跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/21 09:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游喬伊
研究生(外文):Chiao-Yi Yu
論文名稱:利用高功率脈衝磁控濺鍍(HiPIMS)探討低溫沉積鉭薄膜結晶相轉換行為之研究
論文名稱(外文):Study on the phase transition of low-temperature deposited tantalum film using high-power pulsed magnetron sputtering (HiPIMS)
指導教授:林明澤林明澤引用關係
指導教授(外文):Ming-Tzer Lin
口試委員:黃德劭李志偉
口試委員(外文):De-Shau HuangZhi-Wei Li
口試日期:2021-07-01
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:69
中文關鍵詞:高功率脈衝磁控濺射鉭薄膜占空比相轉換
外文關鍵詞:High-power Pulsed Magnetron Sputtering (HiPIMS)Duty CycleTantalum Thin Films
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本研究以高功率脈衝磁控濺鍍 (HiPIMS) 與脈衝直流濺鍍 (Pulsed DC),在沉積薄膜的過程中,確認製程壓力一致,以及無基板加熱的情況下,施以低瓦數確保沉積過程中過高的製程熱,改變鉭靶的占空比5%~88%,於矽基板上沉積鉭薄膜,並針對改變占空比對鉭薄膜材料性質之影響進行探討,研究中利用掃描式電子顯微鏡(SEM)、X光繞射儀(XRD)量測鉭薄膜之表面形貌、微結構與結晶相之分析,以及使用奈米壓痕與四點探針來進行其硬度與電阻率的量測。
研究結果發現以占空比越小的方式沉積薄膜,靶瞬間功率與電壓得到提高,從而提高了離子能量,使得鉭原子沉積在基板表面時具有較高的原子遷移率,能有效使鉭薄膜結晶相位由β -Ta 主導生成漸漸轉換至α -Ta主導生成,不過由分析結果得知,不論在高占空比或低占空比下,均未製備出純β相或純α相的鉭薄膜,皆是屬於混和相的鉭金屬薄膜,但可以證實,只藉由調控占空比的大小,仍可以達到鉭薄膜結晶的轉換,而鍍出應用層面更廣且具有高緻密性與高質量之金屬薄膜結構。
In this study, high-power pulsed magnetron sputtering (HiPIMS) and pulsed DC sputtering (Pulsed DC) were used to confirm that the process pressure was the same during the deposition of the film, and the low wattage was applied to ensure the deposition without substrate heating. The duty cycle of the tantalum target is set from 5% to 88%, and the film is deposited on the silicon substrate. The effect of changing the duty cycle on the properties of the tantalum film is discussed. The scanning electron microscope (SEM), X-ray diffraction (XRD) are used to analysis the tantalum film morphology, microstructure and crystalline phase in the research, and we also use nanoindentation and four-point probe to measure the hardness and resistivity of the film.
The results of the study found that the small duty cycle can effectively make the crystalline phase of the tantalum film gradually change from β -Ta dominated formation to α -Ta dominated formation, also the hardness and resistivity of the film gradually change while the duty cycle is changed.
According to the analysis results, no matter the tantalum films are prepared through the high duty cycle or low duty cycle, all of the tantalum films are in mixed phase. However, it can still achieve the variation of tantalum film crystallization phases by adjusting the duty cycle.
摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vi
第 1 章 緒論 1
1.1 研究背景 1
1.2 研究動機與方向 4
第 2 章 文獻回顧 6
2.1薄膜技術 6
2.1.1薄膜沉積技術 6
2.1.2電漿 (Plasma) 介紹 7
2.1.3濺鍍 (Sputtering) 製程介紹 9
2.1.4磁控濺鍍 (Magnetron Sputtering) 11
2.1.5 脈衝直流濺鍍 12
2.1.6 高功率脈衝磁控濺鍍 12
2.2薄膜成長機制 16
2.2.1薄膜成核成長理論 16
2.2.2薄膜之微結構 18
2.3材料性質介紹 23
2.4奈米壓痕 26
2.5四點探針 30
第 3 章 試片製作與實驗方法 32
3.1 實驗流程 32
3.2試片製作 33
3.2.1矽基板清洗程序 33
3.2.2實驗設備與製程步驟 34
3.2 製程參數 37
3.3.1先前實驗參數調整與考量 37
3.3 分析儀器 39
3.4.1場發射掃描式電子顯微鏡鏡(Field Emission Scanning Electron Microscope, FE-SEM) 39
3.4.2高解析X光繞射儀 (HR-XRD) 40
3.4.3奈米壓痕測試儀 (Nanoindenter) 41
3.4.4四點探針測試儀(Four-point probe tester) 42
第 4 章 結果與討論 43
4.1表面與斷面形貌分析 44
4.2 XRD 結晶相分析 53
4.3奈米壓痕分析 56
4.4四點探針分析 60
第 5 章 結論 63
第 6 章 參考文獻 65
[1]P. J. Kelly and R. D. Arnell, "Magnetron sputtering: a review of recent developments and applications," Vacuum, Vol. 56, no. 3, pp. 159-172, 2000.
[2]C. Christou and Z. Barber, "Ionization of sputtered material in a planar magnetron discharge," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 18, no. 6, pp. 2897-2907, 2000.
[3]G. Bräuer, B. Szyszka, M. Vergöhl, and R. Bandorf, "Magnetron sputtering–Milestones of 30 years," Vacuum, Vol. 84, no. 12, pp. 1354-1359, 2010.
[4]M. Zhang, B. Yang, J. Chu, T.G. Nieh, "Hardness enhancement in nanocrystalline tantalum thin films", Scripta Materialia, Vol. 54, Issue 7, pp. 1227-1230, 2006
[5]Y. M. Wang, A. M. Hodge, J. Biener, and A. V. Hamza, “Deformation twinning during nanoindentation of nanocrystalline Ta”, Appl. Phys. Lett. Vol.86, pp.1915 , 2005
[6]P. N. Baker, “Preparation and properties of tantalum thin films”, Thin Solid Films, Vol. 14, Issue 1, pp. 3-25 , 1972
[7]R. Hoogeveen, M. Moske, H. Geisler, K. Samwer, “Texture and phase transformation of sputter-deposited metastable Ta films and Ta/Cu multilayers”, Small Scale Structures, European Materials Research Society Symposia Proceedings, pp. 203-206, 1996
[8]M. Shiojiri, S. Shinkai, K. Sasaki, H. Yanagisawa, Y. Abe, “Preparation of Low-Resistivity α-Ta Thin Films on (001) Si by Conventional DC Magnetron Sputtering”, Japanese Journal of Applied Physics Part 1: Regular Papers Short Notes & Review Papers, 42 (2003), pp. 4499-4500
[9]J. Alami, P. Eklund, J.M. Andersson, M. Lattemann, E. Wallin, J. Bohlmark, P. Persson, U. Helmersson, “Phase tailoring of Ta thin films by highly ionized pulsed magnetron sputtering”, Thin Solid Films, 515 (2007), pp. 3434-3438
[10]H. Ren, M. Sosnowski, “Tantalum thin films deposited by ion assisted magnetron sputtering”, Thin Solid Films, 516 (2008), pp. 1898-1905
[11]P. Catania, J.P. Doyle, J.J. Cuomo, “Tantalum as a diffusion barrier between copper and silicon”, Appl. Phys. Lett. Vol. 57, pp. 1736, 1990
[12]R. Hoogeveen, M. Moske, H. Geisler, K. Samwer, “Texture and phase transformation of sputter-deposited metastable Ta films and TaCu multilayers” ,Thin Solid Films, 275 , pp. 203-20, 1996
[13]T.P. Drusedau, M. Lohmann, F. Klabunde, T.M. John, “Investigations on energy fluxes in magnetron sputter-deposition: implications for texturing and nanoporosity of metals”, Surface & Coatings Technology, 133, pp. 126-130, 2000
[14]E. A. Ellis, M. Chmielus, and S. P. Baker, "Effect of sputter pressure on Ta thin films: Beta phase formation, texture, and stresses," Acta Materialia, Vol. 150, pp. 317-326, 2018.
[15]Z.L. Yuan, D.H. Zhang, C.Y. Li, K. Prasad, C.M. Tan, L.J. Tang,” A new method for deposition of cubic Ta diffusion barrier for Cu metallization”, Thin Solid Films, 434, pp. 126-129, 2003
[16]L.A. Clevenger, A. Mutscheller, J.M.E. Harper, C. Cabral, K. Barmak, “Evaluation of residual stress in sputtered tantalum thin-film”, Journal of Applied Physics, 72, pp. 4918-4924, 1992
[17]N. Schwartz, E.D. Feit, “Impurity Effects in the Nucleation of Alpha (bcc)‐Tantalum or Beta‐Tantalum Films”, Journal of the Electrochemical Society, 124, pp. 123-131, 1977
[18]K. Wasa, M. Kitabatake, and H. Adachi, Thin film materials technology: sputtering of control compound materials. Springer Science & Business Media, 2004.
[19]A. Belkind, A. Freilich, and R. Scholl, "Using pulsed direct current power for reactive sputtering of Al2O3," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 17, no. 4, pp. 1934-1940, 1999.
[20]J. Sarkar, "Sputtering and Thin Film Deposition," in Sputtering Materials for VLSI and Thin Film Devices, pp. 93-170, 2014.
[21]H. C. Barshilia and K. S. Rajam, "Reactive sputtering of hard nitride coatings using asymmetric-bipolar pulsed DC generator," Surface and Coatings Technology, Vol. 201, no. 3-4, pp. 1827-1835, 2006.
[22]C. Christou and Z. Barber, "Ionization of sputtered material in a planar magnetron discharge," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 18, no. 6, pp. 2897-2907, 2000.
[23]L. Hultman, U. Helmersson, S. A. Barnett, J. E. Sundgren, and J. E. Greene, "Low‐energy ion irradiation during film growth for reducing defect densities in epitaxial TiN(100) films deposited by reactive‐magnetron sputtering," Journal of Applied Physics, Vol. 61, no. 2, pp. 552-555, 1987.
[24]K. Sarakinos, J. Alami, and S. Konstantinidis, "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art," Surface and Coatings Technology, Vol. 204, no. 11, pp. 1661-1684, 2010.
[25]J. Alami et al., "Phase tailoring of Ta thin films by highly ionized pulsed magnetron sputtering," Thin Solid Films, Vol. 515, no. 7-8, pp. 3434-3438, 2007.
[26]R. Bandorf, V. Sittinger, and G. Bräuer, "High Power Impulse Magnetron Sputtering – HIPIMS," in Comprehensive Materials Processing, pp. 75-99, 2014.
[27]I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, "Microstructural eVolution during film growth," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 21, no. 5, pp. S117-S128, 2003.
[28]J. Venables and G. Spiller, "Nucleation and Growth of Thin Films," in Surface Mobilities on Solid Materials: Springer, pp. 341-404, 1983.
[29]I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, "Microstructural eVolution during film growth," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 21, no. 5, pp. S117-S128, 2003.
[30]B. Movchan and A. Demchishin, "Structure and properties of thick condensates of nickel, titanium, tungsten, aluminum oxides, and zirconium dioxide in vacuum," Fiz. Metal. Metalloved. 28, pp. 653-60, 1969.
[31]M. Samuelsson, D. Lundin, J. Jensen, M. A. Raadu, J. T. Gudmundsson, and U. Helmersson, "On the film density using high power impulse magnetron sputtering," Surface and Coatings Technology, Vol. 205, no. 2, pp. 591-596, 2010.
[32]J. A. Thornton, "High rate thick film growth," Annual review of materials science, Vol. 7, no. 1, pp. 239-260, 1977.
[33]A. Anders, "A structure zone diagram including plasma-based deposition and ion etching," Thin Solid Films, Vol. 518, no. 15, pp. 4087-4090, 2010.
[34]A. Jiang, A. Yohannan, N. O Nnolim, T. A Tyson, L. Axe, S. L Lee, and P. Cote, “Investigation of the structure of β-tantalum”, Thin Solid Films, Vol.437, issue 1-2, pp.116-122, 2003.
[35]S.S. Lau, R.H. Mills, “A High-Stability RC Circuit Using High Nitrogen Doped Tantalum ”, Phys. Stat. Sol. (a) 17, pp. 609, 1973.
[36]O.J. Duff, G.J. Koerckel, E.H. Maryer, W. Worobey, “IEEE transactions on components, hybrids and manufacturing technology”, CHMT-2, pp. 221, 1979.
[37]Y. Iimura, H. Miyashita, and H. Sano, "Low‐stress tantalum absorbers deposited by sputtering for x‐ray masks," Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, Vol. 7, no. 6, pp. 1680-1683, 1989.
[38]M. H. Read and C. Altman, "A new structure in tantalum thin films," Applied Physics Letters, Vol. 7, no. 3, pp. 51-52, 1965.
[39]R. Hoogeveen, M. Moske, H. Geisler, and K. Samwer, "Texture and phase transformation of sputter-deposited metastable Ta films and TaCu multilayers," Thin Solid Films, Vol. 275, no. 1-2, pp. 203-206, 1996.
[40]S. Jiang, A. Hu, R. Peng, and D. Feng, "Quasiperiodic metallic multilayers," Journal of magnetism and magnetic materials, Vol. 126, no. 1-3, pp. 82-88, 1993.
[41]L. Clevenger, A. Mutscheller, J. Harper, C. Cabral Jr, and K. Barmak, "The relationship between deposition conditions, the beta to alpha phase transformation, and stress relaxation in tantalum thin films," Journal of Applied Physics, Vol. 72, no. 10, pp. 4918-4924, 1992.
[42]K. H. Min, K. C. Chun, and K. B. Kim, "Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, Vol. 14, no. 5, pp. 3263-3269, 1996.
[43]D. W. Face and D. E. Prober, "Nucleation of body‐centered‐cubic tantalum films with a thin niobium underlayer," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 5, no. 6, pp. 3408-3411, 1987, doi: 10.1116/1.574203.
[44]G. Chen, P. Lee, and S. Chen, "Phase formation behavior and diffusion barrier property of reactively sputtered tantalum-based thin films used in semiconductor metallization," Thin Solid Films, Vol. 353, no. 1-2, pp. 264-273, 1999.
[45]M.Grosser and U.Schmid, “The impact of sputter conditions on the microstructure and on the resistivity of tantalum thin films”, Thin Solid Films, Vol. 517, Issue 16, pp. 4493-4496, 2009.
[46]A.A.Navid, and A.M.Hodge, “Controllable residual stresses in sputtered nanostructured alpha-tantalum”, Scripta Materialia, Vol. 63, Issue 8, pp. 867-870, 2010.
[47]S. L Lee, D Windover, T.-M Lu, M Audino, “In situ phase eVolution study in magnetron sputtered tantalum thin films”, Thin Solid Films , Vol. 420–421, pp. 287-294, 2002.
[48]J. Lin, J. J Moore, W. D. Sproul, S. L. Lee; J. Wang, “Effect of Negative Substrate Bias on the Structure and Properties of Ta Coatings Deposited Using Modulated Pulse Power Magnetron Sputtering”, IEEE TRANSACTIONS ON PLASMA SCIENCE, Vol. 38, Issue 11, pp. 3071-3078, 2010.
[49]F. Ferreira, A. Cavaleiro, and J. Oliveira, “Effect of the Substrate Biasing on the Structure and Properties of Tantalum Coatings Deposited Using HiPIMS in Deep Oscillations Magnetron Sputtering Mode”, Metals,Vol. 10, Issue 12, pp. 1618, 2020.
[50]S. Shiri, A. Odeshi, N. Chen, R. Feng, R. Sutarto, and Q. Yang, “FCC tantalum thin films deposited by magnetron sputtering”, Surface and Coatings Technology, Vol. 358, pp. 942-946, 2019.
[51]S. Myers, J. Lin, Roberto M. Souza, W. D. Sproul, and J. J. Moore , “The β to α phase transition of tantalum coatings deposited by modulated pulsed power magnetron sputtering”, Surface and Coatings Technology, Vol. 214, pp. 38-45, 2013.
[52]G.Abadias, J.J.Colin, D.Tingaud, Ph.Djemia, L.Belliard, C.Tromas, “Elastic properties of α- and β-tantalum thin films”, Thin Solid Films, Vol. 688, pp. 137403, 2019
[53]J. J.Colin, G. Abadias, A. Michel, C. Jaouen, “On the origin of the metastable β-Ta phase stabilization in tantalum sputtered thin films”, Acta Materialia, Vol. 126, pp. 481-493,2017.
[54]M.Zhang, B.Yang, J.Chu, T.G.Nieh, “Nanocrystalline tetragonal tantalum thin films”, Scripta Materialia, Vol. 54, Issue 7,pp. 1227-1230, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊