跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 05:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭鈺潔
研究生(外文):Yu-Chieh Cheng
論文名稱:消費者對循環經濟產品之願付價格分析-以生物炭為例
論文名稱(外文):Consumers' Willingness to Pay for Circular-Economy Products : the Study of Biochar in Taiwan
指導教授:楊育誠
口試委員:李娓瑋楊上禾
口試日期:2021-06-22
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農業經濟與行銷碩士學位學程
學門:農業科學學門
學類:農業經濟及推廣學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:45
中文關鍵詞:生物炭條件評估法願付價值支付卡法
外文關鍵詞:BiocharContingent Valuation Methodwillingness to paypayment card method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以生物炭為例,調查消費者對循環經濟產品的支付意願,我們採用支付卡法來估計消費者對生物炭產品的願付價格並研究可能影響願付價格的因素。實證結果顯示,消費者對生物炭的感知對其生物炭產品的支付意願有顯著影響,消費者越認同生物炭可以調節土壤酸鹼農度和碳含量,他們就越願意為生物炭產品買單,此外,結果還顯示,我們應該強調生物炭是循環經濟的產物,而不是廢棄物回收。本研究區間回歸法結果顯示,消費者對生物炭產品的支付意願為每公斤$80.1335元。
This study aims to investigate the consumers' willingness to pay for circular-economy products by using biochar as an example. We use payment card method to estimate the consumers' willingness to pay of biochar products the empirical results show that consumers’ perception toward biochar have significant effect on their willingness to pay for biochar products. The more consumers agree with that biochar can improve PH adjustment and carbon content in soil, the more they are willing to pay for biochar products. in addition, the results also show us that we should emphasize that biochar is a product of circular-economy, not a waste- recycle. The results from interval regression method indicate that consumers’ willingness to pay biochar product is $80.1335 per kilogram.
摘要 i
ABSTRACT ii
目次 iii
表目次 iv
圖目次 iv
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機與目的 4
第三節 研究流程 5
第二章 文獻回顧 6
第一節 循環經濟 6
第二節 生物炭之文獻回顧 7
第三節 條件評估法 10
第三章 研究方法 15
第一節 區間回歸模型 15
第二節 問卷設計 17
第三節 變數設定 19
第四章 實證結果 24
第一節 敘述性統計分析 24
第二節 實證結果 30
第三節 願付價值之估計結果 35
第五章 結論與建議 37
第一節 研究結論 37
第二節 研究建議 38
第三節 研究限制與未來研究方向 39
參考資料 40
一、中文部分 40
二、西文部分 41
一、中文部分
黃育徵. (2017). 循環經濟 (Vol. 70): Common Wealth Magazine Ltd.
柳婉郁, & 盧佩渝. (2017). 農業部門多功能效益評估方法之分析. Journal of Agriculture and Forestry, 65(3), 137-164.
蔡佳儒, & 吳耿東. (2016). 臺灣農業廢棄物製備生物炭之未來與展望. 農業生技產業季刊(46), 24-28.
林錦盛, 藍浩繁, & 林德財. (2009). 機械製炭爐之設計原則. 林業研究專訊, 16(6), 52-54.
簡士濠,2020,生物炭複合緩釋肥之應,林業叢刊第291號_臺灣生物炭產製與農業應用指南,p52-60。
陳琦玲,2020,生物炭碳匯效益,林業叢刊第291號_臺灣生物炭產製與農業應用指南,p102-109。
臺灣農業科技資源運籌管理學會,2020,生物炭產制成本與消費調查。
臺灣農業科技資源運籌管理學會,2017,生物炭產業國際趨勢報告。
姚宗銘,2014,商業化生物炭窯操作效能之評估—以金超耘公司先驅機型為例,環球科技大學環境資源管理所,碩士論文。
劉麗惠,2016,借鏡全球找出臺灣經濟循環之路,貿易雜誌。
Circular Taiwan Network循環臺灣基金會。
行政院農業委員林業試驗所,2018,利用農業廢棄資材開發「生物炭」,農學報導。
行政院,性別平等會。https://www.gender.ey.gov.tw/gecdb/Stat_Statistics_Query.aspx?sn=Mm4ACreYMwEr7cuT6no39g%40%40&statsn=MUwvQW33tN8mhRl94KFn2g%40%40&d=&n=89532
吳盛忠,2015,廢棄物管理未來展望從資源循環至循環經濟,綠基金會通訊,40:2-6。https://www.tgpf.org.tw/upload/publish/publish_78/%E5%BB%A2%E6%A3%84%E7%89%A9%E7%AE%A1%E7%90%86%E6%9C%AA%E4%BE%86%E5%B1%95%E6%9C%9B-%E5%BE%9E%E8%B3%87%E6%BA%90%E5%BE%AA%E7%92%B0%E8%87%B3%E5%BE%AA%E7%92%B0%E7%B6%93%E6%BF%9F.pdf


二、西文部分
Allen, R. L. (1847). A brief compend of American agriculture: CM Saxton.
An, X., Wu, Z., Shi, W., Qi, H., Zhang, L., Xu, X., & Yu, B. (2020). Biochar for simultaneously enhancing the slow-release performance of fertilizers and minimizing the pollution of pesticides. Journal of Hazardous Materials, 124865.
Baranzini, A., Faust, A.-K., & Huberman, D. (2010). Tropical forest conservation: Attitudes and preferences. Forest policy and economics, 12(5), 370-376.
Barros, M. V., Salvador, R., de Francisco, A. C., & Piekarski, C. M. (2020). Mapping of research lines on circular economy practices in agriculture: From waste to energy. Renewable and Sustainable Energy Reviews, 131, 109958.
Bis, Z., Kobyłecki, R., Ścisłowska, M., & Zarzycki, R. (2018). Biochar–Potential tool to combat climate change and drought. Ecohydrology & Hydrobiology, 18(4), 441-453.
Bishop, R. C., & Heberlein, T. A. (1979). Measuring values of extramarket goods: Are indirect measures biased? American journal of agricultural economics, 61(5), 926-930.
Bonanomi, G., Jesu, G., Zotti, M., Idbella, M., d'Errico, G., Laudonia, S., . . . Abd-ElGawad, A. (2021). Biochar-derived smoke-water exerts biological effects on nematodes, insects, and higher plants but not fungi. Science of The Total Environment, 750, 142307.
Börger, T. (2013). Keeping up appearances: Motivations for socially desirable responding in contingent valuation interviews. Ecological Economics, 87, 155-165.
Boulding, K. (1966). E., 1966, the economics of the coming spaceship earth. New York.
Buss, W., Assavavittayanon, K., Shepherd, J. G., Heal, K. V., & Sohi, S. (2018). Biochar phosphorus release is limited by high ph and excess calcium. Journal of environmental quality, 47(5), 1298-1303.
Cameron, T. A., & Huppert, D. D. (1989). OLS versus ML estimation of non-market resource values with payment card interval data. Journal of environmental economics and management, 17(3), 230-246.
Cameron, T. A., & James, M. D. (1987). Efficient estimation methods for" closed-ended" contingent valuation surveys. The review of economics and statistics, 269-276.
Challcharoenwattana, A., & Pharino, C. (2016). Wishing to finance a recycling program? Willingness-to-pay study for enhancing municipal solid waste recycling in urban settlements in Thailand. Habitat International, 51, 23-30.
Chen, B., & Qi, X. (2018). Protest response and contingent valuation of an urban forest park in Fuzhou City, China. Urban Forestry & Urban Greening, 29, 68-76.
Ciriacy-Wantrup, S. V. (1947). Capital returns from soil-conservation practices. Journal of farm economics, 29(4), 1181-1196.
Damigos, D., Menegaki, M., & Kaliampakos, D. (2016). Monetizing the social benefits of landfill mining: Evidence from a Contingent Valuation survey in a rural area in Greece. Waste Management, 51, 119-129.
Hall, A. (1910). The fertility of the soil. Science, 32(820), 363-371.
He, L.-L., ZHONG, Z.-k., & YANG, H.-m. (2017). Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers. Journal of integrative agriculture, 16(3), 704-712.
Ippolito, J., Stromberger, M., Lentz, R., & Dungan, R. (2014). Hardwood biochar influences calcareous soil physicochemical and microbiological status. Journal of environmental quality, 43(2), 681-689.
Jirka, S., & Tomlinson, T. (2014). 2013 State of the Biochar Industry. International Biochar Initiative.
Jirka, S., & Tomlinson, T. (2015). State of the biochar industry 2014. A Survey of Commercial Activity in the Biochar Sector. International Biochar Initiative. Available online at https://biochar-international. org/wp-content/uploads/2018/11/ibi_state_of_the_industry_2014_final. pdf (verified on June 27, 2019).
Kizito, S., Luo, H., Lu, J., Bah, H., Dong, R., & Wu, S. (2019). Role of nutrient-enriched biochar as a soil amendment during maize growth: exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability, 11(11), 3211.
Kramer, R. A., & Mercer, D. E. (1997). Valuing a global environmental good: US residents' willingness to pay to protect tropical rain forests. Land Economics, 196-210.
Kulyk, N. (2012). Cost-benefit analysis of the biochar application in the US cereal crop cultivation.
Lefroy, J. H. (1883). Remarks on the chemical analyses of samples of soil from Bermuda.
Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., . . . Paz-Ferreiro, J. (2013). Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant and soil, 373(1), 583-594.
Ma, H., Wen, M., Xu, L., & Zhang, Z. (2021). Contingent valuation of road traffic noise: A case study in China. Transportation Research Part D: Transport and Environment, 93, 102765.
Mahieu, P.-A., Riera, P., & Giergiczny, M. (2012). Determinants of willingness-to-pay for water pollution abatement: a point and interval data payment card application. Journal of environmental management, 108, 49-53.
Majumder, S., Neogi, S., Dutta, T., Powel, M. A., & Banik, P. (2019). The impact of biochar on soil carbon sequestration: Meta-analytical approach to evaluating environmental and economic advantages. Journal of environmental management, 250, 109466.
Manyà, J. J., Azuara, M., & Manso, J. A. (2018). Biochar production through slow pyrolysis of different biomass materials: Seeking the best operating conditions. Biomass and Bioenergy, 117, 115-123.
Portney, P. R. (1994). The contingent valuation debate: why economists should care. Journal of Economic perspectives, 8(4), 3-17.
Sheng, Y., Zhan, Y., & Zhu, L. (2016). Reduced carbon sequestration potential of biochar in acidic soil. Science of The Total Environment, 572, 129-137.
Thomas, M., Jensen, K., Clark, C., Lambert, D., English, B., & Walker, F. (2019). Consumers' Willigness to Pay for Potting Mix with Biochar.
Van Zwieten, L., Kimber, S., Morris, S., Chan, K., Downie, A., Rust, J., . . . Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and soil, 327(1), 235-246.
Zhang, Y., Wang, J., & Feng, Y. (2021). The effects of biochar addition on soil physicochemical properties: A review. Catena, 202, 105284.
Jessica Murray,2019,This dark material: the black alchemy that can arrest carbon emissions, Support The Guardian. https://www.theguardian.com/environment/2019/nov/29/this-dark-material-the-black-alchemy-that-can-arrest-carbon-emissions
United Nations, 2019年世界人口前景https://www.un.org/en/sections/issues-depth/population/index.html
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊