跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 15:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈柏瑞
研究生(外文):Prasana Samanta
論文名稱:緊定螺絲與精密防鬆螺帽之分析
論文名稱(外文):Analyzing a precision locknut with the tighten loads of three angular fixed coppers and screws
指導教授:廖能通
指導教授(外文):LIAO,NENG-TUNG
口試委員:廖能通邱煥釗歐乃瑞
口試委員(外文):LIAO,NENG-TUNGQIU,HUAN-ZHAOOU,NAI-RUI
口試日期:2021-05-24
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:95
中文關鍵詞:軸向力ANSYS 工作台形變精密鎖緊螺母片刻
外文關鍵詞:Axial forceANSYS workbenchDeformationPrecision locknutMoment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:13
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
論文中使用的3D模型是使用Solid Works繪製的,Solid Works是一款3D實體模型構建軟件。模型繪製成零件、結構等兩個基本模塊;然後將構建的零件組裝成一個完整的 3D YSF 精密鎖緊螺母。將分析內圈接觸面5μm的總變形量,0.005mm和0.0001mm之間的空心主軸的變形量,以及在內圈上產生的法向力。為完成整個分析,首先在solidworks中構建3D模型;構建完成後,將模型導入ANSYS Workbench進行分析。其次,設置合適的模型邊界條件以獲得成功的分析結果。第三,對鎖緊螺母施加力矩,使內圈接觸面總變形量為5μm,空心主軸的變形也在內圈上產生法向力。最後,向三個固定螺釘和銅件施加相反方向的軸向力,使內圈、空心主軸和內圈上產生的法向力減小變形。
The 3D model used in the paper is drawn by using Solid Works, which is a 3D solid model construction software. The model is drawn in two basic modules such as parts, construction; and then the constructed parts are being assembled to make a complete 3D YSF precision locknut. It will be analyzed that the total deformation of 5μm on the contact surface of the inner ring, the deformation of the hollow spindle between 0.005mm and 0.0001mm, and a normal force generated on the inner ring. For completing the whole analysis, firstly, the 3D model is being constructed in the solid works; after the completed construction, the model is imported to ANSYS workbench for analysis. Secondly, the appropriate boundary conditions of the model are set to get a successful analysis result. Thirdly, a moment is applied to the locknut to get the total deformation of 5μm on the contact surface of the inner ring, and the deformation of the hollow spindle, also generates a normal force on the inner ring. Finally, an axial force is applied in the opposite direction to three fixed screws and coppers, which results in the decreased deformation of the inner ring, hollow spindle, and the normal force generated on the inner ring.

摘要 I
ABSTRACT III
ACKNOWLEDGEMENT V
LIST OF CONTENTS VII
LIST OF TABLES X
LIST OF FIGURES XI
CHAPTER ONE INTRODUCTION 1
1.1. Literature review 2
1.2. The theory of thread 6
1.3. Finite element method 8
CHAPTER TWO RESEARCH MOTIVATIONS AND METHODS 9
2.1. Research motivations 9
2.2. Research methods 9
2.3. Overall processes used in the paper 10
CHAPTER THREE RESEARCH SOFTWARE AND ANALYSIS MODEL...11
3.1. Research software 11
3.2. Finite element Analysis model used in the research 12
3.3. Influence of the moment on precision locknut with different fit clearance and definition of P.D 15
CHAPTER FOUR ANALYSIS SETTING OF DIFFERENT PARAMETER 16
4.1. Setting of different parameters 16
4.1.1. Setting of contact conditions 16
4.1.2. Mesh setting 20
4.1.3. Setting boundary conditions 23
CHAPTER FIVE ANALYZING THE DEFORMATION, STRESS DISTRIBUTION AND NORMAL FORCE GENERATED ON THE INNER RING OF YSF-M50X1.5P PRECISION LOCKNUT 26
5.1. Deformation, stress distribution and normal force on the inner ring of YSF-M50x1.5P precision locknut 26
5.1.1. Analysis results 26
5.1.2. Results and discussions 31
5.2. The deformation and normal force on the inner ring of YSF-M50x1.5P with the different PD (fit clearance) 34
5.2.1. Analysis results 34
5.2.2. Results and discussions 38
5.3. The normal force on the inner ring of YSF-M50x1.5P with three young’s modulus 50
5.3.1. Analysis results 50
5.3.2. Results and discussions 54
5.4. The normal force on the inner ring of YSF-M50x1.5P with the different thickness of locknut 55
5.4.1. Analysis results 55
5.4.2. Results and discussions 58
CHAPTER SIX ANALYSIS FOR GENERATING A NORMAL FORCE ON THE INNER RING OF PRECISION LOCKNUTS WITH DIFFERENT FIT CLEARANCE (PD) 59
6.1. The normal force of 9800N on the inner ring of YSF-M50x1.5P YSF - 70x2P and YSF-M100x2P with different fit clearance 59
6.1.1. Analysis results 59
6.1.2. Results and discussion 73
CHAPTER SEVEN ANALYZING DEFORMATION OF THE HOLLOW SPINDLE LOCKED BY PRECISION LOCKNUTS WITH THE TIGHTEN LOADS OF THREE FIXED COPPERS AND SCREWS 77
7.1. The deformation of the hollow spindle locked by YSF-M50x1.5P and YSF-M100x2P 77
7.1.1. Analysis results 78
7.1.2. Results and discussion 82
CHAPTER EIGHT DESCRIPTING THE ANALYSIS MODEL 86
8.1. Reasons behind the triangular like shape of the locknut after the exaggeration 86
8.2. Why the stresses on the spindle are different at contacts with screws 87
8.3. Why the maximum stress appears on the side of the screw hole 88
CHAPTER NINE CONCLUSIONS 90
9.1. The deformation, stress distribution and normal force generated on the inner ring of YSF-M50x1.5P 90
9.2. The deformation and generating normal force on the inner ring of YSF- M50x1.5P with different PD (fit clearance) 90
9.3. The normal force on the inner ring of YSF-M50x1.5P with the different young’s modulus 91
9.4. The normal force on the inner ring of YSF-M50x1.5P with the different thickness of locknut 91
9.5. The normal force of 9800N on the inner ring of YSF-M50x1.5P, YSF- M70x2P and YSF-M100x2P with different fit clearance (PD) 91
9.6. The deformation of the hollow spindle of YSF-M50x1.5P and YSF- M100x2P 92
REFERENCES 93

[1] A. Yamamoto, “The Theory and Computation of Threads Connection” Yokendo, Tokyo (1980).
[2] DIN 513. Metric buttress threads; 1984.
[3] Sase, N.et al., “Evaluation of Anti-Loosening Nuts for Screw Fasteners,” Journal of Materials Processing Technology, 56, pp. 321-332 (1996).
[4] Meek. Gary E., Ozgur.Ceyhun O., “Torque variation analysis” Industrial Mathematics v41, 1991, pp. 1~21.
[5] Xie Qizhe, “Stress and deformation analysis of precision locknut and thrust bearing”, master’s thesis, Department of mechanical engineering, National chin-yi university of technology, year 2016, pp.72.
[6] Ning Fengping, Yao Jiantao, Zhao Yongsheng, “influence of interference on bearing preload considering friction characteristics”, Journal of agricultural engineering, Vol.31, No.14, 2015; pp.96~102.
[7] Junker, “G., New Criteria for Self-Loosening of Fasteners under Vibration,” SAE Transaction, 78, pp. 314-335 (1969).
[8] Reid, J. and Hiser, N., “Detailed Modeling of Bolted Joints with Slippage,” Finite Elements in Analysis and Design, 41, pp. 547-562 (2005).
[9] N. G. Pai and D. P. Hess, “Three-dimensional finite element analysis of threaded fastener loosening due to dynamic shear load”, Engineering Failure Analysis, 9 (2002) 383-402.
[10] Frailly R A, Eaton Corporation (Cleveland, OH), “Prevailing Torque Locknut”, U.S. Pat. 3,741,266, 1973.
[11] B. Kenny, E.A. Patterson, “Load and stress distribution in screw threads” Exp.Mech., 25 (3) (1985), pp. 208-213.
[12] H. Zhao, “A numerical method for load distribution in threaded connections”, J. Mech.Des., 118 (1996), pp. 274-279.
[13] M. Deering, Geometry compression, in: Proceedings of the ACM SIGGRAPH, 1995, pp. 13–20.
[14] S.-B. Park, C.-S. Kim, S.-U. Lee, “Error resilient 3-D mesh compression” IEEE Transactions on Multimedia, 8 (5) (2006), pp. 885-895.
[15] Huei-Huang lee, “Finite Element Simulations with ANSYS Workbench”, GOTOP INFORMATION INC, 2010, pp. 306-348.
[16] Saeed Moaveni, “Finite Element Analysis Theory and Application with ANSYS”, Gao Li Books Co., Ltd, 2003, pp. 500-507.
[17] Babuška I. “The finite element method with Lagrangian multipliers” Numer.Math., 20 (3) (1973), pp. 179-192.
[18] Kent L. Lawrence, “ANSYS Workbench Tutorial Release”, SDC Publications, 2012, pp. 5-19-5-20.
[19] Kumar A.V., Padmanabhan S., Burla R., “Implicit boundary method for finite element analysis using non-conforming mesh or grid.” Internat. J. Numer. Methods Engineering., 74 (9) (2008), pp. 1421-1447.
[20] Rhim J., Lee S.W. “A vectorial approach to computational modelling of beams undergoing finite rotations” Internat. J. Numer. Methods Engrg., 41 (1999), pp. 527- 540.
[21] Li GuangHui, “Fundamentals and Concepts of ANSYS Engineering Analysis”, Gao Li Books Co., Ltd, 2009, pp. 431-435.
[22] Liu jinqi, Chu Qinghui, “Finite Element Analysis and Engineering Application of ANSYS”, Canghai bookstore, 2006, pp. 314-315.
[23] Chen Kaiyan, “Stress and Fatigue Simulation Analysis of Power Boat Hull Structure”, National Kaohsiung University of Applied Science and Technology, Department of Mold Engineering, Master’s Thesis, Republic of China 100, pp. 37-51.
[24] J.A. Bannantine, J.J. Comer, J.L. Handrock, “Fundamentals of Metal Fatigue Analysis”, pp.1-10, 1989.
[25] Klimach M, Schürmann H. Untersuchung von neuartigen, hoch belastbaren Gewinden an Faser-Kunststoff-Verbund-Wellen und deren Kerbwirkung bei Umlaufbiegung; 2016. DFG project number 231472657. project funded by Deutsche Forschungsgemeinschaft (DFG).
[26] J. Neter, M.H. Kutner, C.J. Nachtsheim, W. Wasserman, “Applied linear statistical models”, (3rd ed.), McGraw-Hill, (Boston, MA) (1996).
[27] C.A.J. Fletcher, “The group finite element formulation” Comput. Methods Appl.Mech. Eng., 37 (1983), pp. 225-244.
[28] S.C. Brenner, L.R. Scott, “The Mathematical Theory of Finite Element Methods” Texts in Applied Mathematics, Springer, New York (2008).
[29] A. Logg, K.A. Mardal, G. Wells, “Automated Solution of Differential Equations by the Finite Element Method”: The FEniCS Book Lecture Notes in Computational Science and Engineering, Springer Berlin Heidelberg (2012).
[30] Liu G.R., Dai K.Y., Nguyen-Thoi T. “A smoothed finite element method for mechanics problems”. Comput Mech, 39 (6) (2007), pp. 859-877.

電子全文 電子全文(網際網路公開日期:20220612)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top