跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 23:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃惠卿
研究生(外文):HUANG,HUI-CHING
論文名稱:淺色導電矽橡膠設計與應用
論文名稱(外文):Design and application of light-colored conductive silicone rubber
指導教授:蔡明瞭
指導教授(外文):TSAI,MING-LIAO
口試委員:杜景順白景成
口試委員(外文):DO,JIMG-SHANBAI,JING-CHENG
口試日期:2021-09-03
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:99
中文關鍵詞:導電矽橡膠單壁奈米碳管鍍銀銅粉導電碳黑二氧化鈦
外文關鍵詞:Conductive silicon rubbersingle-wall carbon nanotubessilver-plated copper powderconductive carbon blackTiO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
導電矽橡膠是由具有導電性能的粒子作為填料,填充到橡膠基體中,通過一定的工藝方法,得到一種複合型功能材料,其中導電填料對導電矽橡膠的性能有決定性作用。
本文介紹了導電矽橡膠的國內外發展現狀,分析了當前導電矽橡膠的主要研究動向,比較了導電填料的各自優缺點;針對導電填料的優缺點,本文選用四種導電填料TiO2、單壁奈米碳管、鍍銀銅粉和導電碳黑添加至矽橡膠中,研究四種填料單獨添加對導電矽橡膠的物理性能、加工性能、阻抗性能的影響,最終透過配方設計,製備不同比例的淺色導電矽橡膠與市售導電矽膠做差異比較。
物理性能上四種導電填料單獨加入到導電矽橡膠製備的導電矽橡膠力學性能均隨著填料添加量的增加呈現下降的趨勢,但與市售導電矽橡膠相比,普遍力學性能優於市售導電矽橡膠,又以單壁奈米碳管的力學性能最為優異。淺色導電矽橡膠,單壁奈米碳管添加0.2~0.25 phr,TiO2 10~50 phr,力學性能均優於市售導電矽橡膠。加工性上,沒有粘模現象,生產效率優於市售導電矽橡膠。又淺色導電矽橡膠中單壁奈米碳管添加量少,不會有碳黑析出現象,整體原料與市售導電矽橡膠成本差異不大,相較之下更具優勢。
阻抗性能上四種導電填料添加,以單壁奈米碳管滲流閾值為最低,少量添加即可達到導電矽橡膠,鍍銀銅粉導電填料可達到較理想電阻值,但高溫氧化影響其電阻值,應用受限。淺色導電矽橡膠,配方SE70-F~H添加單壁奈米碳管0.25 phr、TiO2 10~30 phr,體積電阻率約在4.2~8 Ω.cm,與市售導電矽膠接近。

Conductive silicone rubber is filled with conductive particles as fillers and filled into the rubber matrix. Through a certain process, a composite functional material is obtained. Among them, conductive fillers have a decisive effect on the performance of conductive silicone rubber. This article describes the current situation of domestic and foreign development of conductive silicon rubber, it analyzes the main trends of the current conductive silicon rubber, comparing the advantages and disadvantages of each conductive filler. Aiming at the advantages and disadvantages of conductive fillers, this article selects four conductive fillers TiO2, single-wall carbon nanotubes, silver-plated copper powder and conductive carbon black to add to the silicone rubber. Reserch the effect of adding four kinds of fillers on the physical properties, processing properties and impedance properties of conductive silicone rubber. Finally, through formula design, different proportions of light-colored conductive silicone rubber were prepared for comparison with commercially available conductive silicone rubber.
Physical properties of four kinds of the electrically conductive filler to electrically conductive silicone rubber were added separately prepared conductive silicone rubber, mechanical properties increased with increasing amount of filler added downward trend, compared with commercially available conductive silicone rubber, mechanical properties generally superior to the commercial Conductive silicon rubber, and the mechanical properties of single-wall carbon nanotubes are the most excellent.
Light-colored conductive silicone rubber, single-wall carbon nanotubes added 0.2~0.25 phr, TiO2 10~50 phr, mechanical properties are better than commercial conductive silicone rubber. In terms of processability, there is no sticking phenomenon, and the production efficiency is better than that of commercially available conductive silicone rubber. The light-colored conductive silicone rubber contains a small amount of single-walled carbon nanotubes, and there will be no carbon release , The overall raw material cost is close to that of the commercially available conductive silicone rubber, which has more advantages than the commercially available conductive silicone rubber.
In terms of resistance characteristics, four kinds of conductive fillers are added. The percolation threshold of single-walled carbon nanotubes is the lowest. A small amount of addition can achieve conductive silicone rubber.Silver-plated copper powder conductive fillers can achieve a more ideal resistance value, but high temperature oxidation affects its resistance value, Application was limited. Light-colored conductive silicone rubber, the formula SE70-F~H adds 0.25 phr of single-walled carbon nanotubes, 10~30 phr of TiO2, the volume resistivity is about 4.2~8Ω.cm, and the volume resistance near to the commercially conductive silicone rubber.

摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 X
第一章 緒論 1
1.1 矽橡膠概況 1
1.1.1 矽橡膠特性 1
1.1.2 矽橡膠結構分類 1
1.1.3 矽橡膠的應用 3
1.2導電橡膠 4
1.2.1 導電矽橡膠分類 4
1.2.2 導電高分子材料 5
1.2.3 導電矽橡膠的應用情況 9
1.3 填充型導電橡膠模型 11
1.3.1 導電機理 11
1.3.2 導電填料的類別 13
1.4 國內研究現狀 17
1.5 國外研究現狀 18
1.6 研究動機 20
第二章 實驗方法與流程 22
2.1 設備與儀器 22
2.2 導電矽橡膠製備 23
2.3 實驗材料 25
2.4 實驗測試流程 26
2.5 實驗方法 27
2.5.1 一次加硫 27
2.5.2 二次加硫 27
2.5.3 抗拉強度測試 27
2.5.4 抗撕裂測試 27
2.5.5 壓縮永久變形 28
2.5.6 回彈測試 29
2.5.7 表面電阻值測試 29
2.5.8 體積電阻率測試 29
2.5.9 分散度測試 30
2.5.10 SEM-EDS測試 30
2.6 配方設計 31
2.6.1 添加TiO2 配方設計與混練方式 31
2.6.2 添加單壁奈米碳管配方設計與混練方式 31
2.6.3 添加鍍銀銅粉配方設計與混練方式 31
2.6.4 添加導電碳黑配方設計與混練方式 31
第三章 結果與討論 32
3.1 添加TiO2於矽橡膠之影響 32
3.1.1 添加TiO2對矽橡膠物理性能之影響 32
3.1.2 添加TiO2對矽橡膠材料阻抗的影響 37
3.2 添加單壁奈米碳管於矽橡膠之影響 42
3.2.1 添加單壁奈米碳管對矽橡膠物理性能之影響 42
3.2.2 添加單壁奈米碳管對矽橡膠材料阻抗的影響 47
3.3 添加鍍銀銅粉於矽橡膠之影響 52
3.3.1 添加銀鍍銅粉對矽橡膠物理性能之影響 52
3.3.2 添加鍍銀銅粉對矽橡膠材料阻抗的影響 58
3.4 添加導電碳黑於矽橡膠之影響 64
3.4.1 添加導電碳黑對矽橡膠物理性能之影響 64
3.4.2 添加導電碳黑對矽橡膠材料阻抗的影響 69
3.5 淺色導電矽橡膠的配方設計 75
3.5.1 淺色導電矽橡膠的配方設計 75
3.5.2 淺色導電矽橡膠物理性能測試結果 77
3.5.3 淺色導電矽橡膠材料阻抗測試結果 79
3.5.4 市售導電矽橡膠測試結果 81
3.5.5 與商業黑色導電矽橡膠差異比較 82
第四章 結論與建議 87
4.1結論 87
4.2建議 88
第五章 參考文獻 89


[1] Baker C.J.,1953 “Silicone elastomers”, Research,6: 458-464.
[2] 江英彥,1958,“矽橡膠的製備”,高分子通訊期刊,(04): 248-249。
[3] 江英彥,1962“矽橡膠合成方面的進展”,化學通報期刊,(06): 1-10。
[4] 欒磊,2007,新型耐高溫矽橡膠的製備和性能研究,天津大學,碩士論文。
[5] 李婷婷、胡新嵩、陳精華,2010,“雙組分室溫硫化矽橡膠的研究進展”,有機矽材料,24(6): 391-393。
[6] 劉麗萍、錢黃海、劉國林等,2010,“高溫硫化加成矽橡膠進展”,材料工程 38(8): 92-96。
[7] S. Pichaiyut,C. Nakason,C. Kummerlöwe,N. Vennemann,2012,“Thermoplastic elastomer based on epoxidized natural rubber/thermoplastic polyurethane blends: influence of blending technique”, Polymers for Advanced Technologies,23(6): 1011-1019.
[8] Das A,Stöckelhuber K W, Jurk R,2007,“Rubber curing chemistry governing the orientation of layered silicate , Express Polymer Letters, 1(11): 717-723.
[9] 晏年平、房子禕、萬華等,2017,“高溫硫化矽橡膠老化狀況及表徵技術研究進展” ,絕緣材料(12): 1-9。
[10] 牛德闖、陳雨雁、付東魯等,2018,“ 矽烷偶聯劑對室溫硫化矽橡膠性能影響的研究進展”, 有機矽材料,2018(S1):84-87。
[11] 江畹蘭,2001,“水在液體矽橡膠室溫硫化中的作用”, 世界橡膠工業,28(1): 9-11。
[12] 高楊,2018,矽橡膠喉罩快速粘接工藝及流水線製造研究,鄭州大學,碩士論文。
[13]李剛、許鑫江、辛帥等,2017,“乙烯基品質分數對矽橡膠發泡效果的影響”,有機矽材料期刊,31(2): 103-106。
[14] 陳龍、葉斌、朱彤等,2019,“電線電纜用高強度低煙無鹵阻燃矽橡膠材料的製備與應用研究”, 廣東化工,46(02): 97-98。
[15] 劉洋,2018,“矽橡膠在電力系統外絕緣中的應用分析”, 中國戰略新興產業,(44):146。
[16] 周志成,2018,“一種阻燃導熱型矽橡膠絕緣材料的應用”, 科技創新導報,15(31):53-54。
[17] 邵雯、孫小淏、劉靜等,2016,“PVP 改性矽橡膠醫用材料親水性的探索”,化工新型材料,44(12): 127-131。
[18] 趙陳超、章基凱,2015年,矽橡膠及其應用,化學工業出版社,P11。
[19] 易回陽,陳芳,羅四清,2007 ,“高密度度乙烯/奈米碳管複合材料 PTC 特性研究”,功能材料,38(61):2-61。
[20] 李法華,2003,功能性橡膠材料及製品,化學工業出版社,北京。
[21] 王建穎、郭曉明、李豔霞等,2004,“LDPE/EPM/碳黑導電複合材料的研究”,工程塑料應用,32(7):15-18。
[22] 張潔,馮聖玉,2002,“導電矽橡膠理論研究進展”,功能高分子, 15(1):87-90。
[23] 汪倩、楊始燕、謝擇民,2000 ,“高導熱室溫硫化矽橡膠和矽脂”,有機矽材料,14(1):5-7。
[24] 周祚萬、盧昌穎,1998,“複合型導電高分子材料導電性能影響因素研究概況”,高分子材料科學與工程,14(2):5-7。
[25] 胡望宇、王玲玲、吳力軍,1995,“碳黑填充矽橡膠導電機制的研究”,高分子材料科學與工程,11(2):106-110。
[26] Chiang C K,1978,The Journal of Chemical Physics,69(11): 5 098–5 104.
[27] Hsun-Chen Chu,Yen-Chen Chang, Yow Lin, Shu-Hao Chang, Wei-Chung Chang, Guo-An Li, and Hsing-Yu Tuan, 2016,“Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications”,ACS Applied Materials & Interfaces,8(20):13009–13017.
[28] Jonathan D. Pegan, Jasmine Zhang, Michael Chu, Thao Nguyen, Sun-Jun Park, Akshay Paul, Joshua Kim, Mark Bachman and MichelleKhine,2016,
Skin-mountable stretch sensor for wearable health monitoring”, Nanoscale,8(39):17295–17303.
[29]ShirakawaH,LouisEJ,MacDiarmidAG,ChiangCK,HeegerAJ.JChemSoc,1977,ChemCommun,1977,16:578~580.
[30] Ruonan Dong, Xin Zhao, Baolin Guo,, Peter X. Ma,2016, “Self-Healing Conductive Injectable Hydrogels with Antibacterial Activity as Cell Delivery Carrier for Cardiac Cell Therapy”, ACS Applied Materials & Interfaces,8:27,
17138–17150.
[31] Rylie Green, Mohammad Reza Abidian,2016,“Conducting Polymers for Neural Prosthetic and Neural Interface Applications”,Advanced Materials,27(46)
:7620-7637.
[32] Tobias Feldner, Marleen Häring, Subhadeep Saha, Jordi Esquena,Rahul Banerjee, David Díaz Díaz,2016“Supramolecular Metallogel That Imparts Self-Healing Properties to Other Gel Networks”,Chemistry of Materials,28(9):3210
-3217.
[33] Tao Wang, Ying Zhang, Qingchang Liu, Wen Cheng, Xinran Wang, Lijia Pan, Baoxing Xu, Hangxun Xu ,2018,“A Self-Healable, Highly Stretchable, and Solution Processable Conductive Polymer Composite for Ultrasensitive Strain and Pressure Sensing”,Advanced Functional Materials,28(7).
[34] Lee H,2016,RSC Advances,6:87044-87048.
[35] Liu Hong,2019,China Plastics Industry,47(3):29-31.
[36] ZHUO Guang-Lan,JIANG Xuan-Zhen,2003,“Direct Carboxylation of Benzene Catalyzed by Cobalt Comple”,Chinese Journal of Organic Chemistry,23(1):54-56.
[37] 賈圓等,2021,“導電高分子材料製備及應用研究進展”,工程塑料應用,49(2),Feb 2021。
[38] Huanhuan Wang,Enwei Zhu, Jiazhi Yang, Peipei Zhou, Dongping un, Weihua Tang,2012,“Bacterial Cellulose Nanofiber-Supported Polyaniline Nanocomposites with Flake-Shaped Morphology as Supercapacitor Electrodes”,Journal of Physical Chemistry C,116(24):13 013-13 019.
[39] Zhang Kai,Zeng M in ,Lei Yi ,Jiang Luxia,2002, “Advance of conductive polymer”,New Chemical Materials,30(7):13-15.
[40] 黃文潤,2009,熱硫化矽橡膠,四川科學技術出版社,P169。
[41] 江畹蘭,1998,“硫化方法對填充矽橡膠導電性能的影響”,世界橡膠工業,25(6):12-13。
[42] 陳丁暚,2015,無電電鍍銅於空心微珠填入矽橡膠導電度研究,國立雲林科技大學,碩士論文,P24。
[43] http://www.eepw.com.cn/article/260915.htm,2020,導電填料對電磁屏蔽橡膠性能的影響,電子產品世界。
[44] MIL-DTL-83528C: 2001 Gasketing Material, Conductive, Shielding Gasket, Electronic, Elastomer, EMI/RFI.
[45] Conductive Elastomer Engineering Handbook,
https://www.parker.com/Literature/Chomerics/Parker Chomerics Conductive Elastomer Engineering Handbook.pdf.
[46] 宋斌,黄月文,祖伟皓,2021,“电磁屏蔽材料的研究进展”,廣州化學,46(1),Feb. 2021。
[47] 王崒雲,2017,碳黑/鋁銀粉填充導電橡膠的壓阻特性研究及感測器設計,陝西科技大學,碩士論文。
[48] 劉虎,劉永志,代坤,郭戰虎,劉春太,2018,“柔性力敏導電高分子複合材料應用研究進展”,力學與實踐, 40(05): 481-494+509.
[49] 朱增福,2015,雙組分硫化導電矽橡膠導電性能的研究,陝西科技大學,碩士論文。
[50] 楊建高,劉成岑,施凱,2006,“滲流理論在複合型導電高分子材料研究中的應用”,化工中間體,(2)。
[51] POLLEY M H, BOONSTRA B B S T. 1957,“Carbon blacks for highly conductive rubber”, Rubber Chemistry & Technology, 30(1): 170-179.
[52] VOET A, 1981,“Temperature effect of electrical resistivity of carbon black filled polymers”,Rubber Chemistry & Technology, 54(1): 42-50.
[53] 奚香榮,2010,納米石墨/聚氨酯導電膠黏劑的製備與性能研究,東北林業大學,碩士論文 。
[54] 李志剛,2009,鋼纖維導電混凝土製備及其典型接地體接地電阻研究,重慶大學,碩士論文。
[55] 焦鵬飛,2017,炭黑/銅粉填充導電矽橡膠壓阻特性及其感測器研究, 陝西科技大學,碩士論文。
[56] 陳志,2019,導電矽橡膠材料的研究,青島科技大學,碩士論文,P3。
[57] Xiao W, Lei Y, Xia Z,Xin C,Pei H, 2017,“Effect of Powder Morphologies on the Property of Conductive Silicone Rubber Filled with Carbonyl Nickel Powder”, Journal of Electronic Materials, 2017, 46(11): 1-5。
[58]孫建生,楊豐帆,徐勤濤等,2010,“鍍銀鋁粉填充型電磁遮罩矽橡膠的製備與性能”,合成橡膠工業, 33(1): 33-37。
[59] Rajagopal C,Satyam M. 1978,“Studies on electrical conductivity of insulator-conductor composites”, Journal of Applied Physics, 49(11): 5536-5542。
[60] 劉小豔,王幫武,朱巍等,2017,“鍍銀鋁粉/導電矽橡膠複合材料的製備與性能”,彈性體, 27(1): 36-41。
[61] 溫變英,王雪嬌,方曉霞等,2018,“碳系導電填料性質對 PVB 基功能薄膜結構及電磁遮罩效能的影響”,材料導報, 32(24): 4346-4350。
[62] Zambrzycki M, Fraczek-Szczypta A. 2018,“Conductive hybrid polymer composites based on recycled carbon fibres and carbon nanofillers”, Journal of Materials Science, 53(10): 7403-7416。
[63] 呂臻,王中奇,趙鵬飛等,2018,“基體改性對導電碳黑/天然橡膠複合材料電磁性能的影響”,高分子材料科學與工程,34(11): 69-73.
[64] 趙柔,2017,雙導電網路橡膠複合材料的製備與性能研究,北京化工大學,學位論文。
[65] 焦冬生,任宗文,劉君,蘇正濤,2007,“乙炔碳黑填充導電矽橡膠的研究”,材料工程,2007,10(10):11-13.
[66] 張凱,吳菊英,黃渝鴻,梅君,2012,“碳黑用量對矽橡膠壓阻材料性能的影響”,電子元件與材料,2012(2):22-25.
[67] Wu X L,Lu J,2013,“The Impact of the Conductive Filler on the Dielectric Properties of Force-sensitive Conductive Silicone Rubber”,Applied Mechanics and Materials,271-272:297-300。
[68] Iijima,Sumio,1991,“Helical microtubules of graphitic carbon”,Nature,
354(6348): 56-58.
[69] Xin Z, Jianjun Z, Zhong-Can O Y,2000,“Strain energy and Young’s modulus of single-wall Carbon nanotubes calculated from electronic energy-band theory”,hysical Review B, 62(20):13692.
[70] Treacy M M J, Ebbesen T W, Gibson J M,1996,Exceptionally high Young’s modulus observed for individual carbon nanotubes”,Nature,381(6584):678。
[71] Collins P G, Avouris P,2000,“Nanotubes for electronics”, Scientific American,283(6):62-69.
[72] Sinha S,Barjami S,Iannacchione G,Schwab A,Muench G 2005,“Off-axis thermal properties of carbon nanotube films”, Journal of Nanoparticle esearch,(6):651-657.
[73] Pop E,Mann D,Wang Q,Goodson K,Dai H,2006,“Thermal conductance of an individual single-wall carbon nanotube above room temperature”, Nano Letters,6(1):96-100.
[74] Hao,Ling,Janas,Dawid,Brown,Elisabetta,Koziol,Krzysztof K,2016,
Thermal properties of continuously spun carbon nanotube fibres”, Physical E: Low-dimensional Systems and Nanostructures.
[75] Li Y, Li M, Pang M, Jie Z,Zhang C,2015,“Effects of multi-walled carbon nanotube structures on the electrical and mechanical properties of silicone rubber filled with multi-walled carbon nanotubes”, Journal of Materials Chemistry C, 3(21):5573-5579.
[76] Jiang M J, Dang Z M,Xu H P,2007,“Enhanced electrical conductivity in chemically modified carbon nanotube/methylvinyl silicone rubber nanocomposite “,European Polymer Journal,43(12): 4924-4930.
[77] Si GY,T D Samulski,2008 ,“Synthesis of Water Soluble Graphene”,NANO LETTERS,8(6): 1679-1682.
[78] R.R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim,2008,“Fine Structure Constant Defines Visual Transparency of Graphene “,SCIENCE,320(5881): 1308-1309.
[79] Ansari S,Giannelis E P,2009,“Functionalized graphene sheet—Poly(vinylidene fluoride) conductive nanocomposites”,Journal of Polymer Science,Part B: Polymer Physics,47(9): 888-897.
[80] tankovich, Sasha,Dikin, Dmitriy A,Dommett, Geoffrey H. B,Kohlhaas, Kevin M,Zimney, Eric J,Stach, Eric A,Piner, Richard D,Nguyen, SonBinh T,Ruoff, Rodney S,2006,“ Graphene-based composite materials “,Nature,442(2): 282-283.
[81] HB Zhang,WG Zheng,Q Yan,Y Yong,JW Wang,ZH Lu,GY Ji,ZZ Yu,2010,“Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding “, Polymer, 51(5): 1191-1196.
[82] 陳守廉,2018,矽橡膠-奈米碳管復合材料的電熱效應與壓阻效應及其應用,國立清華大學,碩士論文。
[83] 蘇柏儫,2017,導電矽橡膠的製備、電性、溫度係數的應用,國立中正大學,碩士論文。
[84] 陳丁暚,2015,無電電鍍銅於空心微珠填入矽橡膠導電度研究,國立雲林科技大學,碩士論文。
[85] 吳俊諺,2016,無電電鍍銀至矽烷偶合劑改質之回收玻璃纖維填入矽橡膠之導電度研究,國立雲林科技大學,碩士論文。
[86 ] 吳佳芸,2017,奈米碳管的應用:Part I:製備雷射印表機用導電碳粉;Part II:苯乙烯-異戊二烯-苯乙烯/奈米碳管導電橡膠的製程開發與應用,國立中正大學,碩士論文
[87] 劉文賢,2020,離子液體對於氟橡膠/銀銅粉複合材料的機械性質及電性之影響,國立台灣大學,碩士論文。
[88] 耿新玲, 劉君, 任玉柱等,2006,“導電矽橡膠研究進展”,航空材料學報,26(3): 283-288.
[89] 李春梅2001,“抗 EMI 技術的現狀與未來”,山西電子技術, 2001(5): 10-13。
[90] Ning N, Miao C, Zou H, et al,2016,“A new insight on the variation of the electric conductivity and conductive network of silver-coated glass particles/silicone elastomer composites under tensile strain “,Composites Science and Technology,136(11):46-52。
[91] Zou H, Zhang L, Tian M, et al,2010,“Study on the structure and properties of conductive silicone rubber filled with nickel-coated graphite”, Journal of Applied Polymer Science,115(5): 2710-2717。
[92] Sim L C, Ramanan S R, Ismail H, et al,2005,“ Thermal characterization of Al 2O 3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes”,Thermochimica Acta,430(1): 155-165。
[93] Chang M, Li Y, Lei X, et al,“ A novel assembled carbon black/carbon nanotubes (CB/MWCNT) nano-structured composite for pressure-sensitive conductive silicon rubber (SR)”,2018,Journal of Materials Science Materials in Electronics,29(4): 2716-2724。
[94] Hany A Sherif, Fahad A Almufadi,2019,“Fabrication and haracterization of silicone rubber/multiwalled carbon nanotubes nanocomposite sensors under impact force”,Sensors and Actuators A: Physical,ScienceDirect,24 July。
[95] 王劉功,2012,高導電性銀導電膠的備制及低成本化研究,湖南工業大學,碩士論文。
[96] 王國鵬,2019,高導電矽橡膠的研製及其電性能分析,大連理工大學,碩士論文,P39。
[97] Pan Song , Jianan Song , Yong Zhang,2020,“Stretchable conductor based on carbon nanotube/carbon black silicone rubber nanocomposites with highly mechanical, electrical properties and strain sensitivity”, Composites Part B: Engineering,18 March。
[98] 李楊,李德明,楊茗皓,2019,“碳材料/橡膠導電複合材料的研究進展”,橡膠科技(7)。
[99] ASTM D3182-16,Standard Practice for Rubber—Materials, Equipment, and Procedures for Mixing Standard Compounds and Preparing Standard Vulcanized Sheets,American Society of Testing Materials。
[100] ASTM D412-16,Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension,American Society of Testing Materials。
[101] ASTM D624-00 (Reapproved 2020) Standard Test Method for Tear Strength of Conventional Vulcanized Rubber and Thermoplastic Elastomers,American Society of Testing Materials。
[102] ASTM D395-18,Standard Test Methods for Rubber Property—Compression Set,American Society of Testing Materials。
[103] DIN 53512:2000-04,TESTING OF RUBBER - DETERMINATION OF REBOUND RESILIENCE (SCHOB-PENDULUM),German Institute for Standardisation
[104] D991 − 89 (Reapproved 2020),Standard Test Method for Rubber Property—Volume Resistivity Of Electrically Conductive and Antistatic Products,American Society of Testing Materials。
[105] D2663 − 14 (Reapproved 2019),Standard Test Methods for Carbon Black—Dispersion in Rubber,American Society of Testing Materials。
[106] SAVITHA K U, PRABU H G. 2013,“Polyaniline– TiO 2 hybrid-coated cotton fabric for durable electrical conductivity”, Journal of Applied Polymer Science, 127(4): 3147-3151。
[107] ARJOMANDI J,TADAYYONFAR S,2014,“Electrochemical synthesis and in situ spectroelectrochemistry of conducting polymer nanocomposites. I. polyaniline/TiO2 , polyaniline/ZnO, and polyaniline/TiO 2 +ZnO”. Polymer Composites, 35(2): 351-363。
[108] YOUSSEF A,2014,“Morphological studies of polyaniline nanocomposite based mesostructured TiO2 nanowires as conductive packaging materials”,RSC Advances, 4(13):6811-6820.
[109] LIU Q, ZHANG L, CHEN J F, et al. 2014,“Synthesis of TiO2 @ATO core-shell nanofibers using coaxial electrospinning”, Materials Letters, 137: 339-342。
[110]GUO Y, DUAN T G, CHEN Y, et al. 2015,“Solvothermal fabrication of three-dimensionally sphere-stacking Sb-SnO2 electrode based on TiO2 nanotube arrays”, Ceramics International, 41(7): 8723-8729。
[111] 李瑩,2019,二氧化鈦/石墨烯複合材料的製備及導電性研究,渤海大學,碩士論文,P4。
[112] 陳志,2019,導電矽橡膠材料的研究,青島科技大學,碩士論文,P31。
[113] 張剛,2004,碳納米管改性聚合物複合材料的研究,湖南大學,碩士論文。
[114] SCARISBRICKRM,1973,“Eletrically conducting mixtures”,J Phys D:ApplPhys,(6):2098-2110.
[115] Jiang M J,Dang Z M, Xu H P. ,2007,“Enhanced electrical conductivity in chemically modified carbon nanotube/methylvinyl silicone rubber nanocomposite”,European Polymer Journal,43(12):4924-4930.
[116] 李銀華,米志安,劉君等,2003,“鍍銀銅粉對填充型導電矽橡膠的研究”,有機矽材料,17(3)。
[117] 鄭俊萍、蘇正濤,1997,“白碳黑對矽橡膠耐熱性能影響”,橡膠工業,44(8):468.
[118] Cao W, Li W, Yin R, et al. 2014,“Controlled fabrication of Cu-Sn core-shell nanoparticles via displacement reaction”. Colloids Surf. A: Physicochem. Eng. Aspects, 453(8): 37-43.
[119] 吳欣欣,2018,“提高橡膠抗撕裂性能的方法和機理”,輪胎工業,第38卷。
[120] 何維娟、邱祖民、鄭楠,2015,“無機填料改性及其在高分子材料中的應用”,化工新型材料,第43卷第8期。
[121] ZHAO J, ZHANG D. 2015,“Epoxy-based adhesives filled with flakes Ag-coated copper as conductive fillers”, Polymer Composite,2015, 10(6): 1002-1005.
[122] 武博,2018,複合化學鍍製備高緻密性高包覆率-銀包銅粉,昆明理工大學,碩士論文。
[123] 陳志,2019,導電矽橡膠材料的研究,青島科技大學,碩士論文,P20。
[124] 魯姍姍,2019,導電矽橡膠模型的製備及性能研究,吉林大學,碩士論文,P20。
[125] 黃文潤,2009,熱硫化矽橡膠,四川科學技術出版社,P174。
[126]Jaime C G,2001,Carbon black-filled polymer composites: Property optimization with segregated microstructures . University of Minnesota
,dissertation.
[127] Huang Y,Xiang B,Ming X,Fu X,Ge Y,2008,“ Conductive Mechanism Research Based on Pressure-Sensitive Conductive Composite Material for Flexible Tactile Sensing “,Proceeding of the 2008 IEEE International Conference on Information and Automation,1614-1619.
[128] 鐘雁、謝鵬程、丁玉梅等 2011,“複合型導電塑膠製備方法的研究進展”,工程塑料應用,39( 1) : 100-103.
[129] 謝泉、羅姣蓮、黃宏偉、楊衛民,1999,“填充粒子對複合型導電矽橡膠電阻溫度特性的影響”,功能高分子學報,12(4):414~418。


電子全文 電子全文(網際網路公開日期:20260922)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊