跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/23 11:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許民艾
研究生(外文):Minhas Hussain
論文名稱:應用直徑分布模式推估惠蓀林場香杉人工林林分材積 量、生物量及碳貯存量
論文名稱(外文):Application of Diameter Distribution Model to Predict Volume, Aboveground Biomass and Carbon Storage for a Konishii Fir (Cunninghamia konishii) Plantation in Huisun Forest Station
指導教授:顏添明顏添明引用關係
指導教授(外文):Tian-Ming Yen
口試委員:陳朝圳陳建璋柳婉郁林增毅
口試委員(外文):Chaur-Tzuhn ChenJian- Zhang ChenWan-Yu LiuTzeng Yih Lam
口試日期:2021-07-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:60
中文關鍵詞:直徑分布Weibull機率密度函數生長異速模式香杉 (Cunninghamia konishii)材積地上部生物量碳貯存量
外文關鍵詞:Diameter distributionWeibull functionAllometric modelKonishii fir (Cunninghamia konishii)VolumeAboveground biomassCarbon storage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的在於推估香杉 (Cunninghamia konishii) 人工林之材積(volume (V))、地上部生物量 (aboveground biomass (AGB))和碳貯存量 (carbon storage (CST))。本研究位於台灣中部地區,地點位在南投縣惠孫林場。研究分為單木及林分層級進行。調查進行於2020年6月29日至7月2日,共設置4個0.05 ha之樣區,共計92株樣木。單木層級主要為探討胸高直徑 (diameter at breast height (DBH)) 與其他林木性狀值(如:林木潛在生長空間指數 (area potentially available for a tree (APA))、樹冠 (crown diameter (CD)) 和樹高 (tree height (H))之相關性,以Pearson 相關分析進行分析,並依據H-DBH之相關性建立樹高曲線式。在林分層級主要為採用直徑分佈模型 (diameter distribution model (DDM))及傳統模式 (traditional model (TM))推估V、AGB及CST。此外,每項性狀值將採用配對樣本t檢定 (paired sample t-test) 分析。結果顯示,在DBH的相關分析中,其與CD及DBH的相關性不顯著,但與H呈顯著相關,並適用於建立香杉人工林之樹高曲線式,其模式為 ln(H)= 2.222+0.289 ln(DBH)。而3參數Weibull 函數可以有效地量化直徑分佈,4個樣區皆通過Kolmogorov-Smirnov檢定。這也顯示Weibull 函數適用於發展DDM,並用於推估V、AGB 和 CST,其推估結果為依序為524.98 ±134.04 m3/ha、212.55 ±33.83 Mg/ha 和 105.42 ±16.89 Mg/ha。而TM在3者性狀值之推估的結果則依序為538.32 ±142.67 m3/ha、209.09 ±51.25 Mg/ha和 103.78 ±25.1 Mg/ha。DDM和TM所推估之性狀值皆無顯著差異,表示兩者模式推估結果相似。同時表示,DDM模式有較佳表現,可提供不同徑級之收穫資訊。因此,本研究推薦DDM推估收穫,以上結果與資訊提供未來森林經營管理參考。
The study purpose was to predict volume (V), aboveground biomass (AGB) and carbon storage (CST) for a Konishii fir (Cunninghamia konishii) plantation. This study was located at Huisun Forest Station of Nantou County located in central Taiwan. The framework of study consisted of individual tree and stand level. The survey was conducted from June 29 to July 2, 2020. Four plots, each with the area of 0.05 ha were established that had 92 sample trees in total were used in this study. In individual level, the aim was to identify the correlation between diameter at breast height (DBH) and major tree variables, such as the area potentially available for a tree (APA), crown diameter (CD) and tree height (H). The Pearson correlation analysis was used to inspect these correlations. By using correlation between DBH and tree height, the tree-height equation (H-DBH) was also developed. In stand level, was to predict V, AGB and CST by the diameter distribution model (DDM) and traditional model (TM). Moreover, each item predicted by these two methods were compared by paired sample t-test. The results showed that APA and CD were insignificantly correlated with the DBH, while H was significantly correlated with the DBH. The relationship between DBH and H was suitable for developing H-DBH equation and this model was built as: ln(H)= 2.222+0.289 ln(DBH) for Konishii fir of this study area. The 3-parameter Weibull function can effectively quantify diameter distribution because all plots passed the examination by the Kolmogorov-Smirnov test. It indicated the Weibull function was suitable for developing the diameter distribution model to predict V, AGB and CST. The V, AGB and CST were predicted to be 524.98 ±134.04 m3/ha, 212.55 ±33.83 Mg/ha and 105.42 ±16.89 Mg/ha by DDM; and 538.32 ±142.67 m3/ha, 209.09 ±51.25 Mg/ha and 103.78 ±25.1 Mg/ha by TM, respectively. Each item of V, AGB, CST was insignificantly different between DDM and TM, indicating the similar results were in prediction. Meanwhile, using DDM advantageous as it can provide more yield information in diameter classes. Therefore, the present study recommends the DDM in yield prediction. For the management of konishii fir plantation, this study could provide useful information.
Acknowledgement i
摘要 ii
Abstract iv
List of Contents vi
List of Tables viii
List of Figures ix
List of Abbreviations x
CHAPTER 1 – INTRODUCTION 1
1.1. Background 1
1.2. Study Purposes 4
CHAPTER 2 – LITERATURE REVIEW 5
2.1. Growth and Yield Model for Plantation Forest 5
2.2. Tree-Height Equation 7
2.3. Tree competition Measurement by Area Potentially Available for a tree 9
2.4. Diameter Distribution 10
2.5. Weibull Function 12
2.6. Growth and Yield Study for Konishii Fir and China Fir 13
CHAPTER 3 – METHODOLOGY 16
3.1. Study Area 16
3.2. Sampling Design and Survey 17
3.3. Instruments 17
3.4. Tree Level Analysis 18
3.4.1. Area Potentially Available for a Tree 18
3.4.2. Tree Crown Diameter Measurement 21
3.4.3. Tree-Height Equation 21
3.5. Stand Level Analysis 21
3.5.1. Research Framework 21
3.5.2. Diameter Distribution Model for Predicting volume
ABG and CST 23
3.5.2.1. Weibull Function 23
3.5.2.2. Parameter Estimation of Weibull Function
24
3.5.2.3. Kolmogorov-Smirnov Test Statistics 24
3.5.2.4. Growth and Yield Model 25
3.5.3. Traditional Method for Predicting volume, AGB and CST 26
3.6. Comparison of DDM and TM 26
3.7. Software 26
CHAPTER 4 – RESULTS AND DISCUSSION 27
4.1. Characteristics of Samples for Tree and Stand Level 27
4.2. Tree Level Analysis 28
4.2.1. Area Potentially Available for a Tree 28
4.2.2. Correlation of DBH and other Tree Variables 30
4.2.2.1. Correlation of DBH and APA 30
4.2.2.2. Correlation of DBH and Crown Diameter 31
4.2.2.3. Correlation of DBH and Height 32
4.2.3. Development of Tree-Height Equation for Konishii Fir 33
4.3. Stand Level Analysis 35
4.3.1. Parameter Estimation of Kolmogorov-Simonov Test 35
4.3.2. Estimation Procedure Using Diameter Distribution Method 37
4.3.3. Estimation of Volume, aboveground biomass and
carbon storage 40
4.3.4. Comparison of DDM and Traditional Model 41
CHAPTER 5 – CONCLUSION 44
Limitation 45
Recommendation 45
REFERENCES 46
Abellanas, B., Abellanas, M., Pommerening, A., Lodares, D., and Cuadros, S. (2016). A forest simulation approach using weighted Voronoi diagrams. An application to Mediterranean fir Abies pinsapo Boiss stands. Forest Systems 25(2).

Abino, A. C., Kim, S. Y., Lumbres, R. I. C., Jang, M. N., Youn, H. J., Park, K. H., and Lee, Y. J. (2016). Performance of Weibull function as a diameter distribution model for Pinus thunbergii stands in the eastern coast of South Korea. Journal of Mountain Science 13(5): 822-830.

Ajayi, S. (2013). Diameter Distribution for Gmelina Arborea (ROXB) Plantations in Ukpon River Forest Reserve, Cross River State, Nigeria. AFRREV STECH: An International Journal of Science and Technology 2(1): 64-82.

Allan, C., and Kerr, S. (2013). Examining patterns in and drivers of rural land use values. In Proceedings of the New Zealand Agricultural and Resource Economics Society Conference, Lincoln University, Canterbury, New Zealand: 28–30

Bailey, R. and Dell, T. (1973). Quantifying Diameter Distributions with the Weibull Function. Forest Science 19(2): 97–104.

Bailey, R. L. (1974). Weibull model for Pinus radiata diameter distribution. In Statistics in forestry research proceeding, 4th conference , Adv group forstry statistician IUFRO Vancouve 51-59

Bataineh, M. M. (2020). Aboveground carbon stock and distribution in managed and unmanaged mature, natural-origin, pine-hardwood forest stands. E–Gen. Tech. Rep. SRS–253. Asheville,NC: US Department of Agriculture, Forest Service, Southern Research Station 253: 279–286.

Bauhus, J., van der Meer, P., and Kanninen, M. (2010). Ecosystem goods and services from plantation forests. Routledge.

Borders, B.E., Souter, R. A., Bailey, R. L., and Ware, K. D. (1987). Percentile-based distributions characterize forest stand tables. Forest Science 33: 570–576.

Brown, G. S. (1965). Point density in stems per acre. Forest Research Institute, New Zealand Forest Service.

Buckman, R. E. (1962). Growth and yield of red pine in Minnesota. US Department of Agriculture., 1272).

Cao, Q. V. (2006). Predictions of individual-tree and whole-stand attributes for loblolly pine plantations. Forest Ecology and Management 236(2–3): 342–347.

Cao, Q V. (1981). Use of the Weibull function to predict future diameter distributions from cyrrent plot data. Proceedings of the 16th Biennal Silvicultural Research Conference 156: 53–58.

Cao, Q. V. (2004). Predicting parameters of a weibull function for modeling diameter distribution. Forest Science, 50(5), 682–685.

Carretero, A. C., and Álvarez, E. T. (2013). Modelling diameter distribution of Quercus suber L. stands in" Los Alcornocales" Natural Park (Cádiz-Malaga Spain) by using the two-parameter Weibull function. Forest Systems 22(1): 15–24.

Chen, Y. T. and Yen, T.M. (2018). Assessment of forest health for a Luanta-fir (Cunninghamia lanceolata var. konishii) plantation in Huisun Forest Experimental Station. Quarterly Journal of Forest Research 40 (1): 1-12.

Chuang, T. J., and Yen, T. M. (2017). Public views on the value of forests in relation to forestation projects—A case study in central Taiwan. Forest Policy and Economics, 78: 173-179

Chung, J. D., Lin, T. P., Tan, Y. C., Lin, M. Y., and Hwang, S. Y. (2004). Genetic diversity and biogeography of Cunninghamia konishii (Cupressaceae), an island species in Taiwan: a comparison with Cunninghamia lanceolata, a mainland species in China. Molecular phylogenetics and evolution 33(3): 791-801.

Chung, J. D., Chien, C. T., Nigh, G., and Ying, C. C. (2009). Genetic Variation in Growth Curve Parameters of Konishii fir (Cunninghamia lanceolata (Lamb.) Hook. var. Konishii). Silvae Genetica 58(1–6): 1–10.

Chung, J. D., Nigh, G., Chien, C. T., and Ying, C. C. (2011). Genetic Variation and Tree Improvement of Konishii fir (Cunninghamia lanceolata (Lamb.) Hook. var. Konishii) in Taiwan. Silvae Genetica, 60(1-6), 196–205.

Cieszewski, C. J., Zasada, M., Lowe, R. C., and Liu, S. (2021). Estimating Biomass and Carbon Storage by Georgia Forest Types and Species Groups Using the FIA Data Diameters, Basal Areas, Site Indices, and Total Heights. Forests 12(2): 141.

Clutter, J. L., and Bennett, F. A. (1965). Diameter distribution in old field slash pine plantation. SI: Georgia Forestry Resource Council. Georgia Forestry Resource Council 13(9).

Clutter, J. L., Fortson, J. C., Pienaar, L. V., Brister, G. H., and Bailey, R. L. (1983). Timber management: A quantitative approach. John Wiley and Sons, Inc.

Colbert, K. C., Larsen, D. R., and Lootens, J. R. (2002). Height-diameter equations for thirteen Midwestern bottomland hardwood species. Northern Journal of Applied Forestry 19(4): 171–176.

Curtis, R. O., Clendenen, G. W., and DEMARS, D. (1981). A new stand simulator for Coast Douglas-fir: DFSIM user’s guide. US Forest Service, Portland. Gen. Tech. Rep PNW-128.

Cutini, A., Chianucci, F., and Manetti, M. C. (2013). Allometric relationships for volume and biomass for stone pine in Italian Coastal Islands. IForest 6: 331–337.

Das, A., Battles, J., Stephenson, N. L., and van Mantgem, P. J. (2011). The contribution of competition to tree mortality in old-growth coniferous forests.
Forest Ecology and Management 261(7): 1203-1213.

Davis, L. S., and Johnson, K. N. (1987). Forest Management (3rd ed., Vol. 261). McGraw Hill. Inc.,. McGraw Hill

Davis, L. S., Johnson, K. N., Bettinger, P. S., and Howard, T. E. (2001). Forest Management (4th ed.). McGraw-Hill Book Company.

DeLiocourt F. (1898). De l’amenagement des Sapiniers. Bul. Soc. For. Franche-Comptéet Belfort 4: 396–409.

DeLioourt, F. (1900). l’amenagement des sapinieres. Société Forestière de Franche-Com- Té and Belfort 6: 369–405.
del Río, M., Bravo-Oviedo, A., Ruiz-Peinado, R., and Condés, S. (2019). Tree allometry variation in response to intra-and inter-specific competitions. Trees 33(1): 121-138.

Diamantopoulou, M. J., Özçelik, R., Crecente-Campo, F., and Eler, Ü. (2015). Estimation of Weibull function parameters for modelling tree diameter distribution using least squares and artificial neural networks methods. Biosystems Engineering 133: 33–45.

Dirnberger, G. F., and Sterba, H. (2014). A comparison of different methods to estimate species proportions by area in mixed stands. Forest Systems 23(3): 534–546.

Doyog, N. D., Lumbres, R. I. C., Calora Jr, F. G., Pampolina, N. M., Gamboa, M. D., Chichioco, D. S., and Lee, Y. J. (2020). Nonlinear Height-DBH Model Analysis For Three Tropical Tree Species In Mt. Makiling, Philippines. Journal of Sustainable Forestry 1–17.

Fang, Z., and Bailey, R. L. (1998). Height–diameter models for tropical forests on Hainan Island in southern China Chicago. Forest Ecology and Management 110(3): 315–327.

FAO. (2006). Global Forest Resource Assessment 2005. Food and Agriculture Organization (FAO,) United Nations, Rome.

FAO. (2020). Global Forest Resources Assessment 2020: Main report-Rome. https://doi.org/https://doi.org/10.4060/ca9825en

Farooq, T. H., Yan, W., Rashid, M. H. U., Tigabu, M., Gilani, M. M., Zou, X. H., and Wu, P. F. (2019). Chinese fir (Cunninghamia lanceolata) a green gold of China with continues decline in its productivity over the successive rotations: a review. Applied Ecology and Environmental Research 17(5): 11055–11067.

Fleming, R. A. (2001). The Weibull model and an ecological application: Describing the dynamics of foliage biomass on Scots pine. Ecological modelling 138(1-3): 309-319

Fonseca, T. F., Marques, C. P., and Parresol, B. R. (2009). Describing Maritime pine diameter distributions with Johnson’s sB distribution using a new all-parameter recovery approach. Forest Science 55(4): 367–373.

Gavrikov, V. L., Grabarnik, P. Y., and Stoyan, D. (1993). Trunk‐top relations in a Siberian pine forest. Biometrical Journal 35(4): 487-498.

Gorgoso-Varela, J. J., and Rojo-Alboreca, A. (2014). A comparison of estimation methods for fitting Weibull and Johnson’s SB functions to pedunculate oak (Quercus robur) and birch (Betula pubescens) stands in northwest Spain. Forest Systems 23(3): 500–505.

Green, P. J., and Sibson, R. (1978). Computing Dirichlet tessellations in the plane. The Computer Journal 21(2): 168–173.

Hatch, M. D., Kagawa, T., and Craig, S. (1975). Subdivision of C4-pathway species based on differing C4 acid decarboxylating systems and ultrastructural features. Functional Plant Biology 1(1): 111–128.

Hyink, D. M., and Moser, J. W. (1983). A generalized framework for projecting forest yield and stand structure using diameter distributions. Forest Science 29(1): 85-95.

Howard, A. F., and Valerio, J. (1992). A diameter class growth model for assessing the sustainability of silvicultural prescriptions in natural tropical forests. The Commonwealth Forestry Review: 171–177.

Huang, S., Titus, S. J., and Wiens, D. P. (1992). Comparison of nonlinear height–diameter functions for major Alberta tree species. Canadian Journal of Forest Research 22(9): 1297-1304.

Huang, C. S. (2006). Study on the introduction and management density of Taiwan excellent timber species Cunninghamia konishii. Joural of fujian Forestry Science and Technology 33(4): 8-12

Huang, K. L., Wang, C. H., Yen, T. M., and Li, L. E. (2015). Evaluation of the Applicablity of the weibull Probablity Density Function with Different Approaches for Diameter Distributions of Plantataions of Four Conifer Species. Taiwan Journal Forest Science 30(1): 1–13.

Huang, M. E. I., Ji, J., Li, K., Liu, Y., Yang, F., and Tao, B. O. (2007). The ecosystem carbon accumulation after conversion of grasslands to pine plantations in subtropical red soil of South China. Tellus B: Chemical and Physical Meteorology 59(3): 439–448.

Husch, B., Beers, T., and Kershaw J. Jr. (2003). Forest Mensuration. John willey and Sons.

International Panel on Climate Change (IPCC), 2019. Climate Change and Land: Summary for Policy Maker. IPCC

Jayaraman, K., and Zakrzewski, W. T. (2001). Practical approaches to calibrating height–diameter relationships for natural sugar maple stands in Ontario. Forest ecology and management 148(1-3): 169-177.

Jürgensen, C., Kollert, W., and Lebedys, A. (2014). Assessment of industrial roundwood production from planted forests. Planted Forests and Trees Working
Papers (FAO, eng no. FP/48/E.No Title.

Kramer, P. J., and Kozlowski, T. T. (1979). Physiology of woody plants. In New York.

Kuo, P. C. (1995). The precious 5 conifers of Taiwan. Chinese Forestry Association, Taipei Taowan, 509.

Lamolom, S. H., and Savidge, R. A. (2003). A reassesment of carbon in wood: Within between 41 North American species. Biomass and Bioenergy 25: 381–388.

Larocque, G. R., Luckai, N., Adhikary, S. N., Groot, A., Bell, F. W. and Sharma, M. (2013). Competition theory—science and application in mixed forest stands: review of experimental and modelling methods and suggestions for future research. Environmental Reviews 21(2): 71-84

Larsen, D. R., and Hann, D. W. (1987). Height-diameter equations for seventeen tree species in southwest Oregon. Corvallis, OR : Forest Research Laboratory, College of Forestry, Oregon State University.

Lei, Y. (2008). Evaluation of three methods for estimating the Weibull distribution parameters of Chinese pine (Pinus tabulaeformis). Journal of Forest Science 54(12): 566–571.

Li, D. J., Niu, S. L., and Luo, Y. Q. (2012). Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytologist 195(1): 172–181.

Lin, W. P. (2003). A Multiobjective Planning System for Forest Resource Management in Taiwan: A Case Study on Hui-Sun Forest Station (Doctoral dissertation, University of Hawaii at Manoa).

Lin, K. C., Wang, C. P., Huang, C. M., Horng, F. W., and Chiu, C. M. (2003). Estimates of biomass and carbon storage in two Taiwania plantations of Liukuei Experimental Forest. Taiwan Journal Forest Science 18(3): 85–94.

Lines, E. R., Zavala, M. A., Purves, D. W., and Coomes, D. A. (2012). Predictable changes in aboveground allometry of trees along gradients of tempera- ture, aridity and competition. Global Ecology Biogeographi 21(1): 1017–1028.

Liu, T. (1966). Study on the photogepgraphy of the conifers and Taxads of Taiwan. Bull. Taiwan Forest Research Institute, 122.

Liu, Y. C., Lin, W. Z., and Lin, W. Z. (1979). Silviculture of Timber Tree Species in Taiwan (in Chinese). National Chung Hsing Univeristy, College of Agriculture, Taichung, Taiwan.

Liu, Y. H., Lin, Z.R. and Yen, T. M. (2019). Comparison of biomass prediction by various approaches for a makino bamboo (Phyllostachys makinoi Hayata) plantation. Quarterly Journal of Chinese Forestry 41(3): 203-215

Luo, J. (2013). Study on the Correlated Models between Diameter of Breast Height and Tree Height of Cunninghamia konishii [J]. Conservation, Subtropical Soil and Water.

Lu, K. T., and Wu, J. W. (2011). Effects of UV curable urethane acrylate resins treatments on the physical properties of medium‐and small‐diameter softwoods. Journal of Applied Polymer Science 121(3): 1647-1653.

Lu, Y., Coops, N. C., Wang, T., and Wang, G. (2015). A process-based approach to estimate Chinese fir (Cunninghamia lanceolata) distribution and productivity in southern China under climate change. Forests 6(2): 360-379.

Meyer, H. A. (1952). Structure, growth, and drain in balanced uneven-aged forests. Journal of Forestry 50(2): 85–92.

Moore, J. A., Budelsky, C. A., and Schlesinger, R. C. (1973). A new index representing individual tree competitive status. Canadian Journal of Forest Research 3(4): 495–500.

Munro, D. D. (1974). Forest growth models-a prognosis. In Growth models for tree and stand simulation . Research Note 30 (Vol. 30,). Department of Forest Yield Research, Royal College of Forestry, Stockholm.

Nance, W. L., Land Jr, S. B., and Daniels, R. F. (1983). Concepts for analysis of intergenotypic competition in forest trees. Southern Forest Tree Improvement Conference, 131–145.

Nance, W., Grissom, J. E., and Smith, W. R. (1981). A new competition index based on weighted and constrained area potentially available. Forest Growth Modelling and Prediction, 134–142.

NCHU. (2021). Experimental station and forest plantation. Retrieved from https://www.nchu.edu.tw/default/mid/685 on 27th May 2021.

Nelson, T. (1964). Diameter Distribution and Growth of Loblolly Pine. Forest
Science 10(1): 105–114.

Nga, N. T. T., Dung, N. A., Chung, N. T., Thai, T. H., and Hung, N. D. (2016). The distribution and some ecological characteristics, and essential oil of Cunninghamia konishii Hayata in Pu Hoat nature reserve, Nghe An province, Vietnam. Engineering and Applied Science Research 43: 121–124.

Ogana, F. N. (2020). An evaluation of ten estimators for fitting two-parameter weibull function to Nigerian forest stands. Eurasian Journal of Forest Science: 8(2): 129–139.

Ogana, F. N., Itam, E. S., and Osho, J. S. (2017). Modeling diameter distributions
of Gmelina arborea plantation in Omo Forest Reserve, Nigeria with Johnson’s SB. J. Ournal of Sustainable Forestry 36(2): 121–133.

Opie, J. E. (1968). Predictability of individual tree growth using various definitions of competing basal area. Forest Science 14(3): 314–323.

Ou, J., Wu, Z., and Kang, Y. (2018). Growth simulation and quantity maturity of Cunninghamia konishii plantation in Fujian Province. Journal of Northeast Forestry University 46(4): 18–22.

Paquette, A., and Messier, C. (2010). The role of plantations in managing the world’s forests in the Anthropocene. Frontiers in Ecology and the Environment 8(1): 27–34.

Pelz, D.R. (1978). Estimating individual tree growth with tree polygons. In: J. Fries, H.E. Burkhart and T.A. Max (Editors), Growth Models for Long Term Forecasting of Timber Yields. FWS-1-78, School of Forestry and Wildlife Resources, Virginia Polytechnic Institute and State University, Blacksburg, VA, pp. 172-178.

Pogoda, P., Ochał, W., and Orzeł, S. (2019). Modeling diameter distribution of black alder (Alnus glutinosa (L.) Gaertn.) stands in Poland. Forests 10(5): 412.

Porté, A., and Bartelink, H. H. (2002). Modelling mixed forest growth: a review of models for forest management. Ecological Modelling 150(1–2): 141–188.

Pretzsch H. (2009). Forest dynamics, growth, and yield. In Forest dynamics, growth and yield. Springer, Berlin, Heidelberg, 1–39.

Qi, L., Liu, X., Jiang, Z., Yue, X., Li, Z., Fu, J., ..., and Shi, L. (2016). Combining diameter-distribution function with allometric equation in biomass estimates: a case study of Phyllostachys edulis forests in South Anhui, China. Agroforestry Systems, 90(6), 1113–1121.

Rogers, C. A. (1964). Packing and Covering. Cambridge Tracts in Mathematics and Mathematical Physics (54th ed.). Cambridge University Press.

Rojo, A., Diéguez-Aranda, U., Rodríguez-Soalleiro, R., and Von Gadow, K. (2005). Modelling silvicultural and economic alternatives for Scots pine (Pinus sylvestris L.) plantations in north-western Spain. Forestry 78(4): 385–401.

Rohlf, F. J., and Sokal, R. R. (1981). Biometry: the principles and practice of statistics in biological research. New York: Freeman

Rozas, V. (2015). Individual-based approach as a useful tool to disentangle the relative importance of tree age, size and inter-tree competition in dendroclimatic studies. IForest-Biogeosciences and Forestry 8(2): 187.

Rupšys, P., Narmontas, M., and Petrauskas, E. (2020). A Multivariate Hybrid Stochastic Differential Equation Model for Whole-Stand Dynamics. Mathematics, 8(12), 2230.

Rupšys, P., and Petrauskas, E. (2010a). Quantifying tree diameter distributions with one-dimensional diffusion processes. Journal of Biological Systems, 18(01), 205–221.

Russell, M. B., Burkhart, H. E., Amateis, R. L., and Prisley, S. P. (2012). Regional locale and its influence on the prediction of loblolly pine diameter distributions. Southern Journal of Applied Forestry 36(4): 198–203.

Sanquetta C. R., Behling, A., Corte, A. P. D. (2014). A model based on environmental factors for diameter distribution in black wattle in Brazil. PLoS ONE, 9(6), e100093.

Sharma, M., and Parton, J. (2007). Height–diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. Forest Ecology and Management 249(3): 187–198.

Sharma, R., Pradhan, L., Kumari, M., and Bhattacharya, P. (2020). Assessment of Carbon Sequestration Potential of Tree Species in Amity University Campus Noida. In Environmental Sciences Proceedings (Vol. 3, No. 1, p. 52). Multidisciplinary Digital Publishing Institute.

Soman, K. P., and Misra, K. B. (1992). A least square estimation of three parameters of a Weibull distribution. Microelectronics Reliability 32(3): 303–305.

Stage, A. R. (1975). Prediction of height increment for models of forest growth. Intermountain Forest and Range Experiment StationForest Service, US Department of Agriculture, 164.

Su, Y. C., Hsu, K. P., and Ho, C. L. (2018). Composition, in vitro Cytotoxicity, Anti-mildew and Anti-wood-decay Fungal Activities of the Bark Essential Oil of Cunninghamia lanceolata var. konishii from Taiwan. Natural Product Communications 13(6): 1934578X1801300632.

Taiwan Fortestry Bureau (TFB) (2021). Forest Resource Management. Retrieved from https://www.forest.gov.tw/EN/0002664 on 24th May 2021.

Teimouri, M., Doser, J. W., and Finley, A. O. (2020). ForestFit: An R package for modeling plant size distributions. Environmental Modelling and Software 131: 104668.

Uria-Diez, J., and Pommerening, A. (2017). Crown plasticity in Scots pine (Pinus
sylvestris L.) as a strategy of adaptation to competition and environmental factors. Ecological Modelling 356: 117–126.

Vanclay, J. K. (1994). Modelling forest growth and yield: applications to mixed tropical forests. CAB International.

Wagle, B. H., and Sharma, R. P. (2012). Modelling individual tree basal area growth of Blue pine (Pinus wallichiana) for Mustang district in Nepal. Forest Science and Technology 8(1): 21-27.

Wang, H., Wan, P., Wang, Q., Liu, L., Zhang, G., and Hui, G. (2017). Prevalence of inter-tree competition and its role in shaping the community structure of a natural mongolian Scots Pine (Pinus sylvestris var. mongolica) forest. Forests 8(3): 84.

Wang, M., Ramesh, N. I., and Rennolls, K. (2007). The Richit–Richards family of distributions and its use in forestry. Canadian journal of forest research 37(10): 2052-2062.

Weiskittel, A. R. (2014). Forest growth and yield models for intensively managed plantations. In The Management of Industrial Forest Plantations. In Springer, Dordrecht. (pp. 61–90).

Weiskittel, A. R., Hann, D. W., Kershaw Jr, J. A., and Vanclay, J. K. (2011). Forest growth and yield modeling. John Wiley and Sons.

West, P. W. (2006). Growing Plantation Forests. Springer-Verlag Berlin Heidelberg, Germany.

Yang, J. C., Lee, C. H., and Chiu, C. M. (1999). Genetic variation of wood density in Lunata firtested in central Taiwan. Wood and Fiber Science 33: 486–491.

Yao, R. T., Palmer, D. J., Payn, T. W., Strang, S., and Maunder, C. (2021). Assessing the Broader Value of Planted Forests to Inform Forest Management Decisions. Forests 12(6): 662.

Yen, T. M. (2016). Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing moso bamboo (Phyllostachy pubescens). Botanical studies 57(1): 1-9.

Yen, T. M., and Wang, C. T. (2013). Assessing carbon storage and carbon sequestration for natural forests, man-made forests, and bamboo forests in Taiwan. International Journal of Sustainable Development & World Ecology 20(5): 455-460.

Yen, T. M., Huang, K. L., Li, L. E., and Wang, C. H. (2020). Assessing Carbon Sequestration in Plantation Forests of important Conifers based on the System of Permanent Sample Plots across Taiwan. Jurnal of Sustainable Forestry 39(4): 392–406.

Yen, T., Ai, L., Li, C., Lee, J., and Huang, K. (2009). Aboveground carbon contents and storage of three major Taiwanese conifer species. Taiwan Journal of Forest Science 24(2): 91-102.

Yen, T. M., Ji, Y. J., and Lee, J. S. (2010). Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. Forest Ecology and Management 260(3): 339–344.

Yen, T. M., and Lee, J. S. (2011). Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. Forest Ecology and Management, 261(6), 995-1002.

Yen, T.M., Lee, J.S., Huang, K.L., and Liu, C.C. (2004) Tree growth and biomass of a mature China-fir (Cunninghamia lanceolata) plantation. Quarterly Journal of Chinese Forestry 37(2): 157-168.

Yen, T.M., Lee, J.S., and Huang, K.L. (2008). Growth and yield models for thinning demostration zones of Taiwan red cypress (Chamaecyparis formosensis Matsum) and Japanese cedar (Cryptomeria japonica D. Don) plantations in Central Taiwan. Quarterly Journal of Forestry Research 30(3) 31-40.

Yen, T. M., and Wang, C. T. (2013). Assessing carbon storage and carbon sequestration for natural forests, man-made forests, and bamboo forests in Taiwan. International Journal of Sustainable Development and World Ecology 20(5): 455–460.

Yuan, H. W., Ding, T. S., Lu, D. J., and Heieh, H. I. (2005). Monitoring avian community composition in the forest ecosystem management demonstration areas. Journal of the Experimental Forest of National Taiwan University 19(2): 77–87.

Zanakis, S. H. (1979). A simulation study of some simple estimators for the three-parameter Weibull distribution. Journal of statistical computation and simulation 9(2): 101-116.

Zasada, M., and Cieszewski, C. J. (2005). A finite mixture distribution approach for characterizing tree diameter distributions by natural social class in pure even-aged Scots pine stands in Poland. Forest Ecology and Management 204(2–3): 145-158.

Zhang, L., Moore, J. A., and Newberry, J. D. (1993). A whole-stand growth and yield model for interior Douglas-fir. Western Journal of Applied Forestry 8(4): 120-125.

Zhang, L., Packard, K. C., and Liu, C. (2003). A comparison of estimation methods for fitting Weibull and Johnson’s SB distributions to mixed spruce fir stands in northeastern North America. Canadian Journal of Forest Research 33(7): 1340–1347.

Zhang, X. Q., Kirschbaum, M. U., Hou, Z., and Guo, Z. (2004). Carbon stock changes in successive rotations of Chinese fir (Cunninghamia lanceolata (lamb) hook) plantations. Forest ecology and management 202(1-3): 131-147.

Zhou, L., Shalom, A. D. D., Wu, P., Li, S., Jia, Y., and Ma, X. (2015). Litterfall production and nutrient return in different-aged Chinese fir (Cunninghamia lanceolata) plantations in South China. Journal of Forestry Research 26(1): 79–89.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊