|
[1] J. Iannacci, ‘‘RF-MEMS technology as an enabler of 5G: Low-loss ohmic switch tested up to 110 GHz,’’ Sens. Actuators A, Phys., vol. 279, pp. 624–629, Aug. 2018. [2] Application of MEMS in radio frequency wireless communication [3] G. M. Rebeiz and J. B. Muldavin, ‘‘RF MEMS switches and switch circuits,’’ IEEE Microw. Mag., vol. 2, no. 4, pp. 59–71, Dec. 2001. [4] F. Ke, J. Miao, and J. Oberhammer, ‘‘A ruthenium-based multi metal contact RF MEMS switch with a corrugated diaphragm,’’ J. Microelec- tromech. Syst., vol. 17, no. 6, pp. 1447–1459, Dec. 2008. [5] W.Tian,P.Li,and L.Yuan,‘‘Research and analysis of MEMS switches in different frequency bands,’’ Micromachines, vol. 9, no. 4, p. 185, 2018. [6] C.-H. Chu, W.-P. Shih, S.-Y. Chung, H.-C. Tsai, T.-K. Shing, and P.-Z. Chang, ‘‘A low actuation voltage electrostatic actuator for RF MEMS switch applications,’’ J. Micromech. Microeng., vol. 17, p. 1649, Jul. 2007. [7] L. Y. Ma, ‘‘Design and analysis of novel low-voltage low loss RF- MEMS switch,’’ Ph.D. dissertation, Dept. Elect. Eng., Univ. Malaya, Kuala Lumpur, Malaysia, 2018. [8] Integrated Circuit (IC) Construction, History & Types [9] S. Aceta, C. Y. Chang and R. W. Vook, "Hillock growth on aluminum and aluminum alloy films," Thin SolidFilms219, 80-86 (1992). [10] N. Kristensen, F. Ericson, J.-A. Schweitz and U. Smith, "Grain collapse in strained aluminum thin films," J Appl. Phys. 69, 2097-2104 (1991). [11] U. Smith, N. Kristensen, F. Ericson and J.-A. Schweitz, "Local stress relaxation phenomena in thin aluminum films," J Vac. Sci. Technol.A 9, 2527-2535 (1991). [12] Kanazawa K, Yamaguchi K and Nishijima S. Mapping of low cycle fatigue mechanisms at elevated temperatures for an austenitic stainless steel. In: Solomon HD, Halford GR, Kaisand LR, Leis BN (eds) Low cycle fatigue. ASTM STP 942, Philadelphia, (1988) 519-530. [13] P. Quintanaa, A. I. Olivaa, J. E. Coronaa, D. H. Aguilara, P. Bartolo- Péreza, and M. Aguilarb, “Induced effects by DC electrical current cycling on aluminium thin films,” Surface Coat. Technol., vol. 195, no. 2, pp. 314–319, 2005. [14] N. V. Jaukovic and V. D. Asanovic, “The effect of temper and chemical composition on polarization resistance of aluminum RR58 alloy,” J. Mater. Process. Technol., vol. 174, nos. 1–3, pp. 293–295, 2006. [15] A.-W. Huang and C.-H. Lu, ‘Time and Temperature Dependence of Stress Relaxation in Al and Al Alloy Thin Films Application for MEMS’ [16] H. Conrad, Z. Guo and A.F. Sprecher, “Effect of an electric field on the recovery and recrystallization of Al and Cu ,” Script a Metallurgica, vol. 23, pp. 821-824, March. 1989. [17] Teixeira V,Cui H,Meng L, et al. (2002) Amorphous ITO thin films prepared by DC sputtering for electrochromic applications. Thin Solid Films 420: 70–75. [18] Gómez A, Galeano A, Saldarriaga W, et al. (2015) Deposition of YBaCo4O7+δ thin films on (001)-SrTiO3 substrates by dc sputtering. Vacuum 119: 7–14. [19] M. Ohring, The Materials Science of The Thin Films, Academic press, New Jersey, 1992 [20] W.D. Nix. Mechanical-properties of thin-films. Metall Trans A, 20(11):2217–2245, 1989 [21] Jou, J.-H., & Chung, C.-S. (1993). Mechanical characteristics of aluminum thin films on silicon and gallium arsenide. Thin Solid Films, 235(1-2), 149–155. doi:10.1016/0040-6090(93)90258-q [22] E. Arzt, G. Dehm, P. Gumbsch, O. Kraft, and D. Weiss. Interface controlled plasticity in metals: dispersion hardening and thin film deformation. Progress in Materials Science, 46(3-4):283–307, 2001 [23] J.W. Hutchinson and Z. Suo. Mixed mode cracking in layered materials. Adv Appl Mech, 29:63–191, 1991 [24] H.B. Huang and F. Spaepen. Tensile testing of free-standing Cu, Ag and al thin films and Ag/Cu multilayers. Acta Mater, 48(12):3261–3269, 2000 [25] A. J. Kalkman, A. H. Verbruggen, and G. C. A. M. Janssen. Young’s modulus measurements and grain boundary sliding in free-standing thin metal films. Appl Phys Lett, 78(18):2673–2675, 2001. [26] D. Y. W. Yu and F. Spaepen. The yield strength of thin copper films on kapton. J Appl Phys, 95(6):2991–2997, 2004. [27] Materials Research Society Proceedings. Thin films: stresses and mechanical properties, I–VIII. Pittsburgh (PA): Materials Research Society, 1988–1998. [28] B. C. Martin, C. J. Tracy, J. W. Mayer and L. E Hendrickson, Thin Solid Films 271, 64 (1995) [29] Huang, A.-W., Lu, C.-H., Wu, S.-C., Chen, T.-C., Vinci, R. P., Brown, W. L., & Lin, M.-T. (2016). Viscoelastic mechanical properties measurement of thin Al and Al–Mg films using bulge testing. Thin Solid Films, 618, 2–7. doi:10.1016/j.tsf.2016.03.064 [30] Huang, A.-W., Lu, C.-H., Wu, C.-C., & Lin, M.-T. (2016). Time and Temperature Dependence of Stress Relaxation in Al and Al Alloy Thin Films Application for MEMS. Conference Proceedings of the Society for Experimental Mechanics Series, 59–64. doi:10.1007/978-3-319-22458-9_9 [31] M. F. Doemrner and W. D. Nix, "Stresses and Deformation Processes in Thin Films on Substrates," CRC CriticalReviews in Solid State and MaterialsSciences 14,225-268 (1988). [32] BEAMS, J.W. Mechanical properties of thin films of gold and silver. In: International conference on structure and properties of thin films, Bolton Landing, 1959.. [33] T. Tsakalakos and J.E. Hillard. Elastic modulus in composition-modulated copper-nickel foils. Journal of Applied Physics, 54(2):734–737, 1982. [34] Vlassak J J, Nix W D. A new bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films[J]. Journal of Materials Research, 1992, 7(12): 3242- 3249. [35] Pratt R I, Johnson G C. Mechanical characterization of thin films using full-field measurement of diaphragm deflection[C]//MRS Proceedings. Cambridge University Press, 1993, 308: 115. [36] Development of a bulge test experimental setup. 2015 [37] Benoit Merle, Mechanical properties of thin films studied by bulge testing [38] S.S. Manson. Behavior of materials under conditions of thermal stress. Technical report, National advisory commission on aeronautics: Report 1170 (Lewis flight propulsion laboratory, Cleveland), 1954. [39] L.F. Coffin Jr, L.F. A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME, 76:931–950, 1954. [40] O.H.Basquin.The exponential law of endurance tests .Proc.ASTM,10(2):625–630,1910 [41] Ahmed Adel Taha Zayed, Investigation of fatigue life characteristics of micropatterned freestanding NiTi thin films [42] O. Kraft, R. Schwaiger, P. Wellner. Fatigue in thin film: lifetime and damage formation, Mater Sci Eng A, 319: page 919-923, 2001. [43] O. Kraft, P. Wellner, M. Hommel, R. Schwaiger, E. Arzt, Fatiuge behaviour of polycrystalline thin copper film, Z Metall, 93(5), page 392-400, 2002. [44] C. Eberl, R. Spolenak, E. Arzt, F. Kubat, A. Leidl, W. Ruile, O. Kraft. Ultra high cycles Fatigue in pure AL thin films and line structures, Mater Sci Eng A, 421(1-2), page 68-76, 2006. [45] A. Hadrboletz, B. Weiss, G. Khatibi, Fatigue and fracture properties of thin metallic foils, Int.j.fract, Vol. 107, page 307, 2001. [46] D.T.Read,A.A.Volinsky,Measurements for mechanical reliability of thinfilms ,in:Nato. Sci. Peace. Secur, Springer, 2009, pp. 337e358, https://doi.org/ 10.1007/978-90-481-2792-4_16. [47] G. Dehm, B. Jaya, R. Raghavan, C. Kirchlechner, Overview on micro-and nanomechanical testing: new insights in interface plasticity and fracture at small length scales, Acta Mater. (2018), https://doi.org/10.1016/ j.actamat.2017.06.019. [48] M. Hommel, O. Kraft, A new method to study cyclic deformation of thin films in tension and compression, J. mater. res, 14(6), page 2373, 1999. [49] Chapter 15, Cambridge University Press, 2009.G. P. Zhang, R. Schwaiger, C. A. Volkert, and O. Kraft. Effect of film thickness and grain size on fatigue induced dislocation structures in Cu thin films. Phil Mag Lett, 83(8):477-483, 2003. [50] M. D. Thouless, J. Gupta, J. M. E. Harper, Stress development and relaxation in copper films during thermal cycling, J. mater. res., Vol. 8(8), page 1845. 1993 [51] D. Y. W. Yu, F. Spaepen, The yield strength of thin copper films on Kapton, J Appl Phys, Vol. 95(6), page 2991-2997, 2004.] [52] H. B. Hauang, F. Spaepen, Tensile testing of free standing Cu, Ag, Al thin films, and AG/Cu multilayers. Acta Mater, 48(12): page 3261- 3269, 2000 [53] J.S. Bae, C.S. Oh, K.S. Park, S.K. Kim and H.J. Lee, Development of a high cycle fatigue testing system and its application to thin aluminum film. Engineering Fracture Mechanics, 2008. 75(17): p. 4958-4964. [54] D.T. Read and J.W. Dally, Fatigue of Microlithographically-patterned Freestanding Aluminium Thin Film Under Axial Stresses. Journal of Electronic Packaging, 1995. 117(1): p. 1-6. [55] D.T. Read, Tension-tension fatigue of copper thin films. International Journal of Fatigue, 1998. 20(3): p. 203-209. [56] R. Schwaiger and O. Kraft. Size effects in the fatigue behavior of thin Ag films. Acta Mater, 51(1):195–206, 2003a. [57] W. D. Nix, Mechanical properties of thin films. Metal Trans A, 20(11), page 2217-2245, 1989 [58] O. Kraft, P. Wellner, M. Hommel, R. Schwaiger, E. Arzt, Fatigue behaviour of polycrystalline thin copper film, Z Metall, 93(5), page 392-400, 2002. [59] G.P. Zhang, C.A. Volkert, R. Schwaiger, P. Wellner, E. Arzt and O. Kraft, Length-scale-controlled fatigue mechanisms in thin copper films. Acta Materialia, 2006. 54(11): p. 3127-3139. [60] J. W. Hutchinson and Z. Suo, “Mixed mode cracking in layered materials,” Adv. Appl. Mech., vol. 29, no. 1, pp. 63–191, 1991. [61] Kang, C.-W., & Huang, H. (2017). Deformation, failure and removal mechanisms of thin film structures in abrasive machining. Advances in Manufacturing, 5(1), 1–19. doi:10.1007/s40436-016-0165-2 [62] Gianuzzi, L. A. and Stevie, F. A., "A review of focused ion beam milling techniques for TEM specimen preparation", Micron 30 (3), 197-204 (1999). [63] Gottstein, G., Bewerunge, J., Mecking, H. and Wollenberger, H., "Stored energy of 78k tensile deformed copper crystals", Acta Metall. 23 (5), 641-652 (1975). [64] Essmann, U., Gösele, U., Mughrabi, H., 1981. A model of extrusions and intrusions in fatigued metals. I. Point-defect production and the growth of extrusions. Philos. Mag. A44, 405–426. [65] Merle, B., & Göken, M. (2014). Bulge fatigue testing of freestanding and supported gold films. Journal of Materials Research, 29(02), 267–276. doi:10.1557/jmr.2013.373 [66] Chen I W, Becher P F, Mitomo M, Petzow G, Yen T-S 1993, Silicon Nitride Ceramics–Scientifc and Technological Advance. MRS Symposium Proceedings, Vol. 287. MaterialsResearch Society, Pittsburgh, PA. [67] A Brockmeier, “Surface tension and its role for vertical wet etching of silicon” 2012 [68] J. Electrochem. Soc. Vol 137, 11, Nov 1990, 3612-3632. https://cleanroom.byu.edu/KOH [69] J.J Vlassak , W.D.Nix “A new bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films” 1992. [70] Mitchell J.S., Zorman C.A., Kicher T., Roy S., Mehregany M. Examination of bulge test for determining residual stress, Young’s modulus, and Poisson’s ratio of 3C-SiC thin films. J. Aerosp. Eng. 2003;16:46–54. doi: 10.1061/(ASCE)0893-1321(2003)16:2(46) [71] Tabata O, Kawahata K, Sugiyama S, et al. Mechanical property measurements of thin films using load-deflection of composite rectangular membrane[C]//Micro Electro Mechanical Systems, 1989, Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. IEEE. IEEE, 1989: 152-156. [72] K. Mongkolsuttirat, Time and Temperature Dependence of Viscoelastice Stress Relaxation in Gold and Gold Alloy Thin Films. Lehigh University 2013. [73] Vlassak, New Experimental Techniques and Analysis Methods for the Study of the Mechanical Properties of Materials in Small Volumes, page 90, 1997 [74] Yucel Birol “Effect of solute Mg on grain size of aluminium alloys”. [75] K.M. Wibowo et al “Influence of Annealing Temperature on Surface Morphological and Electrical Properties of Aluminum Thin Film on Glass Substrate by Vacuum Thermal Evaporator” [76] E.O. Hall. The deformation and ageing of mild steel: Iii discussion of results. Proceedings of the Physical Society. Section B, 64(9):747–753, 1951. [77] N.J. Petch. The cleavage strength of polycrystals. J. Iron Steel Inst., 174:25–28, 1953. [78] Reza Abbaschian, Robert E. Reed-Hill “Physical Metallurgy Principles” [79] K. Virwani, A. Malshe, W. Schmidt, D. Sood, and structures, "Young’s modulus measurements of silicon nanostructures using a scanning probe system: a non-destructive evaluation approach," vol. 12, no. 6, p. 1028, 2003.
|