跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/28 00:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:堯沛瑜
研究生(外文):Pei-Yu Yao
論文名稱:同時具有充電功率100W效率82%的共振式無線充電系統
論文名稱(外文):Resonance Wireless Power Transfer System with Output Power 100 W and Efficiency of 82%
指導教授:許恒銘
指導教授(外文):Heng-Ming Hsu
口試委員:黃尊禧林昭志
口試委員(外文):Tzuen-Hsi HuangJau-Jr Lin
口試日期:2020-07-31
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:76
中文關鍵詞:無線傳能(WPT)匹配網路最大效率高輸出功率E類功率放大器E類整流器共振線圈
外文關鍵詞:Wireless Power TransferMatching NetworkMaximum EfficiencyHigh Output PowerClass-E Power AmplifierClass-E RectifierResonance Coil
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是分析與設計一組同時具有高效率以及高輸出功率的MHz頻率無線傳能(WPT)系統。為了要使系統高效率,傳送端的設計很重要,除了設計好E類功率放大器,此論文藉由匹配網路使系統負載壓縮在一定值實部範圍內使在寬負載範圍下維持高效率。
本論文完成一個含有傳送端(TX)、共振線圈(Resonator)以及接收端(RX)的無線傳能系統,其操作頻率為6.78MHz,其規格符合AirFuel聯盟所規範。傳送端的設計為E類功率放大器、線圈設計為共振電路以及接收端的設計為E類整流器,每一部分在本論文都會詳細的介紹與分析,最後整合整體系統電路完成無線傳能系統並且實作完成。此系統在實驗結果顯示在線圈耦合距離7公分其負載電阻為7Ω時,其效率最高可以達到82.5%且輸出功率為100W。且在不同負載範圍為4~25Ω其效率皆有75%,並且設計目標為可以應用在電動腳踏車的無線充電上面。
This paper mainly analyzes and designs a group of MHz frequency wireless power transmission (WPT) systems with high efficiency and high output power. In order to make the system high efficiency, the design of the transmitter is very important. In addition to designing a class E power amplifier, this paper uses a matching network to compress the system load within a certain real part range to maintain high efficiency under a wide-range load.
This paper completed a wireless energy transmission system that includes a transmitter (TX), a resonance coils (Resonator) and a receiver (RX). This operating frequency is 6.78MHz, and specifications are based on AirFuel Alliance specifications. The design of the transmitter is a class E power amplifier, the coil is designed a resonant circuit, and the design of the receiver is a class E rectifier. Each part will be introduced and analyzed in detail in this paper. Finally, the overall system circuit is integrated to complete the wireless power transmission system and the experiment is finish. The experiment results of this system show that when the coil coupling distance is 7 cm and the load resistance is 7 Ω, its efficiency can reach up to 82.5% and the output power is 100W. And the efficiency is 75% in different load ranges from 4 to 25Ω. The design goal is to be applied to the wireless charging of electric bicycles.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 序論 1
1-1 前言 1
1-2 文獻回顧 3
1-3 論文大綱 5
第二章 E類功率放大器理論 7
2-1 E類功率放大器原理簡介 7
2-2 E類功率放大器分析與設計 9
2-2-1 E類功率放大器分析 9
2-2-2 E類功率放大器設計 15
2-3 匹配網路 17
2-3-1 匹配網路分析與設計 17
2-4 改良E類功率放大器架構 20
2-4-1 全波E類功率放大器架構 21
2-5 E類功率放大器結果分析 22
第三章 耦合線圈理論 25
3-1 線圈基本性質 25
3-2 線圈最佳化分析 27
3-2-1 各類型線圈比較 28
3-3 線圈效率與阻抗分析 31
第四章 E類整流器理論 35
4-1 理想E類整流器原理 35
4-2 E類整流器之設計 37
4-2-1 E類整流器電路分析 37
4-2-2 E類整流器阻抗分析 43
4-3 全波E類整流器 45
4-4 E類整流器結果分析 48
第五章 無線傳能之全系統分析 51
5-1 線圈與傳送端連接 51
5-2 無線傳能全系統分析 54
5-3 無線傳能系統設計流程 59
第六章 無線傳能全系統電路實作與量測 61
6-1 電路板設計與佈局 61
6-2 系統實作與量測結果 66
第七章 總結與未來展望 70
7-1 結論 70
7-2 未來展望 70
附錄 A 72
參考文獻 73
[1]Kurs, Andre, et al. "Wireless power transfer via strongly coupled magnetic resonances." Science, vol. 317, no. 5834, pp. 83-86,2007.
[2]M. Manoufali, K. Bialkowski, B. Mohammed and A. Abbosh, "Wireless power link based on inductive coupling for brain implantable medical devices," in IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 1, pp. 160-163, Jan. 2018.
[3]T. Campi, S. Cruciani, M. Feliziani and A. Hirata, "Wireless power transfer system applied to an active implantable medical device," 2014 IEEE Wireless Power Transfer Conference, Jeju, 2014, pp. 134-137.
[4]A. Ahmad, M. S. Alam and R. Chabaan, "A comprehensive review of wireless charging technologies for electric vehicles," in IEEE Transactions on Transportation Electrification, vol. 4, no. 1, pp. 38-63, March 2018.
[5]M. Debbou and F. Colet, "Inductive wireless power transfer for electric vehicle dynamic charging," 2016 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Knoxville, TN, 2016, pp. 118-122.
[6]Q. Zhu, Y. Zhang, C. Liao, Y. Guo, L. Wang and F. Li, "Experimental study on asymmetric wireless power transfer system for electric vehicle considering ferrous chassis," in IEEE Transactions on Transportation Electrification, vol. 3, no. 2, pp. 427-433, June 2017.
[7]P. S. Riehl et al., "Wireless power systems for mobile devices supporting inductive and resonant operating modes," in IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 3, pp. 780-790, March 2015.
[8]C. Wu, H. Kim, A. Huang, J. Fan, S. Pan and T. Li, "An investigation of electromagnetic radiated emissions from wireless charging system for mobile device using Qi standard," 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI), Long Beach, CA, 2018, pp. 483-488.
[9]A. Satyamoorthy et al., "Wireless power receiver for mobile devices supporting inductive and resonant operating modes," 2014 IEEE Wireless Power Transfer Conference, Jeju, 2014, pp. 52-55.
[10]N. O. Sokal, A. D. Sokal, “Class-Ε-a new class of high efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, pp. 168-176, June 1975.
[11]A. Grebennikov, and N. O. Sokal, Switchmode RF Power Amplifiers. Oxford, U.K.: Newnes, 2007.
[12]S. Liu, M. Liu, S. Yang, C. Ma, X. Zhu, "A novel design methodology for high-efficiency current-mode and voltage-mode Class-E power amplifiers in wireless power transfer systems", IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4514-4523, May 2017.
[13]S.Y. R. Hui, W. Zhong, and C.K. Lee, “A critical review of recent progress in mid-range wireless power transfer,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4512–4520, Sep. 2014.
[14]M. Pinuela, D. C. Yates, S. Lucyszyn, and P. D. Mitcheson, “Max-imizingdc-to-load efficiency for inductive power transfer,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2437–2447, May 2013.
[15]G. Kkelis, J. Lawson, D. C. Yates, M. Pinuela, and P. D. Mitcheson,“Integration of a Class-E low dv/dt rectifer in a wireless power transfer system,” in Proc. IEEE Wireless Power Transf. Conf., May 2014,pp. 72–75.
[16]S. Aldhaher, G. Kkelis, D. C. Yates, and P. D. Mitcheson, “Class EF2 inverters for wireless power transfer applications,” in Proc. IEEE WirelessPower Transf. Conf., May 2015, pp. 1–4.
[17]J. M. Arteaga, S. Aldhaher, G. Kkelis, D. C. Yates, and P. D. Mitcheson,“Design of a 13.56 MHz IPT system optimised for dynamic wireless charging environments,” in Proc. 2nd IEEE Annu. Southern Power Electron. Conf., Dec. 2016, pp. 1–6.
[18]M. Fu, H. Yin, M. Liu, and C. Ma, “Loading and power control for a high-efficiency Class E PA-driven megahertz WPT system,” IEEE Trans. Ind. Electron., vol. 63, no. 11, pp. 6867–6876, Nov. 2016.
[19]D. Ahn and P. Mercier, “Wireless power transfer with concurrent 200-kHz and 6.78-MHz operation in a single-transmitter device,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 5018–5029, Jul. 2016. 2016.
[20]H.-M. Hsu, K.-Y. Chan, H.-C. Chien, and H.-C. Kuan, “Analytical design algorithm of planar inductor layout in CMOS technology,” IEEE Trans. Electron Devices, vol. 55, no. 11, pp. 3208–3213, Nov. 2008.
[21] Z. Kaczmarczyk and W. Jurczak, "A pushpull Class-E inverter with improved efficiency," IEEE Transactions on Industrial Electronics, vol.55, pp. 1871-1874, April 2008.
[22]M. Kazimierczuk, "Class E low dvd/dt rectifier," IEEE Trans. Power Electron., vol. 136, no. 6, pp. 257–262, Nov. 1989.
[23]M. Liu, M. Fu and C. Ma, "Parameter design for a 6.78-MHz wireless power transfer system based on analytical derivation of Class E current-driven rectifier," in IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4280-4291, June 2016.

[24]M. Fu, Z. Tang, M. Liu, C. Ma, X. Zhu, "Full-bridge rectifier input reactance compensation in megahertz wireless power transfer systems", IEEE PELS Workshop Emerging Technologies Wireless Power, Jun. 2015.
[25]M. Liu, M. Fu and C. Ma, "Low-Harmonic-Contents and High-Efficiency Class E Full-Wave Current-Driven Rectifier for Megahertz Wireless Power Transfer Systems," in IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 1198-1209, Feb. 2017
[26]Wireless Power Transfer System Over a Wide Range of Mutual Inductance," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 11, pp. 4317-4325, Nov. 2017 [26] Wireless Power Transfer System Over a Wide Range of Mutual Inductance," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 11, pp. 4317-4325, Nov. 2017
[27]Y. Akuzawa, K. Tsuji, H. Matsumori, Y. Ito, T. Ezoe and K. Sakai, "A 95% efficient inverter with 300-W power output for 6.78-MHz magnetic resonant wireless power transfer system," 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, 2015, pp. 1-3
[28]J. M. Arteaga, S. Aldhaher, G. Kkelis, D. C. Yates, P. D. Mitcheson, "Multi-MHz IPT systems for variable coupling", IEEE Trans. Power Electron., vol. PP, no. 99, pp. 1-1, 2017
[29]M. Liu, Y. Qiao, S. Liu, C. Ma, "Analysis and design of a robust class E2 DC-DC converter for megahertz wireless power transfer", IEEE Transactions on Power Electronics, vol. 32, no. 4, pp. 2835-2845, April 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊