|
[1]M. M. Tajiki, S. Salsano, L. Chiaraviglio, M. Shojafar and B. Akbari, “Joint energy efficient and QoS-aware path allocation and VNF placement for service function chaining,” IEEE Trans. Netw. Service Manag., vol. 16, no. 1, pp. 374-388, Mar. 2019. [2]X. Chen, Z. Li, Y. Zhang, R. Long, H. Yu, X. Du and M. Guizani, “Reinforcement learning–based QoS/QoE-aware service function chaining in software-driven 5g slices,” Trans. Emerg. Telecommun. Technol., vol. 29, no. 11, pp. e3477, 2018. [3]R. Huang and E. Masanet, “Data center IT efficiency measures,” Nat. Renew. Energy Lab. (NREL), Golden, CO, USA, Rep. NREL/SR–7A40-63181, 2015. [4]G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao and F. Zhao, “Energy-aware server provisioning and load dispatching for connection-intensive Internet services”, in Proc. 5th USENIX Symp. Netw. Syst. Design Implement., San Francisco, CA, USA, 2008, pp. 337–350. [5]B. Kar, E. H.-K. Wu and Y.-D. Lin, “Energy cost optimization in dynamic placement of virtualized network function chains,” IEEE Trans. Netw. Service Manag., vol. 15, no. 1, pp. 372-386, Mar. 2018. [6]S. Kim, S. Park, Y. Kim, S. Kim and K. Lee, “VNF-EQ: dynamic placement of virtual network functions for energy efficiency and QoS guarantee in NFV,” Cluster Comput 20, 2107–2117 (2017). [7]M. M. Tajiki, M. Shojafar, B. Akbari, S. Salsano, M. Conti, M. Singhal, “Joint failure recovery, fault prevention, and energy-efficient resource management for real-time SFC in fog-supported SDN,” Comput. Netw., vol. 162, article 106850, Oct. 2019. [8]G. Li, B. Feng, H. Zhou, Y. Zhang, K. Sood and S. Yu, “Adaptive service function chaining mappings in 5G using deep Q-learning,” Comput. Commun., vol. 152, pp. 305-315, Feb. 2020. [9]T. Subramanya, D. Harutyunyan and R. Riggio, “Machine learning-driven service function chain placement and scaling in MEC-enabled 5G networks,” Comput. Netw., vol. 166, Jan. 2020. [10]F. Z. Yousaf, M. Bredel, S. Schaller, F. Schneider, “NFV and SDN – key technology enablers for 5G networks,” IEEE J Sel Areas Commun., vol. 35, no. 11, pp. 2468-2478, Nov. 2017. [11]B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, N. McKeown, “ElasticTree: Saving energy in data center networks,” in Proc. 7th USENIX Symposium Netw. Syst. Design Implement. (NSDI), San Jose, CA, USA, pp. 249–264, Apr. 2010. [12]P. Reichl, S. Egger, R. Schatz, A. D’Alconzo, “The logarithmic nature of QoE and the role of the Weber-Fechner law in QoE assessment,” Paper presented at: 2010 IEEE International Conference on Communications (ICC); 2010; Cape Town, South Africa. [13]M. Fiedler, T. Hossfeld, P. Tran-Gia, “A generic quantitative relationship between quality of experience and quality of service,” IEEE Netw., vol. 24, no. 2, pp. 36-41, Mar.-Apr. 2010. [14]R. Bellman, “Dynamic Programming,” publisher: Dover Publications, ISBN-10: 0-486-42809-5, 4 Mar. 2003. [15]V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing Atari with Deep Reinforcement Learning,” CoRR abs/1312.5602, 19 Dec 2013. [16]V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabisk, “Human-level control through deep reinforcement learning,” Nat., vol. 518, number 7540, pp. 529-533, 2015. [17]R. S. Sutton and A. G. Barto, “Reinforcement learning: an introduction,” Cambridge, MA: MIT Press, 1998. [18]G. T. Fechner, “Elements of psychophysics,” Holt, Rinehart and Winston, Nov 1966.
|