|
[1]X.-F. Zhang, X.-Y. Zhu, J.-J. Feng, A.-J. Wang, Solvothermal synthesis of N-doped graphene supported PtCo nanodendrites with highly catalytic activity for 4-nitrophenol reduction, Applied Surface Science 428 (2018) 798-808. [2]P. Karimi, K.O. Peters, K. Bidad, P.T. Strickland, Polycyclic aromatic hydrocarbons and childhood asthma, European Journal of Epidemiology 30 (2015) 91-101. [3]S. Lakshmi Narayana, B. Sung-Ok, Biomonitoring of Atmospheric Polycyclic Aromatic Hydrocarbons: A Mini Review, Mini-Reviews in Organic Chemistry 14 (2017) 496-500. [4]Heterocyclic Compounds: An Introduction, Modern Heterocyclic Chemistry, 1-9. [5]N.D. Mu’azu, N. Jarrah, M. Zubair, O. Alagha, Removal of Phenolic Compounds from Water Using Sewage Sludge-Based Activated Carbon Adsorption: A Review, International Journal of Environmental Research and Public Health 14 (2017) 1094. [6]J.A. Field, A.J.M. Stams, M. Kato, G. Schraa, Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia, Antonie van Leeuwenhoek 67 (1995) 47-77. [7]H. Hu, J.H. Xin, H. Hu, X. Wang, D. Miao, Y. Liu, Synthesis and stabilization of metal nanocatalysts for reduction reactions - a review, Journal of Materials Chemistry A 3 (2015) 11157-11182. [8]E. Forgacs, T. Cserháti, G. Oros, Removal of synthetic dyes from wastewaters: a review, Environment International 30 (2004) 953-971. [9]I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities, Arabian Journal of Chemistry 12 (2019) 908-931. [10]J. Krajczewski, K. Kołątaj, A. Kudelski, Plasmonic nanoparticles in chemical analysis, RSC Advances 7 (2017) 17559-17576. [11]J.-F. Masson, Portable and field-deployed surface plasmon resonance and plasmonic sensors, Analyst 145 (2020) 3776-3800. [12]X.-F. Zhang, Z.-G. Liu, W. Shen, S. Gurunathan, Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches, International Journal of Molecular Sciences 17 (2016) 1534. [13]D. Thompson, Michael Faraday's recognition of ruby gold: the birth of modern nanotechnology, Gold Bulletin 40 (2007) 267-269. [14]A.A. Noyes, J.T. Dorrance, The Electrolytic Reduction of Paranitro Compounds in Sulphuric Acid Solution., Journal of the American Chemical Society 17 (1895) 855-859. [15]O.W. Brown, G. Etzel, C.O. Henke, Catalytic Reduction of Nitro-Organic Compounds in the Liquid System, The Journal of Physical Chemistry 32 (1928) 631-635. [16]N. Pradhan, A. Pal, T. Pal, Catalytic Reduction of Aromatic Nitro Compounds by Coinage Metal Nanoparticles, Langmuir 17 (2001) 1800-1802. [17]S. Wunder, F. Polzer, Y. Lu, Y. Mei, M. Ballauff, Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes, The Journal of Physical Chemistry C 114 (2010) 8814-8820. [18]S. Gu, S. Wunder, Y. Lu, M. Ballauff, R. Fenger, K. Rademann, B. Jaquet, A. Zaccone, Kinetic Analysis of the Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles, The Journal of Physical Chemistry C 118 (2014) 18618-18625. [19]Y. Zhang, S. Liu, W. Lu, L. Wang, J. Tian, X. Sun, In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol, Catalysis Science & Technology 1 (2011) 1142-1144. [20]F.-h. Lin, R.-a. Doong, Bifunctional Au−Fe3O4 Heterostructures for Magnetically Recyclable Catalysis of Nitrophenol Reduction, The Journal of Physical Chemistry C 115 (2011) 6591-6598. [21]C. Zhu, L. Han, P. Hu, S. Dong, In situ loading of well-dispersed gold nanoparticles on two-dimensional graphene oxide/SiO2 composite nanosheets and their catalytic properties, Nanoscale 4 (2012) 1641-1646. [22]K. Dong, Z. Liu, J. Ren, A general and eco-friendly self-etching route to prepare highly active and stable Au@metal silicate yolk-shell nanoreactors for catalytic reduction of 4-nitrophenol, CrystEngComm 15 (2013) 6329-6334. [23]H. Yao, L. Jin, H.-J. Sue, Y. Sumi, R. Nishimura, Facile decoration of Au nanoparticles on reduced graphene oxide surfaces via a one-step chemical functionalization approach, Journal of Materials Chemistry A 1 (2013) 10783-10789. [24]H. Yao, T.-C. Huang, H.-J. Sue, Self-assembly of Au nanoparticles on graphene sheets as a catalyst with controlled grafting density and high reusability, RSC Advances 4 (2014) 61823-61830. [25]P. Veerakumar, R. Madhu, S.-M. Chen, V. Veeramani, C.-T. Hung, P.-H. Tang, C.-B. Wang, S.-B. Liu, Highly stable and active palladium nanoparticles supported on porous carbon for practical catalytic applications, Journal of Materials Chemistry A 2 (2014) 16015-16022. [26]B. Ma, M. Wang, D. Tian, Y. Pei, L. Yuan, Micro/nano-structured polyaniline/silver catalyzed borohydride reduction of 4-nitrophenol, RSC Advances 5 (2015) 41639-41645. [27]Q. Wang, Q. Wang, M. Li, S. Szunerits, R. Boukherroub, One-step synthesis of Au nanoparticle–graphene composites using tyrosine: electrocatalytic and catalytic properties, New Journal of Chemistry 40 (2016) 5473-5482. [28]M. Zhang, X. Lu, H.-Y. Wang, X. Liu, Y. Qin, P. Zhang, Z.-X. Guo, Porous gold nanoparticle/graphene oxide composite as efficient catalysts for reduction of 4-nitrophenol, RSC Advances 6 (2016) 35945-35951. [29]M.T. Islam, N. Dominguez, M.A. Ahsan, H. Dominguez-Cisneros, P. Zuniga, P.J.J. Alvarez, J.C. Noveron, Sodium rhodizonate induced formation of gold nanoparticles supported on cellulose fibers for catalytic reduction of 4-nitrophenol and organic dyes, Journal of Environmental Chemical Engineering 5 (2017) 4185-4193. [30]S. Jain, S. Mishra, T.K. Sarma, Zn2+ Induced Self-Assembled Growth of Octapodal CuxO–ZnO Microcrystals: Multifunctional Applications in Reductive Degradation of Organic Pollutants and Nonenzymatic Electrochemical Sensing of Glucose, ACS Sustainable Chemistry & Engineering 6 (2018) 9771-9783. [31]K. Cui, B. Yan, Y. Xie, H. Qian, X. Wang, Q. Huang, Y. He, S. Jin, H. Zeng, Regenerable urchin-like Fe3O4@PDA-Ag hollow microspheres as catalyst and adsorbent for enhanced removal of organic dyes, Journal of Hazardous materials 350 (2018) 66-75. [32]C. Rajkumar, P. Veerakumar, S.-M. Chen, B. Thirumalraj, K.-C. Lin, Ultrathin Sulfur-Doped Graphitic Carbon Nitride Nanosheets As Metal-Free Catalyst for Electrochemical Sensing and Catalytic Removal of 4-Nitrophenol, ACS Sustainable Chemistry & Engineering 6 (2018) 16021-16031. [33]S.A. Hira, M. Nallal, K.H. Park, Fabrication of PdAg nanoparticle infused metal-organic framework for electrochemical and solution-chemical reduction and detection of toxic 4-nitrophenol, Sensors and Actuators B: Chemical 298 (2019) 126861. [34]G.-H. Lai, T.-C. Huang, Y.-H. Pai, B.-S. Huang, M.-H. Tsai, T.-I. Yang, Y.-H. Chung, Preparation of highly-stable and recyclable novel Au/ZrP composite catalyst for 4-nitrophenol reduction, Journal of the Taiwan Institute of Chemical Engineers 95 (2019) 525-531. [35]F. Kanjirathamathadathil Saidu, A. Joseph, G.V. Thomas, Synthesis of novel poly(1-naphthylamine)-silver nanocomposites and its catalytic studies on reduction of 4-nitrophenol and methylene blue, Journal of Applied Polymer Science 137 (2020) 48318. [36]Y. Wang, H.D. Tran, L. Liao, X. Duan, R.B. Kaner, Nanoscale Morphology, Dimensional Control, and Electrical Properties of Oligoanilines, Journal of the American Chemical Society 132 (2010) 10365-10373. [37]Z.Y. Wang, C. Yang, J.P. Gao, J. Lin, X.S. Meng, Y. Wei, S. Li, Electroactive Polyimides Derived from Amino-Terminated Aniline Trimer, Macromolecules 31 (1998) 2702-2704. [38]W. Lu, X. Sheng Meng, Z. Yuan Wang, Electrochemical behavior of a new electroactive polyimide derived from aniline trimer, Journal of Polymer Science Part A: Polymer Chemistry 37 (1999) 4295-4301. [39]R. Chen, B.C. Benicewicz, Preparation and Properties of Poly(methacrylamide)s Containing Oligoaniline Side Chains, Macromolecules 36 (2003) 6333-6339. [40]J. Gao, D.G. Liu, J.M. Sansiñena, H.L. Wang, Synthesis and Characterization of Electrochromic Polyamides with Well-Defined Molecular Structures and Redox Properties, Advanced Functional Materials 14 (2004) 537-543. [41]L. Huang, X. Zhuang, J. Hu, L. Lang, P. Zhang, Y. Wang, X. Chen, Y. Wei, X. Jing, Synthesis of Biodegradable and Electroactive Multiblock Polylactide and Aniline Pentamer Copolymer for Tissue Engineering Applications, Biomacromolecules 9 (2008) 850-858. [42]H. Wang, Y. Han, Vesicles Formed by Oligostyrene-block-Oligoaniline-block-Oligostyrene Triblock Oligomer, Macromolecular Rapid Communications 30 (2009) 521-527. [43]T.-C. Huang, T.-C. Yeh, H.-Y. Huang, W.-F. Ji, T.-C. Lin, C.-A. Chen, T.-I. Yang, J.-M. Yeh, Electrochemical investigations of the anticorrosive and electrochromic properties of electroactive polyamide, Electrochimica Acta 63 (2012) 185-191. [44]T.-C. Huang, T.-C. Yeh, H.-Y. Huang, W.-F. Ji, Y.-C. Chou, W.-I. Hung, J.-M. Yeh, M.-H. Tsai, Electrochemical studies on aniline-pentamer-based electroactive polyimide coating: Corrosion protection and electrochromic properties, Electrochimica Acta 56 (2011) 10151-10158. [45]L.-C. Yeh, T.-C. Huang, Y.-P. Huang, H.-Y. Huang, H.-H. Chen, T.-I. Yang, J.-M. Yeh, Synthesis electroactive polyurea with aniline-pentamer-based in the main chain and its application in electrochemical sensor, Electrochimica Acta 94 (2013) 300-306. [46]L.-C. Yeh, T.-C. Huang, F.-Y. Lai, G.-H. Lai, A.-Y. Lo, S.-C. Hsu, T.-I. Yang, J.-M. Yeh, Synthesis of electroactive polyazomethine and its application in electrochromic property and electrochemical sensor, Surface and Coatings Technology 303 (2016) 154-161. [47]G. Qu, F. Li, E.B. Berda, M. Chi, X. Liu, C. Wang, D. Chao, Electroactive polyurea bearing oligoaniline pendants: Electrochromic and anticorrosive properties, Polymer 58 (2015) 60-66. [48]M. Chi, S. Wang, Y. Liang, D. Chao, C. Wang, Electroactive self-doped poly(amic acid) with oligoaniline and sulfonic acid groups: Synthesis and electrochemical properties, Journal of Colloid and Interface Science 423 (2014) 7-12. [49]F. Li, J. Wang, M. Zhou, X. Liu, C. Wang, D. Chao, Synthesis and electrochemical properties of a novel poly(ether sulfone) with oligoaniline pendants, Chemical Research in Chinese Universities 31 (2015) 1066-1071. [50]M. Yin, Y. Yan, J.P. Cole, E.B. Berda, F. Li, X. Liu, C. Wang, D. Chao, Synthesis and tunable properties of oligoaniline-functionalized polyamides, Journal of Polymer Science Part A: Polymer Chemistry 54 (2016) 3343-3349. [51]Y. Yan, X. Jia, M. Feng, C. Wang, D. Chao, Synthesis and electrochemical characterization of polyamic acid containing oligoaniline and triphenylamine, Journal of Polymer Science Part A: Polymer Chemistry 55 (2017) 1669-1673. [52]Y. Yan, N. Sun, F. Li, X. Jia, C. Wang, D. Chao, Multiple Stimuli-Responsive Fluorescence Behavior of Novel Polyamic Acid Bearing Oligoaniline, Triphenylamine, and Fluorene Groups, ACS Applied Materials & Interfaces 9 (2017) 6497-6503. [53]M. Yin, F. Li, Y. Yan, X. Liu, C. Wang, D. Chao, Poly(aryl ether) bearing electroactive tetraaniline pendants and allyl groups: Synthesis, photo-crosslinking and electrochemical properties, Journal of Polymer Science Part A: Polymer Chemistry 54 (2016) 2321-2330. [54]B.-S. Huang, G.-H. Lai, T.-I. Yang, M.-H. Tsai, Y.-C. Chou, A Novel Electroactive Imide Oligomer and Its Application in Anticorrosion Coating, Polymers 12 (2020) 91. [55]H.-Y. Huang, T.-C. Huang, T.-C. Yeh, C.-Y. Tsai, C.-L. Lai, M.-H. Tsai, J.-M. Yeh, Y.-C. Chou, Advanced anticorrosive materials prepared from amine-capped aniline trimer-based electroactive polyimide-clay nanocomposite materials with synergistic effects of redox catalytic capability and gas barrier properties, Polymer 52 (2011) 2391-2400. [56]T.-C. Huang, L.-C. Yeh, H.-Y. Huang, Z.-Y. Nian, Y.-C. Yeh, Y.-C. Chou, J.-M. Yeh, M.-H. Tsai, The use of a carbon paste electrode mixed with multiwalled carbon nanotube/electroactive polyimide composites as an electrode for sensing ascorbic acid, Polymer Chemistry 5 (2014) 630-637. [57]T.C. Huang, L.C. Yeh, G.H. Lai, F.Y. Lai, T.I. Yang, Y.J. Huang, A.Y. Lo, J.M. Yeh, Electroactive polyurea/CNT composite-based electrode for detection of vitamin C, Express Polymer Letters 10 (2016) 450-461. [58]L.-C. Yeh, T.-C. Huang, Y.-J. Lin, G.-H. Lai, T.-I. Yang, A.-Y. Lo, J.-M. Yeh, Electroactive polyamide modified carbon paste electrode for the determination of ascorbic acid, International Journal of Green Energy 13 (2016) 1334-1341. [59]W. Liu, X. Yang, W. Huang, Catalytic properties of carboxylic acid functionalized-polymer microsphere-stabilized gold metallic colloids, Journal of Colloid and Interface Science 304 (2006) 160-165. [60]J. Zhang, D. Han, H. Zhang, M. Chaker, Y. Zhao, D. Ma, In situ recyclable gold nanoparticles using CO2-switchable polymers for catalytic reduction of 4-nitrophenol, Chemical Communications 48 (2012) 11510-11512. [61]T. Hirao, M. Higuchi, I. Ikeda, Y. Ohshiro, A novel synthetic metal catalytic system for dehydrogenative oxidation based on redox of polyaniline, Journal of the Chemical Society, Chemical Communications (1993) 194-195. [62]S.S. Kumar, C.S. Kumar, J. Mathiyarasu, K.L. Phani, Stabilized Gold Nanoparticles by Reduction Using 3,4-Ethylenedioxythiophene-polystyrenesulfonate in Aqueous Solutions: Nanocomposite Formation, Stability, and Application in Catalysis, Langmuir 23 (2007) 3401-3408. [63]A. Balamurugan, K.-C. Ho, S.-M. Chen, One-pot synthesis of highly stable silver nanoparticles-conducting polymer nanocomposite and its catalytic application, Synthetic Metals 159 (2009) 2544-2549. [64]H.G. Lemos, S.F. Santos, E.C. Venancio, Polyaniline-Pt and polypyrrole-Pt nanocomposites: Effect of supporting type and morphology on the nanoparticles size and distribution, Synthetic Metals 203 (2015) 22-30. [65]S.-C. Hsu, H.-T. Cheng, P.-X. Wu, C.-J. Weng, K.S. Santiago, J.-M. Yeh, Electrochemical Sensor Constructed Using a Carbon Paste Electrode Modified with Mesoporous Silica Encapsulating PANI Chains Decorated with GNPs for Detection of Ascorbic Acid, Electrochimica Acta 238 (2017) 246-256. [66]T. Ning, G. Yang, W. Zhao, X. Liu, One-pot solvothermal synthesis of robust ambient-dried polyimide aerogels with morphology-enhanced superhydrophobicity for highly efficient continuous oil/water separation, Reactive and Functional Polymers 116 (2017) 17-23. [67]M.H. Tsai, S. Lu, Y. Lai, G.H. Lai, G. Dizon, T.I. Yang, Y.J. Lin, Y. Chou, Novel ascorbic acid sensor prepared from gold/aniline-pentamer-based electroactive polyamide composites, Express Polymer Letters 12 (2018) 71-81. [68]L.M.G. Padua, J.-M. Yeh, K.S. Santiago, A Novel Application of Electroactive Polyimide Doped with Gold Nanoparticles: As a Chemiresistor Sensor for Hydrogen Sulfide Gas, Polymers 11 (2019) 1918. [69]G.-H. Lai, B.-S. Huang, T.-I. Yang, M.-H. Tsai, Y.-C. Chou, Preparation of highly stable and recyclable Au/electroactive polyamide composite catalyst for nitrophenol reduction, Polymer 213 (2021) 123200. [70]S. Quillard, G. Louarn, S. Lefrant, A.G. Macdiarmid, Vibrational analysis of polyaniline: A comparative study of leucoemeraldine, emeraldine, and pernigraniline bases, Physical Review B 50 (1994) 12496-12508. [71]A. Serrà, R. Artal, M. Pozo, J. Garcia-Amorós, E. Gómez, Simple Environmentally-Friendly Reduction of 4-Nitrophenol, Catalysts 10 (2020). [72]N.K.R. Bogireddy, P. Sahare, U. Pal, S.F.O. Méndez, L.M. Gomez, V. Agarwal, Platinum nanoparticle-assembled porous biogenic silica 3D hybrid structures with outstanding 4-nitrophenol degradation performance, Chemical Engineering Journal 388 (2020) 124237. [73]J. Song, Y. Zhu, J. Zhang, J. Yang, Y. Du, W. Zheng, C. Wen, Y. Zhang, L. Zhang, Encapsulation of AgNPs within Zwitterionic Hydrogels for Highly Efficient and Antifouling Catalysis in Biological Environments, Langmuir 35 (2019) 1563-1570. [74]A. Verma, S. Kumar, W.-K. Chang, Y.-P. Fu, Bi-functional Ag-CuxO/g-C3N4 hybrid catalysts for the reduction of 4-nitrophenol and the electrochemical detection of dopamine, Dalton Transactions 49 (2020) 625-637. [75]Z. Yanwu, M. Shanthi, C. Weiwei, L. Xuesong, S.J. Won, P.J. R., R.R. S., Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Advanced Materials 22 (2010) 3906-3924. [76]R.L.D. Whitby, Chemical Control of Graphene Architecture: Tailoring Shape and Properties, ACS Nano 8 (2014) 9733-9754. [77]S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature 442 (2006) 282-286. [78]K. Alexander, M. Shlomo, Conductive Nanomaterials for Printed Electronics, Small 10 (2014) 3515-3535. [79]X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage, Science 341 (2013) 534-537. [80]K. Kim, S.-H. Bae, C.T. Toh, H. Kim, J.H. Cho, D. Whang, T.-W. Lee, B. Özyilmaz, J.-H. Ahn, Ultrathin Organic Solar Cells with Graphene Doped by Ferroelectric Polarization, ACS Applied Materials & Interfaces 6 (2014) 3299-3304. [81]D. Prasai, J.C. Tuberquia, R.R. Harl, G.K. Jennings, K.I. Bolotin, Graphene: Corrosion-Inhibiting Coating, ACS Nano 6 (2012) 1102-1108. [82]R.G. McQueen, S.P. Marsh, Equation of State for Nineteen Metallic Elements from Shock‐Wave Measurements to Two Megabars, Journal of Applied Physics 31 (1960) 1253-1269. [83]A. Lerf, H. He, M. Forster, J. Klinowski, Structure of Graphite Oxide Revisited, The Journal of Physical Chemistry B 102 (1998) 4477-4482. [84]H. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide, Chemical Physics Letters 287 (1998) 53-56. [85]N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinskiy, Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations, Chemistry of Materials 11 (1999) 771-778. [86]H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, X.-H. Xia, A Green Approach to the Synthesis of Graphene Nanosheets, ACS Nano 3 (2009) 2653-2659. [87]B.C. Brodie, XIII. On the atomic weight of graphite, Philosophical Transactions of the Royal Society of London 149 (1859) 249-259. [88]S. L., Verfahren zur Darstellung der Graphitsäure, Berichte der deutschen chemischen Gesellschaft 31 (1898) 1481-1487. [89]W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, Journal of the American Chemical Society 80 (1958) 1339-1339. [90]P.V. Lakshminarayanan, H. Toghiani, C.U. Pittman, Nitric acid oxidation of vapor grown carbon nanofibers, Carbon 42 (2004) 2433-2442. [91]D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chemical Society Reviews 39 (2010) 228-240. [92]D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved Synthesis of Graphene Oxide, ACS Nano 4 (2010) 4806-4814. [93]H. Yang, C. Shan, F. Li, D. Han, Q. Zhang, L. Niu, Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid, Chemical Communications (2009) 3880-3882. [94]S.S. Ho, P.K. Hyun, K.B. Hyun, C.Y. Won, J.G. Hoon, L.D. Ju, K. Byung‐Seon, P. Kyung‐Wook, J. Seokwoo, Enhanced Thermal Conductivity of Epoxy–Graphene Composites by Using Non‐Oxidized Graphene Flakes with Non‐Covalent Functionalization, Advanced Materials 25 (2013) 732-737. [95]A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials 6 (2007) 183-191. [96]K. Kalaitzidou, H. Fukushima, P. Askeland, L.T. Drzal, The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites, Journal of Materials Science 43 (2008) 2895-2907. [97]H. Bai, K. Sheng, P. Zhang, C. Li, G. Shi, Graphene oxide/conducting polymer composite hydrogels, Journal of Materials Chemistry 21 (2011) 18653-18658. [98]H. Hu, G. Zhang, L. Xiao, H. Wang, Q. Zhang, Z. Zhao, Preparation and electrical conductivity of graphene/ultrahigh molecular weight polyethylene composites with a segregated structure, Carbon 50 (2012) 4596-4599. [99]P. Kumar, S. Yu, F. Shahzad, S.M. Hong, Y.-H. Kim, C.M. Koo, Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides, Carbon 101 (2016) 120-128. [100]I.H. Tseng, Y.-F. Liao, J.-C. Chiang, M.-H. Tsai, Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property, Materials Chemistry and Physics 136 (2012) 247-253. [101]T. Mei‐Hui, T. I‐Hsiang, L. Yu‐Fu, C. Jen‐Chi, Transparent polyimide nanocomposites with improved moisture barrier using graphene, Polymer International 62 (2013) 1302-1309. [102]M.-H. Tsai, C.-J. Chang, H.-H. Lu, Y.-F. Liao, I.H. Tseng, Properties of magnetron-sputtered moisture barrier layer on transparent polyimide/graphene nanocomposite film, Thin Solid Films 544 (2013) 324-330. [103]C.-H. Chang, T.-C. Huang, C.-W. Peng, T.-C. Yeh, H.-I. Lu, W.-I. Hung, C.-J. Weng, T.-I. Yang, J.-M. Yeh, Novel anticorrosion coatings prepared from polyaniline/graphene composites, Carbon 50 (2012) 5044-5051. [104]W. Ji, K.-Y. Chen, C. Ke, Y. Liao, W. Liu, M. Tsai, J.-M. Yeh, Comparative corrosion protection studies of electroactive/non-electroactive epoxy thermoset composites containing conductive rGO/non-conductive GO platelets, Express Polymer Letters 13 (2019) 604-617. [105]S. Songsaeng, P. Thamyongkit, S. Poompradub, Natural rubber/reduced-graphene oxide composite materials: Morphological and oil adsorption properties for treatment of oil spills, Journal of Advanced Research 20 (2019) 79-89. [106]H.-H. Huang, K.K.H. De Silva, G.R.A. Kumara, M. Yoshimura, Structural Evolution of Hydrothermally Derived Reduced Graphene Oxide, Scientific Reports 8 (2018) 6849. [107]H. Liu, K.-L. Choy, M. Roe, Enhanced conductivity of reduced graphene oxide decorated with aluminium oxide nanoparticles by oxygen annealing, Nanoscale 5 (2013) 5725-5731. [108]L. Huang, P. Zhu, G. Li, D. Lu, R. Sun, C. Wong, Core–shell SiO2@RGO hybrids for epoxy composites with low percolation threshold and enhanced thermo-mechanical properties, Journal of Materials Chemistry A 2 (2014) 18246-18255. [109]L.A. Al-Ani, W.A. Yehye, F.A. Kadir, N.M. Hashim, M.A. AlSaadi, N.M. Julkapli, V.K.S. Hsiao, Hybrid nanocomposite curcumin-capped gold nanoparticle-reduced graphene oxide: Anti-oxidant potency and selective cancer cytotoxicity, PLOS ONE 14 (2019) e0216725.
|