Figures vii
I. Introduction 1
1.1 Background 1
1.2 Problem description and its significance 1
1.3 Objectives and Research Questions 2
1.4 Structure 3
II. Power to gas technology 5
2.1 Key performance indicators 6
2.2 Fundamentals of water electrolysis 7
2.3 Overview of electrolysis technology 8
2.3.1 Alkaline electrolysis 9
2.3.2 Proton exchange membrane 12
2.3.3 Solid oxide electrolysis 14
2.4 Concluding remarks about the technology 18
III. Infrastructural and political framework 20
3.1 Structure 20
3.1.1 Generation 20
3.1.2 Transmission 21
3.1.3 Distribution 22
3.2 Challenges 22
3.3 Political framework 23
3.3.1 German Renewable Energy Act 23
3.3.2 Grid charges 23
3.4 Power grid stabilisation 24
3.4.1 Redispatch 24
3.4.2 Input management 24
3.5 Limitation of literature 25
IV. Methodology 27
V. Potential of surplus renewable energy 29
5.1 Geographical spread of input management measures 29
5.2 Share of different renewable energy types 30
5.3 Input management measures in Schleswig Holstein 31
5.3.1 Geographical spread within Schleswig Holstein 33
5.3.2 Time series analysis of regional shut down power 34
5.3.3 Data validation 35
VI. Economic analysis 37
6.1 Cost analysis 37
6.1.1 Capex 37
6.1.2 Opex 38
6.1.3 Electricity purchasing cost 38
6.1.4 Surcharges 38
6.1.5 Remarks about cost structure 38
6.2 Profitability analysis 39
6.2.1 Competitiveness 39
6.2.2 Markets and sales prices 40
6.2.3 Development 41
6.2.4 Political framework 43
6.3 Sensitivity analysis 45
6.3.1 Electricity cost 46
6.3.2 Efficiency 46
6.3.3 Lifetime 47
6.3.4 Utilisation 47
6.3.5 Investment cost 48
6.3.6 Concluding remarks about sensitivity 49
6.4 Multilevel sensitivity analysis 49
VII. Conclusion and Results 53
7.1 Results 53
7.2 Discussion 54
7.3 Limitations 55
7.4 Future Works 56
VIII. Apendix 57
A VBA Code Time series analysis 57
B Digital Appendix: 58
B.1 Online-Extrapolation Wind Onshore 58
B.2 Sensitivity Analysis 58
B.3 SH Netz Einsman measures 2018 58
B.4 Shut down energy federal grid agency 58
IX. Bibliography 59
Declaration of Authorship 63
[Alstom 2018] Alstom: World premier: Alstom’s hydrogen trains enter passenger ser- vices in Lower Saxony. 2018 https://www.alstom.com/press-releases-news/2018/9/ world-premiere-alstoms-hydrogen-trains-enter-passenger-service-lower
[Ampurdanés et al. 2018] Ampurdanés, Jordi ; Chourashiya, Muralidhar ; Urakawa, Atsushi: Cobalt oxide-based materials as non-PGM catalyst for HER in PEM electrolysis and in situ XAS characterization of its functional state. In: Catalysis Today (2018). http:// www.sciencedirect.com/science/article/pii/S0920586118307405. – ISSN 0920–5861
[Bertuccioli et al. 2014] Bertuccioli, Luca ; Chan, Alvin ; Hart, David ; Lehner, Franz ; Madden, Ben ; Standen, Eleanor: Study on development of water electrolysis in the EU. In: Fuel cells and hydrogen joint undertaking (2014)
[Blum et al. 2019] Blum, Johannes ; Kapitzke, Philip ; Potrafke, Niklas et al.: Der Kohleausstieg bis 2038–wie bewerten Ökonomen die Empfehlungen der Kohlekommission?
In: ifo Schnelldienst 72 (2019), Nr. 06, S. 34–39
[BMWi2018]BMWi:SechsterMonitoring-BerichtzurEnergiewende: DieEnergiederZukunft.BundesministeriumfürWirtschaftundEn- ergie,2018https://www.bmwi.de/Redaktion/DE/Publikationen/Energie/ sechster-monitoring-bericht-zur-energiewende.pdf? blob=publicationFile&v= 14
[BMWi 2019a] BMWi: Regulierung der Netzentgelte. Bundesministerium für Wirtschaft und Energie, 2019 https://www.bmwi.de/Redaktion/DE/Artikel/Energie/ wettbewerb-energiebereich-4.html
[BMWi 2019b] BMWi: Ein Stromnetz für die Energiewende. Bundesminis- terium für Wirtschaft und Energie, 2019 https://www.bmwi.de/Redaktion/DE/Dossier/ netze-und-netzausbau.html
[Brisse u. Schefold 2012] Brisse, Annabelle ; Schefold, Josef: High temperature electrolysis at EIFER, main achievements at cell and stack level. In: Energy Procedia 29 (2012), S. 53–63
[Budny et al. 2015] Budny, Christoph ; Madlener, Reinhard ; Hilgers, Christoph: Economic feasibility of pipe storage and underground reservoir storage options for power-to- gas load balancing. In: Energy Conversion and Management 102 (2015), 258 - 266. http:// www.sciencedirect.com/science/article/pii/S0196890415004343. – ISSN 0196–8904
[Bundesnetzagentur 2019a] Bundesnetzagentur:Anreizregulierung von Strom- und Gasnetzbetreibern. Bundesnetzagentur, 2019 https://www.bundesnetzagentur.de/ DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Netzentgelte/ Anreizregulierung/anreizregulierung-node.html
[Bundesnetzagentur 2019b] Bundesnetzagentur:Netz- und Systemsicherheit. 2019https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/ Unternehmen_Institutionen/Versorgungssicherheit/Netz_Systemsicherheit/ Netz_Systemsicherheit.html


[Bundesnetzagentur 2017] Bundesnetzagentur, Bundeskartellamt: Monitoringbericht 2017. Bonn. 2017
[Bundestag 2019] Bundestag: Beschlussempfehlung und Bericht des Ausschusses für Wirtschaft und Energie. http://dip21.bundestag.de/dip21/btd/19/111/1911186.pdf.
Version: 2019
[Burger 2018] Burger, B:Power generation in Germany–assessment of 2017. https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/ studies/Stromerzeugung_2017_e.pdf. Version: 2018
[Buttler u. Spliethoff 2018] Buttler, Alexander ; Spliethoff, Hartmut: Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. In: Renewable and Sustainable Energy Reviews 82 (2018), 2440 - 2454. http://www.sciencedirect.com/science/article/pii/ S136403211731242X. – ISSN 1364–0321
[Chen et al. 2018] In: Chen, Yue ; Hashmi, Md U. ; Mathias, Joel ; BuöiÊ, Ana ; Meyn, Sean: Distributed Control Design for Balancing the Grid Using Flexible Loads. New York,
NY : Springer New York, 2018. – ISBN 978–1–4939–7822–9, 383–411
[Doenitz et al. 1980] Doenitz, W ; Schmidberger, R ; Steinheil, E ; Streicher, R: Hydrogen production by high temperature electrolysis of water vapour. In: International Journal of Hydrogen Energy 5 (1980), Nr. 1, S. 55–63
[Frondel u. Sommer 2019] Frondel, Manuel ; Sommer, Stephan: Schwindende Akzeptanz für die Energiewende? Ergebnisse einer wiederholten Bürgerbefragung. In: Zeitschrift für Energiewirtschaft 43 (2019), Mar, Nr. 1, 27–38. https://doi.org/10.1007/ s12398-018-0240-4. – ISSN 1866–2765
[Gahleitner 2013] Gahleitner, Gerda: Hydrogen from renewable electricity: An inter- national review of power-to-gas pilot plants for stationary applications. In: International Journal of Hydrogen Energy 38 (2013), Nr. 5, 2039 - 2061. http://www.sciencedirect. com/science/article/pii/S0360319912026481. – ISSN 0360–3199
[Giglio et al. 2018] Giglio, Emanuele ; Deorsola, Fabio A. ; Gruber, Manuel ; Harth, Stefan R. ; Morosanu, Eduard A. ; Trimis, Dimosthenis ; Bensaid, Samir ; Pirone, Raffaele: Power-to-Gas through High Temperature Electrolysis and Carbon Dioxide Methanation: Reactor Design and Process Modeling. In: Industrial & Engineering Chemistry Research 57 (2018), Nr. 11, 4007-4018. https://doi.org/10.1021/acs.iecr.8b00477
[Greenpeace Energy 2019] Greenpeace Energy:Unser Windgas im Detail.2019 https://www.greenpeace-energy.de/privatkunden/oekogas/ unser-windgas-im-detail.html
[Guandalini et al. 2015] Guandalini, Giulio ; Campanari, Stefano ; Romano, Mat- teo C.: Power-to-gas plants and gas turbines for improved wind energy dispatcha- bility: Energy and economic assessment. In: Applied Energy 147 (2015), 117 - 130. http://www.sciencedirect.com/science/article/pii/S0306261915002329. – ISSN 0306–2619
[Haller et al. 2013] Haller, Markus ; Hermann, Hauke ; Loreck, Charlotte ; Matthes, Felix C. ; Cook, Vanessa: EEG-Umlage und die Kosten der Stromversorgung für 2014 Eine Analyse von Trends, Ursachen und Wechselwirkungen. In: Oeko-Institut eV, Berlin (2013)


[Hansen 2015] Hansen, John B.: Solid oxide electrolysis–a key enabling technology for sustainable energy scenarios. In: Faraday discussions 182 (2015), S. 9–48
[Hoefner et al. 2015] Hoefner, Tobias ; Schalenbach, Maximilian ; Carmo, Marcelo ; Maier, Wiebke ; Stolten, Detlef: Development of the Anion Exchange Membrane Water Electrolysis. In: Meeting Abstracts The Electrochemical Society, 2015 ( 16), S. 1238–1238
[Huneke 2018] Huneke, Fabian: Auf dem Weg in die Wettbewerbsfähigkeit: Electrolysegase erneuerbaren Ursprungs.Energy Brainpool, 2018 https://www.energybrainpool. com/fileadmin/download/Studien/Kurzanalyse_2018-03-19_GPE_Kurzanalyse_ Kostenentwicklung-von-Elektrolysegas-erneuerbaren-Ursprungs.pdf
[Huneke u. Lenck 2016] Huneke, Fabian ; Lenck, Thorsten: Kurzanalyse zur Stromerzeugung bei Netzbedingter Abregelung erneuerbarer Energien. Energy Brainpool, 2016 www.greenpeace.de/files/publications/kurzanalyse_grosskraftwerke.pdf
[International Energy Agency 2018] International Energy Agency: World Energy Outlook 2018. Paris : OECD/IEA, 2018. – ISBN 9789264064522
[Jentsch et al. 2014] Jentsch, Mareike ; Trost, Tobias ; Sterner, Michael: Optimal Use of Power-to-Gas Energy Storage Systems in an 85% Renewable Energy Scenario. In: Energy Procedia 46 (2014), 254 - 261. http://www.sciencedirect.com/science/article/pii/ S1876610214001969. – ISSN 1876–6102. – 8th International Renewable Energy Storage Conference and Exhibition (IRES 2013)
[Kramer et al. 2019] Kramer, Ulrich ; Goericke, Dietmar ; Thee, Ralf: Energiepfade für den Straßenverkehr der Zukunft. In: MTZ - Motortechnische Zeitschrift 80 (2019), May,
Nr. 5, 18–25. https://doi.org/10.1007/s35146-019-0022-5. – ISSN 2192–8843
[Kreuter u. Hofmann 1998] Kreuter, W. ; Hofmann, H.: Electrolysis: The important energy transformer in a world of sustainable energy. In: International Journal of Hydrogen Energy 23 (1998), Nr. 8, 661 - 666. http://www.sciencedirect.com/science/article/ pii/S0360319997001092. – ISSN 0360–3199
[Krüger2019]Krüger,Julia:NovelledesNetzausbaubeschle- unigungsgesetzes(NABEG2.0)verabschiedet.VKU,2019
https://www.vku.de/themen/infrastruktur-und-dienstleistungen/
novelle-des-netzausbaubeschleunigungsgesetzes-nabeg-20-verabschiedet/
[Kumar u. Himabindu 2019] Kumar, S. S. ; Himabindu, V.: Hydrogen Production by PEM Water Electrolysis – A Review. In: Materials Science for Energy Technologies (2019). http://www.sciencedirect.com/science/article/pii/S2589299119300035. –
ISSN 2589–2991
[Kuramochi et al. 2012] Kuramochi, Takeshi ; Ramírez, Andrea ; Turkenburg, Wim ; Faaij, André: Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes. In: Progress in energy and combustion science 38 (2012), Nr. 1, S. 87–112
[Linnemann et al. 2011] Linnemann, C. ; Echternacht, D. ; Breuer, C. ; Moser, A.: Modeling optimal redispatch for the European Transmission grid. In: 2011 IEEE Trondheim PowerTech, 2011, S. 1–8


[Netztransparenz 2017] Netztransparenz: EEG-Anlagenstammdaten zur Jahresabrech- nung 2017. 2017 https://www.netztransparenz.de/EEG/Anlagenstammdaten
[Netztransparenz 2019a] Netztransparenz: Deutsches Übertragungsnetz. 2019 https:
//www.netztransparenz.de/Allgemeines/Deutsches-Uebertragungsnetz
[Netztransparenz 2019b] Netztransparenz: Online-Hochrechnung der tatsächlichen Erzeugung von Strom aus Windenergie Onshore. 2019 https://www.netztransparenz. de/EEG/Marktpraemie/Online-Hochrechnung-Wind-Onshore
[Netztransparenz 2019c] Netztransparenz: Online-Hochrechnung der tatsächlichen Erzeugung von Strom aus Windenergie Onshore. 2019 https://www.netztransparenz. de/EEG/Marktpraemie/Online-Hochrechnung-Wind-Onshore
[Rachow 2017] Rachow, Fabian: Prozessoptimierung für die Methanisierung von CO2 – vom Labor zum Technikum, Diss., 07 2017
[RAP 2015] RAP: Report on the German power system. 2015 (1.2 Study commissioned by Agora Energiewende)
[Robinius et al. 2015] Robinius, Martin ; Erdmann, G ; Stolten, Detlef: Strom-und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff / Lehrstuhl für Brennstoffzellen (FZ Jülich). 2015. – Forschungsbericht
[Ruhnau et al. 2019] Ruhnau, Oliver ; Bannik, Sergej ; Otten, Sydney ; Praktiknjo, Aaron ; Robinius, Martin: Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050. In: Energy 166 (2019), S. 989 – 999. – ISSN 0360–5442
[Sapountzi et al. 2017] Sapountzi, F.M. ; Gracia, Jose ; Weststrate, C ; Fredriksson, Hans ; Niemantsverdriet, Hans: Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. In: Progress in Energy and Combustion Science 58 (2017), 01, S. 1–35. http://dx.doi.org/10.1016/j.pecs.2016.09.001. – DOI 10.1016/j.pecs.2016.09.001
[Schermeyer 2018] Schermeyer, Hans: Netzengpassmanagement in regenerativ geprägten Energiesystemen, Karlsruher Institut für Technologie (KIT), Diss., 2018. http://dx.doi. org/10.5445/IR/1000086513. – DOI 10.5445/IR/1000086513. – 37.06.01; LK 01
[SH Netz 2019] SH Netz: Abgeschlossene Maßnahmen. Schleswig Holstein Netz AG, 2019 https://www.sh-netz.com/de/energie-einspeisen/einspeisemanagement/ veroeffentlichungen/abgeschlossene-massnahmen.html
[Simon et al. 2015] Simon, J. ; Ferriz, A.M. ; Correas, L.C.: HyUnder – Hydrogen Underground Storage at Large Scale: Case Study Spain. In: Energy Procedia 73 (2015), S. 136 – 144. – ISSN 1876–6102. – 9th International Renewable Energy Storage Conference,
IRES 2015
[Smolinka et al. 2011] Smolinka, Tom ; Günther, Martin ; Garche, Jürgen: Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus re- generativen Energien: NOW-Studie: Kurzfassung des Abschlussberichts. Fraunhofer ISE, 2011
[Stadtwerk Haßfurt 2019] Stadtwerk Haßfurt: POWER-TO-GAS ANLAGE. 2019
https://www.stwhas.de/stadtwerk/projekte/power-to-gas/


[Töpler et al. 2017] Töpler, Johannes ; Lehmann, Jochen ; Weizsäcker, Ernst Ulrich v.: Wasserstoff und Brennstoffzelle: Technologien und Marktperspektiven. Springer Vieweg, 2017
[Trimis et al. 2018] Trimis, Dimosthenis ; Harth, Stefan ; Gruber, Manuel: HELMETH Re- port Summary. https://cordis.europa.eu/result/rcn/237910_en.html. Version: Jul 2018
[Wanitschke u. Hoffmann 2019] Wanitschke, Alexander ; Hoffmann, Simon: Are battery electric vehicles the future? An uncertainty comparison with hydrogen and combustion engines. In: Environmental Innovation and Societal Transitions (2019). http://dx.doi.org/10.1016/j.eist.2019.03.003. – DOI 10.1016/j.eist.2019.03.003. –
ISSN 2210–4224
[Würfel 2017] Würfel, Philip: Unter Strom: Die neuen Spielregeln der Stromwirtschaft.
Springer, 2017
[Yilanci et al. 2009] Yilanci, A. ; Dincer, I. ; Ozturk, H.K.: A review on solar- hydrogen/fuel cell hybrid energy systems for stationary applications. In: Progress in Energy and Combustion Science 35 (2009), Nr. 3, 231 - 244. http://dx.doi.org/10.1016/j.pecs. 2008.07.004. – DOI 10.1016/j.pecs.2008.07.004. – ISSN 0360–1285
[Zech u. Lindner 2018] Zech, Lindner ; Lindner, B: Braucht Deutschland eine CO2-Steuer.
In: Energiewirtschaftliche Tagesfragen (2018), Nr. 10, S. 36–39
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top