跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 09:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:阮茶英科
研究生(外文):Nguyen Tra Anh Khoa
論文名稱:以鼓膜隔艙壓力試驗法探討鎂鋁合金薄膜在不同組成比例下之機械行為
論文名稱(外文):Using bulge testing to investigate the mechanical properties of Aluminum-Magnesium alloy thin films
指導教授:林明澤林明澤引用關係
指導教授(外文):Ming-Tzer Lin
口試委員:陳元方敖仲寧
口試委員(外文):Terry Yuan-Fang ChengJong-Ning Aoh
口試日期:2020-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:85
中文關鍵詞:鋁鎂合金薄膜機械行為疲勞測試殘留應力
外文關鍵詞:Al-Mg alloy thin filmsmechanical propertiescyclic testresidual stress.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
Metal films are widely used in radio-frequency microelectromechanical system capacitive switches. The mechanical properties of bulk materials have been extensively investigated in the literature. However, the mechanical behavior of thin metal films used in microelectronics and mechanical microdevices has yet to be explored in detail. Besides, the mechanical behavior in thin metal films is likely to differ from that in the bulk material. In this study, therefore, a fatigue test was performed and analyzed to evaluate the influence of composition on the mechanical properties of metal films.
Specifically, aluminum-magnesium alloy free-standing films with proximate composition were fabricated by means of DC magnetron sputtering, UV lithography, and wet etching. In particular, the mechanical properties of aluminum-magnesium alloys thin films with various magnesium contents in the range of 0–10 wt.% under cyclic tensile loading are investigated. The membranes were pressurized up to 105 times, during which their stress and strain states are continuously recorded. Mechanical properties diagrams were elaborated and examined at various testing variables. The results of this study serve to compare and evaluate the most optimal thin film in several compositions, and thus it can potentially completely replace the aluminum thin film in the future for capacitance switches.
TABLE OF CONTENTS
ACKNOWLEDGMENTS i
Abstract ii
TABLE OF CONTENTS iii
LIST OF FIGURES vi
LIST OF TABLES x
1. Introduction 1
1.1. Background information 1
1.2. Research motivation 5
2. Literature review 7
2.1. Thin-film fabrication and mechanical properties 7
2.1.1. Thin-film deposition methods 7
2.1.2. Thin-film mechanical properties 10
2.2. Bulge test of thin film 14
2.2.1. Experimental techniques for thin-film fatigue testing 18
2.2.2. Fatigue in free-standing thin films 20
2.2.3. Fatigue in thin films on a substrate 21
2.2.4. Failure modes and damage in thin films 21
2.2.5. Face-centered cubic metals 23
2.3. Elasticity 24
3. Experimental Description 25
3.1. Specimen preparation 25
3.2. Fabrication of aluminum-magnesium alloy thin films 25
3.2.1. RCA cleaning 27
3.2.2. Deposited silicon nitride film 28
3.2.3. Photolithography 30
3.2.4. Inductively coupled plasma dry etching of silicon nitride film 33
3.2.5. Wet etching of wafers 34
3.2.6. Deposited aluminum-magnesium alloy thin films 38
3.3. Bulge testing 42
3.3.1. Introduction of the bulge measurement technique 42
3.3.2. Theoretical calculation and theory for stress and strain measurement 43
3.3.3. Experimental setup 48
3.3.4. Pressure controller measurement 50
3.3.5. Data acquisition 52
3.3.6. Position sensing detector 54
3.3.7. Vacuum chamber design and introduction 59
3.3.8. Monotonic bulge test 61
3.3.9. Fatigue testing of thin film 62
4. Results and discussion 65
4.1. FESEM morphology analysis 65
4.1.1. Surface morphology observation 65
4.1.2. Analysis of the surface composition of energy-dispersive X-ray spectroscopy 67
4.2. Mechanical properties of aluminum-magnesium alloy thin films 69
4.2.1. Bulge pressure-displacement curve 69
4.2.2. Bulge stress-strain curve conversion 71
4.2.3. Discussion of Young’s coefficient 73
4.2.4. Discussion of residual stress 73
4.3. The fatigue analysis of aluminum-magnesium alloy thin films 74
4.3.1. Mechanical properties change in thin films 74
4.3.2. Effect of magnesium content on fatigue behavior 76
5. Summary and Conclusion 77
6. References 79
[1] J. Iannacci, ‘‘RF-MEMS technology as an enabler of 5G: Low-loss ohmic switch tested up to 110 GHz,’’ Sens. Actuators A, Phys., vol. 279, pp. 624–629, Aug. 2018.
[2] Application of MEMS in radio frequency wireless communication
[3] G. M. Rebeiz and J. B. Muldavin, ‘‘RF MEMS switches and switch circuits,’’ IEEE Microw. Mag., vol. 2, no. 4, pp. 59–71, Dec. 2001.
[4] F. Ke, J. Miao, and J. Oberhammer, ‘‘A ruthenium-based multi metal contact RF MEMS switch with a corrugated diaphragm,’’ J. Microelec- tromech. Syst., vol. 17, no. 6, pp. 1447–1459, Dec. 2008.
[5] W.Tian,P.Li,and L.Yuan,‘‘Research and analysis of MEMS switches in different frequency bands,’’ Micromachines, vol. 9, no. 4, p. 185, 2018.
[6] C.-H. Chu, W.-P. Shih, S.-Y. Chung, H.-C. Tsai, T.-K. Shing, and P.-Z. Chang, ‘‘A low actuation voltage electrostatic actuator for RF MEMS switch applications,’’ J. Micromech. Microeng., vol. 17, p. 1649, Jul. 2007.
[7] L. Y. Ma, ‘‘Design and analysis of novel low-voltage low loss RF- MEMS switch,’’ Ph.D. dissertation, Dept. Elect. Eng., Univ. Malaya, Kuala Lumpur, Malaysia, 2018.
[8] Integrated Circuit (IC) Construction, History & Types
[9] S. Aceta, C. Y. Chang and R. W. Vook, "Hillock growth on aluminum and aluminum alloy films," Thin SolidFilms219, 80-86 (1992).
[10] N. Kristensen, F. Ericson, J.-A. Schweitz and U. Smith, "Grain collapse in strained aluminum thin films," J Appl. Phys. 69, 2097-2104 (1991).
[11] U. Smith, N. Kristensen, F. Ericson and J.-A. Schweitz, "Local stress relaxation phenomena in thin aluminum films," J Vac. Sci. Technol.A 9, 2527-2535 (1991).
[12] Kanazawa K, Yamaguchi K and Nishijima S. Mapping of low cycle fatigue mechanisms at elevated temperatures for an austenitic stainless steel. In: Solomon HD, Halford GR, Kaisand LR, Leis BN (eds) Low cycle fatigue. ASTM STP 942, Philadelphia, (1988) 519-530.
[13] P. Quintanaa, A. I. Olivaa, J. E. Coronaa, D. H. Aguilara, P. Bartolo- Péreza, and M. Aguilarb, “Induced effects by DC electrical current cycling on aluminium thin films,” Surface Coat. Technol., vol. 195, no. 2, pp. 314–319, 2005.
[14] N. V. Jaukovic and V. D. Asanovic, “The effect of temper and chemical composition on polarization resistance of aluminum RR58 alloy,” J. Mater. Process. Technol., vol. 174, nos. 1–3, pp. 293–295, 2006.
[15] A.-W. Huang and C.-H. Lu, ‘Time and Temperature Dependence of Stress Relaxation in Al and Al Alloy Thin Films Application for MEMS’
[16] H. Conrad, Z. Guo and A.F. Sprecher, “Effect of an electric field on the recovery and recrystallization of Al and Cu ,” Script a Metallurgica, vol. 23, pp. 821-824, March. 1989.
[17] Teixeira V,Cui H,Meng L, et al. (2002) Amorphous ITO thin films prepared by DC sputtering for electrochromic applications. Thin Solid Films 420: 70–75.
[18] Gómez A, Galeano A, Saldarriaga W, et al. (2015) Deposition of YBaCo4O7+δ thin films on (001)-SrTiO3 substrates by dc sputtering. Vacuum 119: 7–14.
[19] M. Ohring, The Materials Science of The Thin Films, Academic press, New Jersey, 1992
[20] W.D. Nix. Mechanical-properties of thin-films. Metall Trans A, 20(11):2217–2245, 1989
[21] Jou, J.-H., & Chung, C.-S. (1993). Mechanical characteristics of aluminum thin films on silicon and gallium arsenide. Thin Solid Films, 235(1-2), 149–155. doi:10.1016/0040-6090(93)90258-q
[22] E. Arzt, G. Dehm, P. Gumbsch, O. Kraft, and D. Weiss. Interface controlled plasticity in metals: dispersion hardening and thin film deformation. Progress in Materials Science, 46(3-4):283–307, 2001
[23] J.W. Hutchinson and Z. Suo. Mixed mode cracking in layered materials. Adv Appl Mech, 29:63–191, 1991
[24] H.B. Huang and F. Spaepen. Tensile testing of free-standing Cu, Ag and al thin films and Ag/Cu multilayers. Acta Mater, 48(12):3261–3269, 2000
[25] A. J. Kalkman, A. H. Verbruggen, and G. C. A. M. Janssen. Young’s modulus measurements and grain boundary sliding in free-standing thin metal films. Appl Phys Lett, 78(18):2673–2675, 2001.
[26] D. Y. W. Yu and F. Spaepen. The yield strength of thin copper films on kapton. J Appl Phys, 95(6):2991–2997, 2004.
[27] Materials Research Society Proceedings. Thin films: stresses and mechanical properties, I–VIII. Pittsburgh (PA): Materials Research Society, 1988–1998.
[28] B. C. Martin, C. J. Tracy, J. W. Mayer and L. E Hendrickson, Thin Solid Films 271, 64 (1995)
[29] Huang, A.-W., Lu, C.-H., Wu, S.-C., Chen, T.-C., Vinci, R. P., Brown, W. L., & Lin, M.-T. (2016). Viscoelastic mechanical properties measurement of thin Al and Al–Mg films using bulge testing. Thin Solid Films, 618, 2–7. doi:10.1016/j.tsf.2016.03.064
[30] Huang, A.-W., Lu, C.-H., Wu, C.-C., & Lin, M.-T. (2016). Time and Temperature Dependence of Stress Relaxation in Al and Al Alloy Thin Films Application for MEMS. Conference Proceedings of the Society for Experimental Mechanics Series, 59–64. doi:10.1007/978-3-319-22458-9_9
[31] M. F. Doemrner and W. D. Nix, "Stresses and Deformation Processes in Thin Films on Substrates," CRC CriticalReviews in Solid State and MaterialsSciences 14,225-268 (1988).
[32] BEAMS, J.W. Mechanical properties of thin films of gold and silver. In: International conference on structure and properties of thin films, Bolton Landing, 1959..
[33] T. Tsakalakos and J.E. Hillard. Elastic modulus in composition-modulated copper-nickel foils. Journal of Applied Physics, 54(2):734–737, 1982.
[34] Vlassak J J, Nix W D. A new bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films[J]. Journal of Materials Research, 1992, 7(12): 3242- 3249.
[35] Pratt R I, Johnson G C. Mechanical characterization of thin films using full-field measurement of diaphragm deflection[C]//MRS Proceedings. Cambridge University Press, 1993, 308: 115.
[36] Development of a bulge test experimental setup. 2015
[37] Benoit Merle, Mechanical properties of thin films studied by bulge testing
[38] S.S. Manson. Behavior of materials under conditions of thermal stress. Technical report, National advisory commission on aeronautics: Report 1170 (Lewis flight propulsion laboratory, Cleveland), 1954.
[39] L.F. Coffin Jr, L.F. A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME, 76:931–950, 1954.
[40] O.H.Basquin.The exponential law of endurance tests .Proc.ASTM,10(2):625–630,1910
[41] Ahmed Adel Taha Zayed, Investigation of fatigue life characteristics of micropatterned freestanding NiTi thin films
[42] O. Kraft, R. Schwaiger, P. Wellner. Fatigue in thin film: lifetime and damage formation, Mater Sci Eng A, 319: page 919-923, 2001.
[43] O. Kraft, P. Wellner, M. Hommel, R. Schwaiger, E. Arzt, Fatiuge behaviour of polycrystalline thin copper film, Z Metall, 93(5), page 392-400, 2002.
[44] C. Eberl, R. Spolenak, E. Arzt, F. Kubat, A. Leidl, W. Ruile, O. Kraft. Ultra high cycles Fatigue in pure AL thin films and line structures, Mater Sci Eng A, 421(1-2), page 68-76, 2006.
[45] A. Hadrboletz, B. Weiss, G. Khatibi, Fatigue and fracture properties of thin metallic foils, Int.j.fract, Vol. 107, page 307, 2001.
[46] D.T.Read,A.A.Volinsky,Measurements for mechanical reliability of thinfilms ,in:Nato. Sci. Peace. Secur, Springer, 2009, pp. 337e358, https://doi.org/ 10.1007/978-90-481-2792-4_16.
[47] G. Dehm, B. Jaya, R. Raghavan, C. Kirchlechner, Overview on micro-and nanomechanical testing: new insights in interface plasticity and fracture at small length scales, Acta Mater. (2018), https://doi.org/10.1016/ j.actamat.2017.06.019.
[48] M. Hommel, O. Kraft, A new method to study cyclic deformation of thin films in tension and compression, J. mater. res, 14(6), page 2373, 1999.
[49] Chapter 15, Cambridge University Press, 2009.G. P. Zhang, R. Schwaiger, C. A. Volkert, and O. Kraft. Effect of film thickness and grain size on fatigue induced dislocation structures in Cu thin films. Phil Mag Lett, 83(8):477-483, 2003.
[50] M. D. Thouless, J. Gupta, J. M. E. Harper, Stress development and relaxation in copper films during thermal cycling, J. mater. res., Vol. 8(8), page 1845. 1993
[51] D. Y. W. Yu, F. Spaepen, The yield strength of thin copper films on Kapton, J Appl Phys, Vol. 95(6), page 2991-2997, 2004.]
[52] H. B. Hauang, F. Spaepen, Tensile testing of free standing Cu, Ag, Al thin films, and AG/Cu multilayers. Acta Mater, 48(12): page 3261- 3269, 2000
[53] J.S. Bae, C.S. Oh, K.S. Park, S.K. Kim and H.J. Lee, Development of a high cycle fatigue testing system and its application to thin aluminum film. Engineering Fracture Mechanics, 2008. 75(17): p. 4958-4964.
[54] D.T. Read and J.W. Dally, Fatigue of Microlithographically-patterned Freestanding Aluminium Thin Film Under Axial Stresses. Journal of Electronic Packaging, 1995. 117(1): p. 1-6.
[55] D.T. Read, Tension-tension fatigue of copper thin films. International Journal of Fatigue, 1998. 20(3): p. 203-209.
[56] R. Schwaiger and O. Kraft. Size effects in the fatigue behavior of thin Ag films. Acta Mater, 51(1):195–206, 2003a.
[57] W. D. Nix, Mechanical properties of thin films. Metal Trans A, 20(11), page 2217-2245, 1989
[58] O. Kraft, P. Wellner, M. Hommel, R. Schwaiger, E. Arzt, Fatigue behaviour of polycrystalline thin copper film, Z Metall, 93(5), page 392-400, 2002.
[59] G.P. Zhang, C.A. Volkert, R. Schwaiger, P. Wellner, E. Arzt and O. Kraft, Length-scale-controlled fatigue mechanisms in thin copper films. Acta Materialia, 2006. 54(11): p. 3127-3139.
[60] J. W. Hutchinson and Z. Suo, “Mixed mode cracking in layered materials,” Adv. Appl. Mech., vol. 29, no. 1, pp. 63–191, 1991.
[61] Kang, C.-W., & Huang, H. (2017). Deformation, failure and removal mechanisms of thin film structures in abrasive machining. Advances in Manufacturing, 5(1), 1–19. doi:10.1007/s40436-016-0165-2
[62] Gianuzzi, L. A. and Stevie, F. A., "A review of focused ion beam milling techniques for TEM specimen preparation", Micron 30 (3), 197-204 (1999).
[63] Gottstein, G., Bewerunge, J., Mecking, H. and Wollenberger, H., "Stored energy of 78k tensile deformed copper crystals", Acta Metall. 23 (5), 641-652 (1975).
[64] Essmann, U., Gösele, U., Mughrabi, H., 1981. A model of extrusions and intrusions in fatigued metals. I. Point-defect production and the growth of extrusions. Philos. Mag. A44, 405–426.
[65] Merle, B., & Göken, M. (2014). Bulge fatigue testing of freestanding and supported gold films. Journal of Materials Research, 29(02), 267–276. doi:10.1557/jmr.2013.373
[66] Chen I W, Becher P F, Mitomo M, Petzow G, Yen T-S 1993, Silicon Nitride Ceramics–Scientifc and Technological Advance. MRS Symposium Proceedings, Vol. 287. MaterialsResearch Society, Pittsburgh, PA.
[67] A Brockmeier, “Surface tension and its role for vertical wet etching of silicon” 2012
[68] J. Electrochem. Soc. Vol 137, 11, Nov 1990, 3612-3632. https://cleanroom.byu.edu/KOH
[69] J.J Vlassak , W.D.Nix “A new bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films” 1992.
[70] Mitchell J.S., Zorman C.A., Kicher T., Roy S., Mehregany M. Examination of bulge test for determining residual stress, Young’s modulus, and Poisson’s ratio of 3C-SiC thin films. J. Aerosp. Eng. 2003;16:46–54. doi: 10.1061/(ASCE)0893-1321(2003)16:2(46)
[71] Tabata O, Kawahata K, Sugiyama S, et al. Mechanical property measurements of thin films using load-deflection of composite rectangular membrane[C]//Micro Electro Mechanical Systems, 1989, Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. IEEE. IEEE, 1989: 152-156. [72] K. Mongkolsuttirat, Time and Temperature Dependence of Viscoelastice Stress Relaxation in Gold and Gold Alloy Thin Films. Lehigh University 2013.
[73] Vlassak, New Experimental Techniques and Analysis Methods for the Study of the Mechanical Properties of Materials in Small Volumes, page 90, 1997
[74] Yucel Birol “Effect of solute Mg on grain size of aluminium alloys”.
[75] K.M. Wibowo et al “Influence of Annealing Temperature on Surface Morphological and Electrical Properties of Aluminum Thin Film on Glass Substrate by Vacuum Thermal Evaporator”
[76] E.O. Hall. The deformation and ageing of mild steel: Iii discussion of results. Proceedings of the Physical Society. Section B, 64(9):747–753, 1951.
[77] N.J. Petch. The cleavage strength of polycrystals. J. Iron Steel Inst., 174:25–28, 1953.
[78] Reza Abbaschian, Robert E. Reed-Hill “Physical Metallurgy Principles”
[79] K. Virwani, A. Malshe, W. Schmidt, D. Sood, and structures, "Young’s modulus measurements of silicon nanostructures using a scanning probe system: a non-destructive evaluation approach," vol. 12, no. 6, p. 1028, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top