跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/22 23:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳冠綺
研究生(外文):Guan-Qi Chen
論文名稱:基於PdSe2/h-BN/Graphene異質結構之高穩定雙極性層狀電晶體
論文名稱(外文):Highly Air-Stable Ambipolar Layered Transistor based on PdSe2/h-BN/Graphene Heterostructure.
指導教授:林彥甫林彥甫引用關係
指導教授(外文):Yen-Fu Lin
口試委員:陳昶孝何孟書
口試委員(外文):Chang-Xiao ChenMeng-Shu He
口試日期:2021-07-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:奈米科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:89
中文關鍵詞:二維材料二硒化鈀雙極性傳輸半導體異質結構層狀電晶體過度金屬二硫化物低頻雜訊柔性電子
外文關鍵詞:Two-Dimensional materialPalladium diselenide(PdSe2)heterostructure-based field-effect transistortransitionmetal dichalcogenides(TMDs)low-frequency noise low-frequency noiseFlexible Electronics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
Two-dimensional (2D) materials have attracted much attention since the discovery of graphene in 2004. They are known as their atomically thin body, which allows the shrinkage of transistors and thereby enable the continuation of the Moore’s law. Palladium diselenide (PdSe2) which is a typical 2D material exhibits excellent electrical and optoelectrical performance, as well asfamous air stability. In this work, we proposed a van der Waals heterostructure-based field-effect transistor (FET) by stacking semiconducting PdSe2, conductive graphene, and h-BN dielectric layer. It shows field-effect mobilities of up to 26.7 cm2 V−1 s−1 and 371 cm2 V−1 s−1 for p-type and n-type transport, respectively, under a gate bias of 8 V. Through the temperature-dependent electrical measurement, the extracted carrier mobilities depending on temperature reveal the vital roles of interfacial states and intrinsic defects of layered PdSe2 channel for dominating the transport behaviors of holes and electrons, respectively, meanwhile observea metal–insulator transition (MIT) phenomenon due to the gradually metallic behavior of PdSe2. Furthermore, low-frequency noise analysis uncovers the dynamic charge transport mechanisms following the correlated surface mobility fluctuation (CMF), which is highly consistent with the Slight variation of the extracted when aging the device in air conditions over three months confirms the high air stability of layered PdSe2, which outperforms most of other van der Waals semiconductors. In the end, we realize an interesting applications by implementing this device onto a flexible substrate without compromising its excellent electronic performance under 2.5% strain, demonstrating its promising uses in flexible and transparent electronics.
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 x
第一章 緒論 1
參考文獻 5
第二章 文獻回顧 7
2.1二硒化鈀結構與特性分析 7
2.2二硒化鈀元件光電特性 12
2.3二維元件接點電阻 15
2.4二維材料之柔性電子元件 18
2.5研究動機 20
參考文獻 21
第三章 理論與操作模型 25
3.1場效電晶體 25
3.2歐姆接觸理論 31
3.3低頻雜訊 34
3.4二維材料之機械性質 39
參考文獻 42
第四章 實驗步驟與方法 45
4.1 類全二維元件基本架構 45
4.2 元件在矽基板上之製備程序 46
4.3元件在柔性基板上之製備程序 48
4.4實驗設備 52
第五章 結果與討論 58
5.1二硒化鈀元件結構與直流電性量測 58
5.2二硒化鈀元件厚度電性統計分析 60
5.3二硒化鈀元件接觸電阻討論 64
5.4類全二維二硒化鈀元件結構與直流電性量測 69
5.5二硒化鈀元件通道內載流子傳輸機制-變溫量測 70
5.6二硒化鈀元件之材料穩定性探究-低頻雜訊量測 73
5.7二硒化鈀元件之柔性電子應用-可饒性程度測試 83
參考文獻 86
第六章 總結 88
Chap1
[1]Moore, G. E. (1998). Cramming more components onto integrated circuits. Proceedings of the IEEE, 86, 82.
[2]Schaller, R. R. (1997). Moore's law: past, present and future. IEEE spectrum, 34(6), 52-59.
[3]Mack, C. A. (2011). Fifty years of Moore's law. IEEE Transactions on semiconductor manufacturing, 24, 202.
[4]Veeraraghavan, S., & Fossum, J. G. (1989). Short-channel effects in SOI MOSFETs. IEEE Transactions on Electron Devices, 36, 522.
[5]Thompson, S. E., & Parthasarathy, S. (2006). Moore's law: the future of Si microelectronics. Materials today, 9, 20.
[6]Yamashita, T., Basker, V. S., Standaert, T., Yeh, C. C., Yamamoto, T., Maitra, K., Leobandung, E. (2011, June). Sub-25nm FinFET with advanced fin formation and short channel effect engineering. In 2011 Symposium on VLSI Technology-Digest of Technical Papers . IEEE.
[7]Semiconductor Engineering, https://semiengineering.com/new-transistor-structures-at-3nm-2nm/
[8]Duffy, R., Van Dal, M. J. H., Pawlak, B. J., Collaert, N., Witters, L., Rooyackers, R., Lander, R. J. P. (2008, September). Improved fin width scaling in fully-depleted FinFETs by source-drain implant optimization. In ESSDERC 2008-38th European Solid-State Device Research Conference . IEEE.
[9]Chen, Min-Cheng, et al. "TMD FinFET with 4 nm thin body and back gate control for future low power technology." 2015 IEEE International Electron Devices Meeting (IEDM). IEEE, 2015.
[10]Lee, Y. J., Luo, G. L., Hou, F. J., Chen, M. C., Yang, C. C., Shen, C. H., Yeh, W. K. (2016). Ge GAA FETs and TMD FinFETs for the Applications Beyond Si—A Review. IEEE Journal of the Electron Devices Society, 4, 286-293.
[11]Chen, M. L., Sun, X., Liu, H., Wang, H., Zhu, Q., Wang, S., Han, Z. (2020). A FinFET with one atomic layer channel. Nature communications, 11, 1

Chap2
[1]Soulard, C., Rocquefelte, X., Petit, P. E., Evain, M., Jobic, S., Itié, J. P., ... & Whangbo, M. H. (2004). Experimental and theoretical investigation on the relative stability of the PdS2 and pyrite-type structures of PdSe2. Inorganic Chemistry, 43, 1943.
[2]Sun, M., Chou, J. P., Shi, L., Gao, J., Hu, A., Tang, W., & Zhang, G. (2018). Few-layer PdSe2 sheets: promising thermoelectric materials driven by high valley convergence. ACS omega, 3, 5971.
[3]Oyedele, A. D., Yang, S., Liang, L., Puretzky, A. A., Wang, K., Zhang, J., Xiao, K. (2017). PdSe2: pentagonal two-dimensional layers with high air stability for electronics. Journal of the American Chemical Society, 139, 14090.
[4]Gronvold, F. T., & Rost, E. R. L. I. G. (1957). The crystal structure of PdSe2 and PdS2. Acta Crystallographica, 10, 329.
[5]Lin, J., Zuluaga, S., Yu, P., Liu, Z., Pantelides, S. T., & Suenaga, K. (2017). Novel Pd2Se3 Two-dimensional phase driven by interlayer fusion in layered PdSe2. Physical review letters, 119, 016101.
[6]Sun, J., Shi, H., Siegrist, T., & Singh, D. J. (2015). Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Applied Physics Letters, 107, 153902.
[7]Liang, Q., Wang, Q., Zhang, Q., Wei, J., Lim, S. X., Zhu, R., ... & Wee, A. T. S. (2019). High‐performance, room temperature, ultra‐broadband photodetectors based on air‐stable PdSe2. Advanced Materials, 31, 1807609.
[8]Lu, L. S., Chen, G. H., Cheng, H. Y., Chuu, C. P., Lu, K. C., Chen, C. H., Chang, W. H. (2020). Layer-Dependent and in-Plane Anisotropic Properties of Low-Temperature Synthesized Few-Layer PdSe2 Single Crystals. ACS nano, 14, 4963
[9]Zeng, L. H., Wu, D., Lin, S. H., Xie, C., Yuan, H. Y., Lu, W., Tsang, Y. H. (2019). Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Advanced Functional Materials, 29, 1806878.
[10]Ahmad, S. (2017). Strain dependent tuning electronic properties of noble metal di chalcogenides PdX2 (X= S, Se) mono-layer. Materials Chemistry and Physics, 198, 162.
[11]Wang, W., Klots, A., Prasai, D., Yang, Y., Bolotin, K. I Valentine, J. (2015). Hot electron-based near-infrared photodetection using bilayer MoS2. Nano letters, 15, 7440.
[12]Huang, H., Wang, J., Hu, W., Liao, L., Wang, P., Wang, X., Chu, J. (2016). Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology, 27, 445201.
[13]Qin, D., Yan, P., Ding, G., Ge, X., Song, H., & Gao, G. (2018). Monolayer PdSe2: A promising two-dimensional thermoelectric material. Scientific reports, 8(1), 1-8
[14]Lei, W., Zhang, S., Heymann, G., Tang, X., Wen, J., Zheng, X., Ming, X. (2019). A new 2D high-pressure phase of PdSe2 with high-mobility transport anisotropy for photovoltaic applications. Journal of Materials Chemistry C, 7, 2096.
[15]Liu, X., Zhou, H., Yang, B., Qu, Y Zhao, M. (2017). Strain-modulated electronic structure and infrared light adsorption in palladium diselenide monolayer. Scientific reports, 7, 1.
[16]Moujaes, E. A., & Diery, W. A. (2021). Optical properties and stability of new two-dimensional allotropes of PdS2, PdSe2 and PdSSe monolayers. Physica E: Low-dimensional Systems and Nanostructures, 128, 114611.
[17]Yue, Q., Kang, J., Shao, Z., Zhang, X., Chang, S., Wang, G., Li, J. (2012). Mechanical and electronic properties of monolayer MoS2 under elastic strain. Physics Letters A, 376, 1166.
[18]Zhang, Y., Wen, Y. H., Zheng, J. C., & Zhu, Z. Z. (2009). Direct to indirect band gap transition in ultrathin ZnO nanowires under uniaxial compression. Applied Physics Letters, 94, 113114.
[19]Topsakal, M., Cahangirov, S., & Ciraci, S. (2010). The response of mechanical and electronic properties of graphane to the elastic strain. Applied Physics Letters, 96, 091912.
[20]Topsakal, M., Cahangirov, S., & Ciraci, S. (2010). The response of mechanical and electronic properties of graphane to the elastic strain. Applied Physics Letters, 96, 091912.
[21]Chow, W. L., Yu, P., Liu, F., Hong, J., Wang, X., Zeng, Q., Liu, Z. (2017). High mobility 2D palladium diselenide field‐effect transistors with tunable ambipolar characteristics. Advanced Materials, 29, 1602969.
[22]Pi, L., Hu, C., Shen, W., Li, L., Luo, P., Hu, X., Zhai, T. (2021). Highly In‐Plane Anisotropic 2D PdSe2 for Polarized Photodetection with Orientation Selectivity. Advanced Functional Materials, 31, 2006774.
[23]Pi, L., Hu, C., Shen, W., Li, L., Luo, P., Hu, X., Zhai, T. (2021). Highly In‐Plane Anisotropic 2D PdSe2 for Polarized Photodetection with Orientation Selectivity. Advanced Functional Materials, 31, 2006774.
[24]Xia, F., Wang, H., & Jia, Y. (2014). Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature communications, 5, 1.
[25]Zhou, X., Hu, X., Jin, B., Yu, J., Liu, K., Li, H., & Zhai, T. (2018). Highly anisotropic GeSe nanosheets for phototransistors with ultrahigh photoresponsivity. Advanced Science, 5, 1800478.
[26]Jia, L., Wu, J., Yang, T., Jia, B., & Moss, D. J. (2020). Large Third-Order Optical Kerr Nonlinearity in Nanometer-Thick PdSe2 2D dichalcogenide Films: Implications for Nonlinear Photonic Devices. ACS Applied Nano Materials, 3, 6876.
[27]Jia, L., Wu, J., Yang, T., Jia, B., & Moss, D. J. (2020). Large and negative Kerr nonlinearity in PdSe2 dichalcogenide 2D films. arXiv preprint arXiv:2005.01254.
[28]Ye, L., Wang, P., Luo, W., Gong, F., Liao, L., Liu, T., ... & Hu, W. (2017). Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy, 37, 53.
[29]Kang, J., Liu, W., Sarkar, D., Jena, D., & Banerjee, K. (2014). Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Physical Review X, 4, 031005.
[30]Matsuda, Y., Deng, W. Q., & Goddard III, W. A. (2010). Contact resistance for “end-contacted” metal− graphene and metal− nanotube interfaces from quantum mechanics. The Journal of Physical Chemistry C, 114, 17845.
[31]Allain, A., Kang, J., Banerjee, K., & Kis, A. (2015). Electrical contacts to two-dimensional semiconductors. Nature materials, 14, 1195.
[32]Chu, T., & Chen, Z. (2014). Understanding the electrical impact of edge contacts in few-layer graphene. Acs Nano, 8, 3584.
[33]Ling, X., Liang, L., Huang, S., Puretzky, A. A., Geohegan, D. B., Sumpter, B. G., ... & Dresselhaus, M. S. (2015). Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Letters, 15, 4080.
[34]Qin, R., Wang, C. H., Zhu, W., & Zhang, Y. (2012). First-principles calculations of mechanical and electronic properties of silicene under strain. Aip Advances, 2.
[35]Lee, G. H., Yu, Y. J., Cui, X., Petrone, N., Lee, C. H., Choi, M. S., Hone, J. (2013). Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 7, 7931.

Chap3
[1]Ferain, I., Colinge, C. A., & Colinge, J. P. (2011). Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature, 479, 310.
[2]Adel S. Sedra · Kenneth C. Smith 著〈金氧半場效應電晶體〉http://aries.dyu.edu.tw/~thhu/UE/microelectronics_circuit_chapter05.pdf
[3]David W. Grave,Field Effect Device and Applications, New Jersey: Prentice Hall, 1998.
[4]Neamen, Donald A. "Semiconductor physics and devices." (1992).
[5]Lee, M. L., Sheu, J. K., & Lin, S. W. (2006). Schottky barrier heights of metal contacts to n-type gallium nitride with low-temperature-grown cap layer. Applied physics letters, 88, 032103.
[6]Dieter K. Schroder. Semiconductor Material and Device Characterization. Wiley-
Interscience, 2006
[7]甄聪棉, 李秀玲, 潘成福, 聂向富, & 王印月. (2005). 欧姆接触中接触电阻率的计算. 大学物理, 24, 10.
[8]Y Xu, C Cheng, S Du, J Yang, B Yu, J Luo, W Yin, E Li (2016). ACS Publications Contacts between Two- and Three- Dimensional Materials: Ohmic, Schottky, and p−n Heterojunctions
[9]Liu, H., Neal, A. T., & Ye, P. D. (2012). Channel length scaling of MoS2 MOSFETs. ACS Nano, 6,8563.
[10]A. van der Ziel, Noise in Solid State Devices and Circuits. New York: John Willy & Sons, Inc. 1986.
[11]Johnson, J. B. (1928). Thermal agitation of electricity in conductors. Physical review, 32(1), 97.
[12]Anonymous (1927). "Minutes of the Philadelphia Meeting December 28, 29, 30, 1926". Physical Review. 29 (2): 350–373. Bibcode:1927PhRv...29..350
[13]Nyquist, H. (1928). Thermal agitation of electric charge in conductors. Physical review, 32(1), 110.
[14]Von Haartman, M., et al., Low-frequency noise in advanced MOS devices. 2007, Springer Science & Business Media.
[15]Von Haartman, M., et al., Low-frequency noise in advanced MOS devices. 2007, Springer Science & Business Media.
[16]Naveed, K., Ehsan, S., McDonald-Maier, K. D., & Ur Rehman, N. (2019). A multiscale denoising framework using detection theory with application to images from CMOS/CCD sensors. Sensors, 19, 206.
[17]Kim, K. H. (2006). Low frequency noise in hydrogenated amorphous silicon thin-film transistors (Doctoral dissertation).
[18]Hooge, F. N., Kleinpenning, T. G. M., & Vandamme, L. K. J. (1981). Experimental studies on 1/f noise. Reports on progress in Physics, 44(5), 479.
[19]Vandamme, L. K., & Hooge, F. N. (2008). What Do We Certainly Know About About 1/f Noise in MOSTs? IEEE Transactions on Electron Devices, 55(11), 3070-3085.
[20]Balandin, A. A. (2013). Low-frequency 1/f noise in graphene devices. Nature Nanotechnology, 8, 549.
[21]Şahin, H., Cahangirov, S., Topsakal, M., Bekaroglu, E., Akturk, E., Senger, R. T., & Ciraci, S. (2009). Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Physical Review B, 80, 155453.
[22]Qin, R., Wang, C. H., Zhu, W., & Zhang, Y. (2012). First-principles calculations of mechanical and electronic properties of silicene under strain. AZP Advances, 2, 022159.
[23]Liu, X., Zhou, H., Yang, B., Qu, Y., & Zhao, M. (2017). Strain-modulated electronic structure and infrared light adsorption in palladium diselenide monolayer. Scientific Reports, 7, 1.
[24]Mao, L., Meng, Q., Ahmad, A., & Wei, Z. (2017). Mechanical analyses and structural design requirements for flexible energy storage devices. Advanced Energy Materials, 7, 1700535.
[25]Kim, T. W., Lee, J. S., Kim, Y. C., Joo, Y. C., & Kim, B. J. (2019). Bending strain and bending fatigue lifetime of flexible metal electrodes on polymer substrates. Materials, 12, 2490.

Chap5
[1]Fu, M., Liang, L., Zou, Q., Nguyen, G. D., Xiao, K., Li, A. P & Gai, Z. (2019). Defects in highly anisotropic transition-metal dichalcogenide PdSe2. The journal of physical chemistry letters, 11, 740.
[2]Moon, B. H., Bae, J. J., Han, G. H., Kim, H., Choi, H., & Lee, Y. H. (2019). Anomalous Conductance near percolative metal–insulator transition in monolayer MoS2 at low voltage regime. ACS nano, 13, 6631.
[3]Lee, J. H., Gul, H. Z., Kim, H., Moon, B. H., Adhikari, S., Kim, J. H., Lim, S. C. (2017). Photocurrent switching of monolayer MoS2 using a metal–insulator transition. Nano Letters, 17, 673.
[4]Xu, X., Robertson, J., & Li, H. (2020). Semiconducting few-layer PdSe2 and Pd2Se3: native point defects and contacts with native metallic Pd17 Se15. Physical Chemistry Chemical Physics, 22, 7365.
[5]Kim, J. S., Joo, M. K., Xing Piao, M., Ahn, S. E., Choi, Y. H., Jang, H. K., & Kim, G. T. (2014). Plasma treatment effect on charge carrier concentrations and surface traps in a-InGaZnO thin-film transistors. Journal of Applied Physics, 115, 114503.
[6]Lee, J. W., Simoen, E., Veloso, A., Cho, M. J., Boccardi, G., Ragnarsson, L. Å., Thean, A. (2013). Sidewall crystalline orientation effect of post-treatments for a replacement metal gate bulk fin field effect transistor. ACS Applied Materials & Interfaces, 5, 8865.
[7]Balandin, A. A. (2013). Low-frequency 1/f noise in graphene devices. Nature Nanotechnology, 8, 549.
[8]Lee, I., Kang, W. T., Shin, Y. S., Kim, Y. R., Won, U. Y., Kim, K. & Yu, W. J. (2019). Ultrahigh gauge factor in graphene/MoS2 heterojunction field effect transistor with variable Schottky barrier. ACS Nano, 13, 8392.
[9]Lee, I., Kang, W. T., Shin, Y. S., Kim, Y. R., Won, U. Y., Kim, K. & Yu, W. J. (2019). Ultrahigh gauge factor in graphene/MoS2 heterojunction field effect transistor with variable Schottky barrier. ACS Nano, 13, 8392.
[10]Oyedele, A. D., Yang, S., Liang, L., Puretzky, A. A., Wang, K., Zhang, J., Xiao, K. (2017). PdSe2: pentagonal two-dimensional layers with high air stability for electronics. Journal of the American Chemical Society, 139, 14090.
[11]Kim, T. W., Lee, J. S., Kim, Y. C., Joo, Y. C., & Kim, B. J. (2019). Bending strain and bending fatigue lifetime of flexible metal electrodes on polymer substrates. Materials, 12, 2490.
[12]Fu, M., Liang, L., Zou, Q., Nguyen, G. D., Xiao, K., Li, A. P., & Gai, Z. (2019). Defects in highly anisotropic transition-metal dichalcogenide PdSe2. The journal of physical chemistry letters, 11, 740.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top