[1]丁于倢(2019)。基於卷積神經網絡之微小探針表面剝金瑕疵自動光學檢測。國立臺北大學資訊工程學系碩士論文,新北市。 取自https://hdl.handle.net/11296/3cd5bc[2]羅倆凡(2019)。利用具注意力機制之生成對抗網路於工業影像之瑕疵單一分類。國立交通大學電控工程研究所碩士論文,新竹市。 取自https://hdl.handle.net/11296/4r837a[3]林靜甫(2018)。鏡面不銹鋼板瑕疵自動光學檢測系統之研製。國立高雄應用科技大學機械工程系碩士論文,高雄市。 取自https://hdl.handle.net/11296/ge3759[4]蘇詠靖 ; 游原瑋 ; 何昭慶(2018)。結合機器視覺與深度學習之金屬圓柱表面缺陷檢測系統。科儀新知, P46 – 58
[5]楊福生(2020)。基於機器視覺及光度立體技術應用於橡膠墊圈之自動光學檢測系統。國立臺北科技大學製造科技研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/jb4y5y[6]倪瑞宏(2019)。自動光學檢測技術應用於磁粉探傷之研究。國立高雄科技大學機械工程系碩士論文,高雄市。 取自https://hdl.handle.net/11296/mr5a3j[7]張峻睿(2019)。隱形眼鏡乾片圖紋瑕疵檢測系統。國立雲林科技大學電機工程系碩士論文,雲林縣。 取自https://hdl.handle.net/11296/r4479t[8]S. Niu, B. Li, X. Wang and H. Lin, "Defect Image Sample Generation With GAN for Improving Defect Recognition," in IEEE Transactions on Automation Science and Engineering, vol. 17, no. 3, pp. 1611-1622, July 2020, doi: 10.1109/TASE.2020.2967415.
[9]J. O’Leary, K. Sawlani and A. Mesbah, "Deep Learning for Classification of the Chemical Composition of Particle Defects on Semiconductor Wafers," in IEEE Transactions on Semiconductor Manufacturing, vol. 33, no. 1, pp. 72-85, Feb. 2020, doi: 10.1109/TSM.2019.2963656.
[10]Q. Xie, D. Li, J. Xu, Z. Yu and J. Wang, "Automatic Detection and Classification of Sewer Defects via Hierarchical Deep Learning," in IEEE Transactions on Automation Science and Engineering, vol. 16, no. 4, pp. 1836-1847, Oct. 2019, doi: 10.1109/TASE.2019.2900170.
[11]W. Wang, S. Chen, L. Chen and W. Chang, "A Machine Vision Based Automatic Optical Inspection System for Measuring Drilling Quality of Printed Circuit Boards," in IEEE Access, vol. 5, pp. 10817-10833, 2017, doi: 10.1109/ACCESS.2016.2631658.
[12]C. L. S. C. Fonseka and J. A. K. S. Jayasinghe, "Implementation of an Automatic Optical Inspection System for Solder Quality Classification of THT Solder Joints," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 9, no. 2, pp. 353-366, Feb. 2019, doi: 10.1109/TCPMT.2018.2864666.
[13]Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).
[14]He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
[15]Szegedy, Christian, et al. "Rethinking the inception architecture for computer vision." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.