跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/01 13:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林念群
研究生(外文):Lin, Nien-Chun
論文名稱:二維和三維超材料之共振超音波頻譜研究
論文名稱(外文):STUDY OF TWO- AND THREE-DIMENSIONAL METAMATERIALS BY RESONANT ULTRASOUND SPECTROSCOPY
指導教授:王雲哲
指導教授(外文):Wang, Yun-Che
口試委員:侯琮欽林育芸黃忠信
口試日期:2021-07-23
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:137
中文關鍵詞:超材料3D列印金屬高分子共振超音波頻譜有限元素分析
外文關鍵詞:Metamaterials3D printingmetalPolymerResonant ultrasound spectroscopyFinite element analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用3D列印技術製備二維高分子材料和三維金屬超材料,並利用共振超音波頻譜掃描(RUS)研究它們的等效性質。透過模擬軟體對超材料進行有限元素分析,用以解釋實驗數據,並確立了超材料的等效彈力模數和黏彈性阻尼。從實驗數據可以看出,二維手性材料的楊氏模數隨著手性的細胞數量增加而增加,其中,3x3和4x4手性結構材料的楊氏模數可達300MPa,比其他手性結構材料的楊氏模數高出5-10%。此外,三階手性材料比一階和二階手性材料具有更佳的等效性質。在三維手性材料的部分,骨幹厚度為5.466mm的楊氏模數比厚度為4.225mm 和2.708mm 分別高出35%和91%,且如同二維的結果,隨著手性細胞數量增加,三維手性的等效性質有很大的提升。透過實驗數據驗證了手性超材料的等效柏松比,我們發現所有手性結構材料都具有負柏松比的效益。除了手性結構體和層次結構體外,我們還研究了晶格結構及其複合材料的高阻尼和高剛度特性。從結果表示,梁柱型結合斜柱型的複合材料具有較強的等效性質且晶格-矽膠複合材料的黏彈消能性質比金屬晶格材料提高了10倍。在這項研究中,我們展示了RUS-有限元素分析來實驗確定二維和三維超材料的有效黏彈性質。
Polymeric two-dimensional (2D) and metallic three-dimensional (3D) metamaterials have been manufactured by using 3D printing technologies for studying their effective properties with resonant ultrasound spectroscopy (RUS). The finite element analysis (FEA) of the metamaterials have been performed for interpretation of experimental data to determine the effective elastic moduli and viscoelastic damping of the metamaterials. From the experimental data, we can find that the Young's modulus in 2D chiral structures increases along with the increasing number of chiral cells. The Young's modulus of 3x3 and 4x4 chiral structures can arrive 300 MPa and are 5 % to 10 % higher than others. Besides, third order chiral have better effective properties than one order and two order. In the part of 3D chiral, the Young's modulus of skeleton thickness 5.466 mm is 35 % and 91 % higher than thickness 4.225 mm and 2.708 mm. And as the two-dimensional result, the effective properties in 3D chiral have a great promotion with the number of chiral cells increasing. Effective negative Poisson's ratio is also identified in the chiral metamaterials from the RUS experimental data. We can find all chiral structures have good benefit in negative Poisson's ratio. In addition to the chiral or hierarchical structures, we also study the lattice structures and their composite materials for their potentials in high damping and high stiffness properties. It is found that the composites of beam-column and oblique column have a greater effective properties than each one, and the energy dissipation property of the lattice-rubber silicone composite materials enhance 10 times than the metal lattice materials. In this work, we demonstrate the RUS-FEA methodology to experimentally determine the effective viscoelastic properties of the 2D and 3D metamaterials.
CHINESE ABSTRACT i
ABSTRACT ii
ACKNOWLEDGMENTS iii
LIST OF TABLES vii
LIST OF FIGURES xi
NOMENCLATURE xv
1 Introduction 1
1.1 Goals and motivation 1
1.2 Literature review 2
1.2.1 Chiral structures 2
1.2.2 Resonant ultrasound spectroscopy 3
1.2.3 The inverse problem 3
1.3 Outline of this thesis 4
2 Theoretical aspects 5
2.1 Elasticity 5
2.1.1 Two-dimensional theory of elasticity 5
2.1.2 Solid mechanics theory in three dimensions 6
2.2 Theoretical foundation for RUS 8
2.2.1 Resonant Ultrasound Spectroscopy 8
2.2.2 Resonant frequency of a solid cube 8
2.2.3 Resonant frequency of a solid cylinder 8
2.2.4 The inverse problem 8
3 Numerical aspects 10
3.1 Finite element simulation 10
3.1.1 COMSOL simulation 10
3.1.2 Chiral structures in solid mechanical analysis 14
3.1.3 The calculation of effective properties 15
4 Experimental aspects 17
4.1 Sample description 17
4.1.1 Two dimensional chiral structure in different thickness 17
4.1.2 Two dimensional chiral structure in different rank 17
4.1.3 Two dimensional chiral structure in different hierarchy 18
4.1.4 Three dimensional chiral structure in different scale 20
4.1.5 Three dimensional chiral structure in different skeleton thickness 20
4.1.6 Three dimensional chiral structure in different hierarchy 21
4.1.7 3D metal printing materials 22
4.1.8 Metal microlattice-silicone rubber composite 23
4.1.8.1 Metal microlattice-silicone rubber composite making process 23
4.2 Manufacture of chiral structures by 3D printer 25
4.3 Experiment of Resonant ultrasound spectroscopy 27
4.3.1 The description of machine 27
4.3.2 The experiment steps of RUS 28
5 Results and discussion 30
5.1 Mechanical properties of 2D chiral structures in COMSOL simulation 30
5.1.1 Effective properties of chiral structures with different rank 30
5.1.2 Effective properties of chiral structures with different hierarchies 32
5.2 Mechanical properties of 3D chiral structures in COMSOL simulation 36
5.2.1 Effective properties of chiral structures with different rank 36
5.2.2 Effective properties of chiral structures with different hierarchies 39
5.3 Mechanical properties of 2D chiral structure with RUS experiment 39
5.3.1 Effective properties of chiral structures with different rank 40
5.3.1.1 Force in shear mode 40
5.3.1.2 Force in bending mode 46
5.3.2 Effective properties of chiral structures with different hierarchies 50
5.3.2.1 Force in shear mode 50
5.3.2.2 Force in bending mode 64
5.4 Mechanical properties of 3D chiral structure with RUS experiment 77
5.4.1 Effective properties of chiral structures with different skeleton thickness 77
5.4.2 Effective properties of chiral structures with different hierarchies 83
5.5 Comparison of the results with COMSOL simulation and RUS experiment 85
5.5.1 Error of effective properties in 2D chiral structures 85
5.5.2 Error of effective properties of 3D chiral structures 88
5.6 Mechanical properties of 3D metal printing microlattices in COMSOL simulation and RUS experiment 89
5.7 Mechanical properties of metal microlattice-silicone rubber composites in COMSOL simulation and RUS experiment 95
6 Conclusion and future work 101
6.1 Conclusion 101
6.2 Future work 103
LIST OF REFERENCES 104
APPENDICES 106
Appendix A: Matlab code 1: Inverse of the material properties using COMSOL Multiphysics 5.5 with MATLAB-main code 106
Appendix B: Matlab code 2: Inverse of the material properties using COMSOL Multiphysics 5.5 with MATLAB-objective function code 109
Appendix C: Presentation slides 112
Index 135
VITA 137
[1] D. Prall and R. S. Lakes. Properties of a chiral honeycomb with a poisson’s ratio of — 1. International Journal of Mechanical Sciences, 39(3):305–314, 1997.
[2] K. W. Wojciechowski. Two-dimensional isotropic system with a negative poisson ratio. Physics Letters A, 137(1):60–64, 1989.
[3] S. V. Dmitriev, T. Shigenari, and K. Abe. Poisson ratio beyond the limits of the elasticity theory. Journal of the Physical Society of Japan, 70(5):1431–1432, 2001.
[4] Y. C. Wang, M. W. Shen, and S. M. Liao. Microstructural effects on the poisson’s ratio of star-shaped two-dimensional systems. physica status solidi (b), 254(12):1700024, 2017.
[5] Y. C. Wang, H.W. Lai, and X. J. Ren. Enhanced auxetic and viscoelastic properties of filled reentrant honeycomb. physica status solidi (b), 257(10):1900184, 2020.
[6] R. Lakes. Foam structures with a negative poisson’s ratio. Science, 235:1038–1041, 1987.
[7] R. S. Lakes. Negative-poisson’s-ratio materials: auxetic solids. Annual review of materials research, 47:63–81, 2017.
[8] T. C. Lim. Auxetic materials and structures. Springer, 2015.
[9] R. Lakes. Materials with structural hierarchy. Nature, 361(6412):511–515, 1993.
[10] D. Li, J. Yin, L. Dong, and R. S. Lakes. Numerical analysis on mechanical behaviors of hierarchical cellular structures with negative poisson’s ratio. Smart Materials and Structures, 26(2):025014, 2016.
[11] J. Hou, D. Li, and L. Dong. Mechanical behaviors of hierarchical cellular structures with negative poisson’s ratio. Journal of Materials Science, 53(14):10209–10216, 2018.
[12] D. Li, J. Yin, L. Dong, and R. S. Lakes. Strong re-entrant cellular structures with negative poisson’s ratio. Journal of materials science, 53(5):3493–3499, 2018.
[13] A. Alderson, K. L. Alderson, D. Attard, K. E. Evans, R. Gatt, J. N. Grima, W. Miller, N. Ravirala, C. W. Smith, and K. Zied. Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Composites Science and Technology, 70(7):1042–1048, 2010. Special issue on Chiral Smart Honeycombs.
[14] Y. Bar-Sinai, G. Librandi, K. Bertoldi, and M. Moshe. Geometric charges and nonlinear elasticity of two-dimensional elastic metamaterials. Proceedings of the National Academy of Sciences, 117(19):10195–10202, 2020.
[15] Y. L. Wei, Q. S. Yang, X. Liu, and R. Tao. A novel 3d anti-tetrachiral structure with negative poisson’s ratio. Smart Materials and Structures, 29(8):085003, jun 2020.
[16] T. Frenzel, M. Kadic, and M.Wegener. Three-dimensional mechanical metamaterials with a twist. Science, 358(6366):1072–1074, 2017.
[17] D. Mousanezhad, B. Haghpanah, R. Ghosh, A. M. Hamouda, H. Nayeb-Hashemi, and A. Vaziri. Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach. Theoretical and Applied Mechanics Letters, 6(2):81–96, 2016.
[18] R. S. Lakes and R. L. Benedict. Noncentrosymmetry in micropolar elasticity. International Journal of Engineering Science, 20(10):1161–1167, 1982.
[19] I. Fernandez-Corbaton, C. Rockstuhl, P. Ziemke, P. Gumbsch, A. Albiez, R. Schwaiger, T. Frenzel, M. Kadic, and M. Wegener. New twists of 3d chiral metamaterials. Advanced Materials, 31(26):1807742, 2019.
[20] P. Ziemke, T. Frenzel, M. Wegener, and P. Gumbsch. Tailoring the characteristic length scale of 3d chiral mechanical metamaterials. Extreme Mechanics Letters, 32:100553, 2019.
[21] R. J. Angel, J. M. Jackson, H. J. Reichmann, and S. Speziale. Elasticity measurements on minerals: a review. European Journal of Mineralogy, 21(3):525–550, 06 2009.
[22] S. Bernard, G. Marrelec, P. Laugier, and Q. Grimal. Bayesian normal modes identification and estimation of elastic coefficients in resonant ultrasound spectroscopy. Inverse Problems, 31(6):065010, May 2015.
[23] R. S. Lakes and W. J. Drugan. Dramatically stiffer elastic composite materials due to a negative stiffness phase. Journal of the Mechanics and Physics of Solids, 50(5):979–1009, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊