跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 23:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴冠憓
研究生(外文):LAI, GUAN-HUI
論文名稱:金/電活性聚醯胺與金/石墨烯/電活性聚醯胺複合材料之合成、鑑定及其催化對-硝基苯酚之應用
論文名稱(外文):Synthesis and characterization of Au/electroactive polyamide and Au/graphene/electroactive polyamide composite catalyst for 4-nitrophenol reduction
指導教授:蔡美慧蔡美慧引用關係葉瑞銘葉瑞銘引用關係
指導教授(外文):TSAI, MEI-HUIYEH, JUI-MING
口試委員:蔡美慧葉瑞銘曾怡享邱維銘呂春美
口試委員(外文):TSAI, MEI-HUIYEH, JUI-MINGTSENG, I-HSUANGCHIU, WEI-MINGLU, CHUN-MEI
口試日期:2021-01-21
學位類別:博士
校院名稱:國立勤益科技大學
系所名稱:精密製造科技研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:130
中文關鍵詞:電活性聚醯胺催化劑對-硝基苯酚
外文關鍵詞:Electroactive polyamideCatalyst4-Nitrophenol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要將奈米金粒子及還原氧化石墨烯添加到電活性聚醯胺(Electroactive Polyamide, EPA)當中,形成電活性聚醯胺複合材料並作為催化劑應用於催化還原對-硝基苯酚,其主要分為三部分。
第一部分是利用氧化偶合法合成電活性聚醯胺並利用傅立葉紅外線光譜儀(FTIR)、質譜儀(LC-MS)、核磁共振儀(NMR)及凝膠滲透層析儀(GPC)對其官能基、結構及分子量進行鑑定。利用紫外光-可見光光譜儀(UV-vis)及循環伏安儀(CV)量測其化學氧化還原及電活性之特性。
第二部分為利用電活性聚醯胺作為奈米金粒子之載體及還原劑,合成系列金/電活性聚醯胺(Au/EPA)複合材料,作為催化還原對-硝基苯酚之催化劑。並由FTIR鑑定其官能基,X光繞射分析儀(XRD)及X射線光電子能譜儀(XPS)鑑定奈米金粒子的結構,CV鑑定其電活性,場發射電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)對金/電活性聚醯胺複合材料之形貌作鑑定。由研究結果可知金/電活性聚醯胺複合材料具有良好的催化還原對-硝基苯酚之特性,其催化還原對-硝基苯酚之反應速率常數分別為6.1×10-3 s-1 (1 Au/EPA)、7.4×10-3 s-1 (3 Au/EPA)及 7.6×10-3 s-1 (5 Au/EPA)。再由催化還原對-硝基苯酚效果最佳的5 Au/EPA複合材料進行溫度對催化還原對-硝基苯酚的影響,計算出催化還原對-硝基苯酚的活化能為28.10 kJ/mol。
第三部分則是先將氧化石墨烯(GO)及還原氧化石墨烯(RGO)添加到電活性聚醯胺當中,藉由提高電活性聚醯胺的氧化還原特性,進一步探討其還原奈米金粒子之能力,製備出金/氧化石墨烯/電活性聚醯胺(Au/GO/EPA)及金/還原氧化石墨烯/電活性聚醯胺(Au/RGO/EPA)複合材料並探討其對催化還原對-硝基苯酚之效果。由CV可知GO/EPA及RGO/EPA複合材料的氧化還原能力皆有提高,進一步利用GO/EPA及RGO/EPA作為還原奈米金粒子之載體及還原劑,合成Au/GO/EPA及Au/RGO/EPA複合材料,作為催化還原對-硝基苯酚之催化劑。由XRD及XPS鑑定結果可知奈米金粒子已成功製備,且Au/GO/EPA及Au/RGO/EPA複合材料作為催化劑還原對-硝基苯酚的效果有進一步提升,其反應速率常數分別為1.05×10-2 s-1及1.15×10-2 s-1;活化能分別為38.99 kJ/mol及37.29 kJ/mol。

In this dissertation, Au nanoparticles and graphene were introduced in electroactive polyamide (EPA) to prepare the EPA composites catalyst for 4-nitrophenol reduction. This dissertation is mainly divided into three parts.
In the first part, the EPA was synthesized by an oxidative coupling reaction, and it was characterized by Fourier-transform infrared (FTIR), Liquid chromatography-mass spectrometry (LC-MS), Nuclear Magnetic Resonance spectrometry (NMR), and gel permeation chromatography (GPC). The reversible redox activity of the EPA was monitored by UV–vis spectroscopy (UV-vis). Moreover, the electroactivity of the EPA was evaluated by electrochemical cyclic voltammetry (CV).
In the second part, the as-prepared EPA was used as a carrier and reducing agent for Au nanoparticles to synthesize a series of Au/EPA composite catalysts for the reduction of 4-nitrophenol. The synthesized Au/EPA composites were characterized by FTIR, CV, X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-vis. The prepared 1 Au/EPA, 3 Au/EPA, and 5 Au/EPA were found to exhibit catalytic activity towards 4-nitrophenol with a rate constant of 6.1×10-3 s-1, 7.4×10-3 s-1, and 7.6×10-3 s-1, respectively. The activation energy (Ea) for 5 Au/EPA is 28.10 kJ/mol.
In the third part, the GO/EPA and RGO/EPA composites were prepared by incorporated graphene oxide (GO) and graphene (RGO) into EPA to improve the redox activity. Furthermore, the as-prepared GO/EPA and RGO/EPA were used as a carrier and reducing agent for reducing Au nanoparticles to synthesize Au/GO/EPA and Au/RGO/EPA composite catalysts for the reduction of 4-nitrophenol. The synthesized Au/GO/EPA and Au/RGO/EPA composites were characterized by FTIR, CV, XRD, XPS, SEM, TEM, and UV-vis. The prepared Au/GO/EPA and Au/RGO/EPA were found to exhibit catalytic activity towards 4-nitrophenol with a rate constant of 1.05×10-2 s-1 and 1.15×10-2 s-1, respectively. The activation energy for Au/GO/EPA and Au/RGO/EPA is 38.99 kJ/mol and 37.29 kJ/mol, respectively.

中文摘要 I
ABSTRACT III
致謝 V
目錄 VI
圖目錄 X
表目錄 XVII
第一章 導論 1
1.1 前言 1
1.2 芳香族化合物 2
1.2.1 酚類化合物 4
1.2.2 處理水溶性芳香族化合物之方法 5
1.3 奈米金屬粒子簡介 7
1.3.1 局部表面電漿共振 8
1.4 催化劑材料用於催化硝基苯酚化合物之文獻回顧 9
1.5 研究動機 22
第二章 電活性聚醯胺之合成與鑑定 24
2.1 導電高分子材料的種類 24
2.1.1 本質型導電高分子之簡介 25
2.1.2 聚苯胺之簡介 26
2.2 電活性高分子之簡介 27
2.3 電活性高分子及其複合材料之文獻回顧 27
2.4 研究動機 31
2.5 實驗 32
2.5.1 實驗藥品 32
2.5.2 儀器設備及分析條件 34
2.6 電活性聚醯胺之合成 36
2.6.1 醯胺寡聚物之合成 36
2.6.2 電活性聚醯胺之合成 37
2.7 鑑定 38
2.7.1 醯胺寡聚物之鑑定 38
2.7.2 電活性聚醯胺之鑑定 41
2.7.3 電活性聚醯胺之化學氧化分析 43
2.7.4 電活性聚醯胺之電活性測試 44
2.7.5 電活性聚醯胺之形貌鑑定 45
2.8 結論 46
第三章 金/電活性聚醯胺複合材料之合成、鑑定及將其應用在催化還原對硝基苯酚之探討 47
3.1 奈米金屬粒子/高分子複合材料用於催化還原對-硝基苯酚之文獻回顧 47
3.2 研究動機 54
3.3 實驗 55
3.3.1 實驗藥品 55
3.3.2 儀器設備及分析條件 55
3.3.3 金/電活性聚醯胺複合材料之合成 57
3.3.4 代號說明 57
3.3.5 催化還原對-硝基苯酚 58
3.4 結果與討論 59
3.4.1 金/電活性聚醯胺複合材料之FTIR鑑定 59
3.4.2 金/電活性聚醯胺複合材料之CV鑑定 62
3.4.3 金/電活性聚醯胺複合材料之XRD鑑定 63
3.4.4 金/電活性聚醯胺複合材料之XPS鑑定 64
3.4.5 金/電活性聚醯胺複合材料之TGA鑑定 66
3.4.6 金/電活性聚醯胺複合材料之形貌鑑定 67
3.4.7 金/電活性聚醯胺複合材料用於催化還原對-硝基苯酚之探討 72
3.5 結論 78
第四章 金/還原氧化石墨烯/電活性聚醯胺複合材料及金/氧化石墨烯/電活性聚醯胺複合材料之合成、鑑定及將其應用在催化還原對硝基苯酚之探討 79
4.1 石墨烯及氧化石墨烯之簡介 79
4.1.1 石墨烯簡介 79
4.1.2 氧化石墨烯簡介 80
4.1.3 氧化石墨烯之製備方法 80
4.2 石墨烯及氧化石墨烯/高分子複合材料之文獻回顧 84
4.3 研究動機 86
4.4 實驗 87
4.4.1 實驗藥品 87
4.4.2 儀器設備及分析條件 87
4.4.3 氧化石墨烯及還原氧化石墨烯之合成 88
4.4.4 氧化石墨烯/電活性聚醯胺、還原氧化石墨烯/電活性聚醯胺複合材料之合成 89
4.4.5 金/氧化石墨烯/電活性聚醯胺及金/還原氧化石墨烯/電活性聚醯胺複合材料之合成 90
4.4.6 代號說明 90
4.4.7 催化還原對-硝基苯酚 90
4.5 結果與討論 91
4.5.1 氧化石墨烯及還原氧化石墨烯之FTIR鑑定 91
4.5.2 氧化石墨烯及還原氧化石墨烯之Raman光譜鑑定 92
4.5.3 氧化石墨烯及還原氧化石墨烯之XRD鑑定 94
4.5.4 氧化石墨烯及還原氧化石墨烯之XPS鑑定 95
4.5.5 氧化石墨烯及還原氧化石墨烯之TGA鑑定 97
4.5.6 氧化石墨烯及還原氧化石墨烯之形貌鑑定 98
4.5.7 金/氧化石墨烯/電活性聚醯胺及金/還原氧化石墨烯/電活性聚醯胺複合材料之FTIR鑑定 99
4.5.8 金/氧化石墨烯/電活性聚醯胺及金/石墨烯/電活性聚醯胺複合材料之CV鑑定 100
4.5.9 金/氧化石墨烯/電活性聚醯胺及金/還原氧化石墨烯/電活性聚醯胺複合材料之XRD鑑定 101
4.5.10 金/氧化石墨烯/電活性聚醯胺及金/還原氧化石墨烯/電活性聚醯胺複合材料之XPS鑑定 102
4.5.11 金/氧化石墨烯/電活性聚醯胺及金/還原氧化石墨烯/電活性聚醯胺複合材料之TGA鑑定 104
4.5.12 金/氧化石墨烯/電活性聚醯胺及金/還原氧化石墨烯/電活性聚醯胺複合材料之形貌鑑定 105
4.5.13 金/氧化石墨烯/電活性聚醯胺及金/還原氧化石墨烯/電活性聚醯胺複合材料用於催化還原對-硝基苯酚之探討 108
4.6 結論 113
第五章 總結與未來展望 114
5.1 總結 114
5.2 未來展望 116
參考文獻 117


[1]X.-F. Zhang, X.-Y. Zhu, J.-J. Feng, A.-J. Wang, Solvothermal synthesis of N-doped graphene supported PtCo nanodendrites with highly catalytic activity for 4-nitrophenol reduction, Applied Surface Science 428 (2018) 798-808.
[2]P. Karimi, K.O. Peters, K. Bidad, P.T. Strickland, Polycyclic aromatic hydrocarbons and childhood asthma, European Journal of Epidemiology 30 (2015) 91-101.
[3]S. Lakshmi Narayana, B. Sung-Ok, Biomonitoring of Atmospheric Polycyclic Aromatic Hydrocarbons: A Mini Review, Mini-Reviews in Organic Chemistry 14 (2017) 496-500.
[4]Heterocyclic Compounds: An Introduction, Modern Heterocyclic Chemistry, 1-9.
[5]N.D. Mu’azu, N. Jarrah, M. Zubair, O. Alagha, Removal of Phenolic Compounds from Water Using Sewage Sludge-Based Activated Carbon Adsorption: A Review, International Journal of Environmental Research and Public Health 14 (2017) 1094.
[6]J.A. Field, A.J.M. Stams, M. Kato, G. Schraa, Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia, Antonie van Leeuwenhoek 67 (1995) 47-77.
[7]H. Hu, J.H. Xin, H. Hu, X. Wang, D. Miao, Y. Liu, Synthesis and stabilization of metal nanocatalysts for reduction reactions - a review, Journal of Materials Chemistry A 3 (2015) 11157-11182.
[8]E. Forgacs, T. Cserháti, G. Oros, Removal of synthetic dyes from wastewaters: a review, Environment International 30 (2004) 953-971.
[9]I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities, Arabian Journal of Chemistry 12 (2019) 908-931.
[10]J. Krajczewski, K. Kołątaj, A. Kudelski, Plasmonic nanoparticles in chemical analysis, RSC Advances 7 (2017) 17559-17576.
[11]J.-F. Masson, Portable and field-deployed surface plasmon resonance and plasmonic sensors, Analyst 145 (2020) 3776-3800.
[12]X.-F. Zhang, Z.-G. Liu, W. Shen, S. Gurunathan, Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches, International Journal of Molecular Sciences 17 (2016) 1534.
[13]D. Thompson, Michael Faraday's recognition of ruby gold: the birth of modern nanotechnology, Gold Bulletin 40 (2007) 267-269.
[14]A.A. Noyes, J.T. Dorrance, The Electrolytic Reduction of Paranitro Compounds in Sulphuric Acid Solution., Journal of the American Chemical Society 17 (1895) 855-859.
[15]O.W. Brown, G. Etzel, C.O. Henke, Catalytic Reduction of Nitro-Organic Compounds in the Liquid System, The Journal of Physical Chemistry 32 (1928) 631-635.
[16]N. Pradhan, A. Pal, T. Pal, Catalytic Reduction of Aromatic Nitro Compounds by Coinage Metal Nanoparticles, Langmuir 17 (2001) 1800-1802.
[17]S. Wunder, F. Polzer, Y. Lu, Y. Mei, M. Ballauff, Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes, The Journal of Physical Chemistry C 114 (2010) 8814-8820.
[18]S. Gu, S. Wunder, Y. Lu, M. Ballauff, R. Fenger, K. Rademann, B. Jaquet, A. Zaccone, Kinetic Analysis of the Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles, The Journal of Physical Chemistry C 118 (2014) 18618-18625.
[19]Y. Zhang, S. Liu, W. Lu, L. Wang, J. Tian, X. Sun, In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol, Catalysis Science & Technology 1 (2011) 1142-1144.
[20]F.-h. Lin, R.-a. Doong, Bifunctional Au−Fe3O4 Heterostructures for Magnetically Recyclable Catalysis of Nitrophenol Reduction, The Journal of Physical Chemistry C 115 (2011) 6591-6598.
[21]C. Zhu, L. Han, P. Hu, S. Dong, In situ loading of well-dispersed gold nanoparticles on two-dimensional graphene oxide/SiO2 composite nanosheets and their catalytic properties, Nanoscale 4 (2012) 1641-1646.
[22]K. Dong, Z. Liu, J. Ren, A general and eco-friendly self-etching route to prepare highly active and stable Au@metal silicate yolk-shell nanoreactors for catalytic reduction of 4-nitrophenol, CrystEngComm 15 (2013) 6329-6334.
[23]H. Yao, L. Jin, H.-J. Sue, Y. Sumi, R. Nishimura, Facile decoration of Au nanoparticles on reduced graphene oxide surfaces via a one-step chemical functionalization approach, Journal of Materials Chemistry A 1 (2013) 10783-10789.
[24]H. Yao, T.-C. Huang, H.-J. Sue, Self-assembly of Au nanoparticles on graphene sheets as a catalyst with controlled grafting density and high reusability, RSC Advances 4 (2014) 61823-61830.
[25]P. Veerakumar, R. Madhu, S.-M. Chen, V. Veeramani, C.-T. Hung, P.-H. Tang, C.-B. Wang, S.-B. Liu, Highly stable and active palladium nanoparticles supported on porous carbon for practical catalytic applications, Journal of Materials Chemistry A 2 (2014) 16015-16022.
[26]B. Ma, M. Wang, D. Tian, Y. Pei, L. Yuan, Micro/nano-structured polyaniline/silver catalyzed borohydride reduction of 4-nitrophenol, RSC Advances 5 (2015) 41639-41645.
[27]Q. Wang, Q. Wang, M. Li, S. Szunerits, R. Boukherroub, One-step synthesis of Au nanoparticle–graphene composites using tyrosine: electrocatalytic and catalytic properties, New Journal of Chemistry 40 (2016) 5473-5482.
[28]M. Zhang, X. Lu, H.-Y. Wang, X. Liu, Y. Qin, P. Zhang, Z.-X. Guo, Porous gold nanoparticle/graphene oxide composite as efficient catalysts for reduction of 4-nitrophenol, RSC Advances 6 (2016) 35945-35951.
[29]M.T. Islam, N. Dominguez, M.A. Ahsan, H. Dominguez-Cisneros, P. Zuniga, P.J.J. Alvarez, J.C. Noveron, Sodium rhodizonate induced formation of gold nanoparticles supported on cellulose fibers for catalytic reduction of 4-nitrophenol and organic dyes, Journal of Environmental Chemical Engineering 5 (2017) 4185-4193.
[30]S. Jain, S. Mishra, T.K. Sarma, Zn2+ Induced Self-Assembled Growth of Octapodal CuxO–ZnO Microcrystals: Multifunctional Applications in Reductive Degradation of Organic Pollutants and Nonenzymatic Electrochemical Sensing of Glucose, ACS Sustainable Chemistry & Engineering 6 (2018) 9771-9783.
[31]K. Cui, B. Yan, Y. Xie, H. Qian, X. Wang, Q. Huang, Y. He, S. Jin, H. Zeng, Regenerable urchin-like Fe3O4@PDA-Ag hollow microspheres as catalyst and adsorbent for enhanced removal of organic dyes, Journal of Hazardous materials 350 (2018) 66-75.
[32]C. Rajkumar, P. Veerakumar, S.-M. Chen, B. Thirumalraj, K.-C. Lin, Ultrathin Sulfur-Doped Graphitic Carbon Nitride Nanosheets As Metal-Free Catalyst for Electrochemical Sensing and Catalytic Removal of 4-Nitrophenol, ACS Sustainable Chemistry & Engineering 6 (2018) 16021-16031.
[33]S.A. Hira, M. Nallal, K.H. Park, Fabrication of PdAg nanoparticle infused metal-organic framework for electrochemical and solution-chemical reduction and detection of toxic 4-nitrophenol, Sensors and Actuators B: Chemical 298 (2019) 126861.
[34]G.-H. Lai, T.-C. Huang, Y.-H. Pai, B.-S. Huang, M.-H. Tsai, T.-I. Yang, Y.-H. Chung, Preparation of highly-stable and recyclable novel Au/ZrP composite catalyst for 4-nitrophenol reduction, Journal of the Taiwan Institute of Chemical Engineers 95 (2019) 525-531.
[35]F. Kanjirathamathadathil Saidu, A. Joseph, G.V. Thomas, Synthesis of novel poly(1-naphthylamine)-silver nanocomposites and its catalytic studies on reduction of 4-nitrophenol and methylene blue, Journal of Applied Polymer Science 137 (2020) 48318.
[36]Y. Wang, H.D. Tran, L. Liao, X. Duan, R.B. Kaner, Nanoscale Morphology, Dimensional Control, and Electrical Properties of Oligoanilines, Journal of the American Chemical Society 132 (2010) 10365-10373.
[37]Z.Y. Wang, C. Yang, J.P. Gao, J. Lin, X.S. Meng, Y. Wei, S. Li, Electroactive Polyimides Derived from Amino-Terminated Aniline Trimer, Macromolecules 31 (1998) 2702-2704.
[38]W. Lu, X. Sheng Meng, Z. Yuan Wang, Electrochemical behavior of a new electroactive polyimide derived from aniline trimer, Journal of Polymer Science Part A: Polymer Chemistry 37 (1999) 4295-4301.
[39]R. Chen, B.C. Benicewicz, Preparation and Properties of Poly(methacrylamide)s Containing Oligoaniline Side Chains, Macromolecules 36 (2003) 6333-6339.
[40]J. Gao, D.G. Liu, J.M. Sansiñena, H.L. Wang, Synthesis and Characterization of Electrochromic Polyamides with Well-Defined Molecular Structures and Redox Properties, Advanced Functional Materials 14 (2004) 537-543.
[41]L. Huang, X. Zhuang, J. Hu, L. Lang, P. Zhang, Y. Wang, X. Chen, Y. Wei, X. Jing, Synthesis of Biodegradable and Electroactive Multiblock Polylactide and Aniline Pentamer Copolymer for Tissue Engineering Applications, Biomacromolecules 9 (2008) 850-858.
[42]H. Wang, Y. Han, Vesicles Formed by Oligostyrene-block-Oligoaniline-block-Oligostyrene Triblock Oligomer, Macromolecular Rapid Communications 30 (2009) 521-527.
[43]T.-C. Huang, T.-C. Yeh, H.-Y. Huang, W.-F. Ji, T.-C. Lin, C.-A. Chen, T.-I. Yang, J.-M. Yeh, Electrochemical investigations of the anticorrosive and electrochromic properties of electroactive polyamide, Electrochimica Acta 63 (2012) 185-191.
[44]T.-C. Huang, T.-C. Yeh, H.-Y. Huang, W.-F. Ji, Y.-C. Chou, W.-I. Hung, J.-M. Yeh, M.-H. Tsai, Electrochemical studies on aniline-pentamer-based electroactive polyimide coating: Corrosion protection and electrochromic properties, Electrochimica Acta 56 (2011) 10151-10158.
[45]L.-C. Yeh, T.-C. Huang, Y.-P. Huang, H.-Y. Huang, H.-H. Chen, T.-I. Yang, J.-M. Yeh, Synthesis electroactive polyurea with aniline-pentamer-based in the main chain and its application in electrochemical sensor, Electrochimica Acta 94 (2013) 300-306.
[46]L.-C. Yeh, T.-C. Huang, F.-Y. Lai, G.-H. Lai, A.-Y. Lo, S.-C. Hsu, T.-I. Yang, J.-M. Yeh, Synthesis of electroactive polyazomethine and its application in electrochromic property and electrochemical sensor, Surface and Coatings Technology 303 (2016) 154-161.
[47]G. Qu, F. Li, E.B. Berda, M. Chi, X. Liu, C. Wang, D. Chao, Electroactive polyurea bearing oligoaniline pendants: Electrochromic and anticorrosive properties, Polymer 58 (2015) 60-66.
[48]M. Chi, S. Wang, Y. Liang, D. Chao, C. Wang, Electroactive self-doped poly(amic acid) with oligoaniline and sulfonic acid groups: Synthesis and electrochemical properties, Journal of Colloid and Interface Science 423 (2014) 7-12.
[49]F. Li, J. Wang, M. Zhou, X. Liu, C. Wang, D. Chao, Synthesis and electrochemical properties of a novel poly(ether sulfone) with oligoaniline pendants, Chemical Research in Chinese Universities 31 (2015) 1066-1071.
[50]M. Yin, Y. Yan, J.P. Cole, E.B. Berda, F. Li, X. Liu, C. Wang, D. Chao, Synthesis and tunable properties of oligoaniline-functionalized polyamides, Journal of Polymer Science Part A: Polymer Chemistry 54 (2016) 3343-3349.
[51]Y. Yan, X. Jia, M. Feng, C. Wang, D. Chao, Synthesis and electrochemical characterization of polyamic acid containing oligoaniline and triphenylamine, Journal of Polymer Science Part A: Polymer Chemistry 55 (2017) 1669-1673.
[52]Y. Yan, N. Sun, F. Li, X. Jia, C. Wang, D. Chao, Multiple Stimuli-Responsive Fluorescence Behavior of Novel Polyamic Acid Bearing Oligoaniline, Triphenylamine, and Fluorene Groups, ACS Applied Materials & Interfaces 9 (2017) 6497-6503.
[53]M. Yin, F. Li, Y. Yan, X. Liu, C. Wang, D. Chao, Poly(aryl ether) bearing electroactive tetraaniline pendants and allyl groups: Synthesis, photo-crosslinking and electrochemical properties, Journal of Polymer Science Part A: Polymer Chemistry 54 (2016) 2321-2330.
[54]B.-S. Huang, G.-H. Lai, T.-I. Yang, M.-H. Tsai, Y.-C. Chou, A Novel Electroactive Imide Oligomer and Its Application in Anticorrosion Coating, Polymers 12 (2020) 91.
[55]H.-Y. Huang, T.-C. Huang, T.-C. Yeh, C.-Y. Tsai, C.-L. Lai, M.-H. Tsai, J.-M. Yeh, Y.-C. Chou, Advanced anticorrosive materials prepared from amine-capped aniline trimer-based electroactive polyimide-clay nanocomposite materials with synergistic effects of redox catalytic capability and gas barrier properties, Polymer 52 (2011) 2391-2400.
[56]T.-C. Huang, L.-C. Yeh, H.-Y. Huang, Z.-Y. Nian, Y.-C. Yeh, Y.-C. Chou, J.-M. Yeh, M.-H. Tsai, The use of a carbon paste electrode mixed with multiwalled carbon nanotube/electroactive polyimide composites as an electrode for sensing ascorbic acid, Polymer Chemistry 5 (2014) 630-637.
[57]T.C. Huang, L.C. Yeh, G.H. Lai, F.Y. Lai, T.I. Yang, Y.J. Huang, A.Y. Lo, J.M. Yeh, Electroactive polyurea/CNT composite-based electrode for detection of vitamin C, Express Polymer Letters 10 (2016) 450-461.
[58]L.-C. Yeh, T.-C. Huang, Y.-J. Lin, G.-H. Lai, T.-I. Yang, A.-Y. Lo, J.-M. Yeh, Electroactive polyamide modified carbon paste electrode for the determination of ascorbic acid, International Journal of Green Energy 13 (2016) 1334-1341.
[59]W. Liu, X. Yang, W. Huang, Catalytic properties of carboxylic acid functionalized-polymer microsphere-stabilized gold metallic colloids, Journal of Colloid and Interface Science 304 (2006) 160-165.
[60]J. Zhang, D. Han, H. Zhang, M. Chaker, Y. Zhao, D. Ma, In situ recyclable gold nanoparticles using CO2-switchable polymers for catalytic reduction of 4-nitrophenol, Chemical Communications 48 (2012) 11510-11512.
[61]T. Hirao, M. Higuchi, I. Ikeda, Y. Ohshiro, A novel synthetic metal catalytic system for dehydrogenative oxidation based on redox of polyaniline, Journal of the Chemical Society, Chemical Communications (1993) 194-195.
[62]S.S. Kumar, C.S. Kumar, J. Mathiyarasu, K.L. Phani, Stabilized Gold Nanoparticles by Reduction Using 3,4-Ethylenedioxythiophene-polystyrenesulfonate in Aqueous Solutions:  Nanocomposite Formation, Stability, and Application in Catalysis, Langmuir 23 (2007) 3401-3408.
[63]A. Balamurugan, K.-C. Ho, S.-M. Chen, One-pot synthesis of highly stable silver nanoparticles-conducting polymer nanocomposite and its catalytic application, Synthetic Metals 159 (2009) 2544-2549.
[64]H.G. Lemos, S.F. Santos, E.C. Venancio, Polyaniline-Pt and polypyrrole-Pt nanocomposites: Effect of supporting type and morphology on the nanoparticles size and distribution, Synthetic Metals 203 (2015) 22-30.
[65]S.-C. Hsu, H.-T. Cheng, P.-X. Wu, C.-J. Weng, K.S. Santiago, J.-M. Yeh, Electrochemical Sensor Constructed Using a Carbon Paste Electrode Modified with Mesoporous Silica Encapsulating PANI Chains Decorated with GNPs for Detection of Ascorbic Acid, Electrochimica Acta 238 (2017) 246-256.
[66]T. Ning, G. Yang, W. Zhao, X. Liu, One-pot solvothermal synthesis of robust ambient-dried polyimide aerogels with morphology-enhanced superhydrophobicity for highly efficient continuous oil/water separation, Reactive and Functional Polymers 116 (2017) 17-23.
[67]M.H. Tsai, S. Lu, Y. Lai, G.H. Lai, G. Dizon, T.I. Yang, Y.J. Lin, Y. Chou, Novel ascorbic acid sensor prepared from gold/aniline-pentamer-based electroactive polyamide composites, Express Polymer Letters 12 (2018) 71-81.
[68]L.M.G. Padua, J.-M. Yeh, K.S. Santiago, A Novel Application of Electroactive Polyimide Doped with Gold Nanoparticles: As a Chemiresistor Sensor for Hydrogen Sulfide Gas, Polymers 11 (2019) 1918.
[69]G.-H. Lai, B.-S. Huang, T.-I. Yang, M.-H. Tsai, Y.-C. Chou, Preparation of highly stable and recyclable Au/electroactive polyamide composite catalyst for nitrophenol reduction, Polymer 213 (2021) 123200.
[70]S. Quillard, G. Louarn, S. Lefrant, A.G. Macdiarmid, Vibrational analysis of polyaniline: A comparative study of leucoemeraldine, emeraldine, and pernigraniline bases, Physical Review B 50 (1994) 12496-12508.
[71]A. Serrà, R. Artal, M. Pozo, J. Garcia-Amorós, E. Gómez, Simple Environmentally-Friendly Reduction of 4-Nitrophenol, Catalysts 10 (2020).
[72]N.K.R. Bogireddy, P. Sahare, U. Pal, S.F.O. Méndez, L.M. Gomez, V. Agarwal, Platinum nanoparticle-assembled porous biogenic silica 3D hybrid structures with outstanding 4-nitrophenol degradation performance, Chemical Engineering Journal 388 (2020) 124237.
[73]J. Song, Y. Zhu, J. Zhang, J. Yang, Y. Du, W. Zheng, C. Wen, Y. Zhang, L. Zhang, Encapsulation of AgNPs within Zwitterionic Hydrogels for Highly Efficient and Antifouling Catalysis in Biological Environments, Langmuir 35 (2019) 1563-1570.
[74]A. Verma, S. Kumar, W.-K. Chang, Y.-P. Fu, Bi-functional Ag-CuxO/g-C3N4 hybrid catalysts for the reduction of 4-nitrophenol and the electrochemical detection of dopamine, Dalton Transactions 49 (2020) 625-637.
[75]Z. Yanwu, M. Shanthi, C. Weiwei, L. Xuesong, S.J. Won, P.J. R., R.R. S., Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Advanced Materials 22 (2010) 3906-3924.
[76]R.L.D. Whitby, Chemical Control of Graphene Architecture: Tailoring Shape and Properties, ACS Nano 8 (2014) 9733-9754.
[77]S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature 442 (2006) 282-286.
[78]K. Alexander, M. Shlomo, Conductive Nanomaterials for Printed Electronics, Small 10 (2014) 3515-3535.
[79]X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage, Science 341 (2013) 534-537.
[80]K. Kim, S.-H. Bae, C.T. Toh, H. Kim, J.H. Cho, D. Whang, T.-W. Lee, B. Özyilmaz, J.-H. Ahn, Ultrathin Organic Solar Cells with Graphene Doped by Ferroelectric Polarization, ACS Applied Materials & Interfaces 6 (2014) 3299-3304.
[81]D. Prasai, J.C. Tuberquia, R.R. Harl, G.K. Jennings, K.I. Bolotin, Graphene: Corrosion-Inhibiting Coating, ACS Nano 6 (2012) 1102-1108.
[82]R.G. McQueen, S.P. Marsh, Equation of State for Nineteen Metallic Elements from Shock‐Wave Measurements to Two Megabars, Journal of Applied Physics 31 (1960) 1253-1269.
[83]A. Lerf, H. He, M. Forster, J. Klinowski, Structure of Graphite Oxide Revisited, The Journal of Physical Chemistry B 102 (1998) 4477-4482.
[84]H. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide, Chemical Physics Letters 287 (1998) 53-56.
[85]N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinskiy, Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations, Chemistry of Materials 11 (1999) 771-778.
[86]H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, X.-H. Xia, A Green Approach to the Synthesis of Graphene Nanosheets, ACS Nano 3 (2009) 2653-2659.
[87]B.C. Brodie, XIII. On the atomic weight of graphite, Philosophical Transactions of the Royal Society of London 149 (1859) 249-259.
[88]S. L., Verfahren zur Darstellung der Graphitsäure, Berichte der deutschen chemischen Gesellschaft 31 (1898) 1481-1487.
[89]W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, Journal of the American Chemical Society 80 (1958) 1339-1339.
[90]P.V. Lakshminarayanan, H. Toghiani, C.U. Pittman, Nitric acid oxidation of vapor grown carbon nanofibers, Carbon 42 (2004) 2433-2442.
[91]D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chemical Society Reviews 39 (2010) 228-240.
[92]D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved Synthesis of Graphene Oxide, ACS Nano 4 (2010) 4806-4814.
[93]H. Yang, C. Shan, F. Li, D. Han, Q. Zhang, L. Niu, Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid, Chemical Communications (2009) 3880-3882.
[94]S.S. Ho, P.K. Hyun, K.B. Hyun, C.Y. Won, J.G. Hoon, L.D. Ju, K. Byung‐Seon, P. Kyung‐Wook, J. Seokwoo, Enhanced Thermal Conductivity of Epoxy–Graphene Composites by Using Non‐Oxidized Graphene Flakes with Non‐Covalent Functionalization, Advanced Materials 25 (2013) 732-737.
[95]A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials 6 (2007) 183-191.
[96]K. Kalaitzidou, H. Fukushima, P. Askeland, L.T. Drzal, The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites, Journal of Materials Science 43 (2008) 2895-2907.
[97]H. Bai, K. Sheng, P. Zhang, C. Li, G. Shi, Graphene oxide/conducting polymer composite hydrogels, Journal of Materials Chemistry 21 (2011) 18653-18658.
[98]H. Hu, G. Zhang, L. Xiao, H. Wang, Q. Zhang, Z. Zhao, Preparation and electrical conductivity of graphene/ultrahigh molecular weight polyethylene composites with a segregated structure, Carbon 50 (2012) 4596-4599.
[99]P. Kumar, S. Yu, F. Shahzad, S.M. Hong, Y.-H. Kim, C.M. Koo, Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides, Carbon 101 (2016) 120-128.
[100]I.H. Tseng, Y.-F. Liao, J.-C. Chiang, M.-H. Tsai, Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property, Materials Chemistry and Physics 136 (2012) 247-253.
[101]T. Mei‐Hui, T. I‐Hsiang, L. Yu‐Fu, C. Jen‐Chi, Transparent polyimide nanocomposites with improved moisture barrier using graphene, Polymer International 62 (2013) 1302-1309.
[102]M.-H. Tsai, C.-J. Chang, H.-H. Lu, Y.-F. Liao, I.H. Tseng, Properties of magnetron-sputtered moisture barrier layer on transparent polyimide/graphene nanocomposite film, Thin Solid Films 544 (2013) 324-330.
[103]C.-H. Chang, T.-C. Huang, C.-W. Peng, T.-C. Yeh, H.-I. Lu, W.-I. Hung, C.-J. Weng, T.-I. Yang, J.-M. Yeh, Novel anticorrosion coatings prepared from polyaniline/graphene composites, Carbon 50 (2012) 5044-5051.
[104]W. Ji, K.-Y. Chen, C. Ke, Y. Liao, W. Liu, M. Tsai, J.-M. Yeh, Comparative corrosion protection studies of electroactive/non-electroactive epoxy thermoset composites containing conductive rGO/non-conductive GO platelets, Express Polymer Letters 13 (2019) 604-617.
[105]S. Songsaeng, P. Thamyongkit, S. Poompradub, Natural rubber/reduced-graphene oxide composite materials: Morphological and oil adsorption properties for treatment of oil spills, Journal of Advanced Research 20 (2019) 79-89.
[106]H.-H. Huang, K.K.H. De Silva, G.R.A. Kumara, M. Yoshimura, Structural Evolution of Hydrothermally Derived Reduced Graphene Oxide, Scientific Reports 8 (2018) 6849.
[107]H. Liu, K.-L. Choy, M. Roe, Enhanced conductivity of reduced graphene oxide decorated with aluminium oxide nanoparticles by oxygen annealing, Nanoscale 5 (2013) 5725-5731.
[108]L. Huang, P. Zhu, G. Li, D. Lu, R. Sun, C. Wong, Core–shell SiO2@RGO hybrids for epoxy composites with low percolation threshold and enhanced thermo-mechanical properties, Journal of Materials Chemistry A 2 (2014) 18246-18255.
[109]L.A. Al-Ani, W.A. Yehye, F.A. Kadir, N.M. Hashim, M.A. AlSaadi, N.M. Julkapli, V.K.S. Hsiao, Hybrid nanocomposite curcumin-capped gold nanoparticle-reduced graphene oxide: Anti-oxidant potency and selective cancer cytotoxicity, PLOS ONE 14 (2019) e0216725.

電子全文 電子全文(網際網路公開日期:20260130)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊