|
[1] D. Prall and R. S. Lakes. Properties of a chiral honeycomb with a poisson’s ratio of — 1. International Journal of Mechanical Sciences, 39(3):305–314, 1997. [2] K. W. Wojciechowski. Two-dimensional isotropic system with a negative poisson ratio. Physics Letters A, 137(1):60–64, 1989. [3] S. V. Dmitriev, T. Shigenari, and K. Abe. Poisson ratio beyond the limits of the elasticity theory. Journal of the Physical Society of Japan, 70(5):1431–1432, 2001. [4] Y. C. Wang, M. W. Shen, and S. M. Liao. Microstructural effects on the poisson’s ratio of star-shaped two-dimensional systems. physica status solidi (b), 254(12):1700024, 2017. [5] Y. C. Wang, H.W. Lai, and X. J. Ren. Enhanced auxetic and viscoelastic properties of filled reentrant honeycomb. physica status solidi (b), 257(10):1900184, 2020. [6] R. Lakes. Foam structures with a negative poisson’s ratio. Science, 235:1038–1041, 1987. [7] R. S. Lakes. Negative-poisson’s-ratio materials: auxetic solids. Annual review of materials research, 47:63–81, 2017. [8] T. C. Lim. Auxetic materials and structures. Springer, 2015. [9] R. Lakes. Materials with structural hierarchy. Nature, 361(6412):511–515, 1993. [10] D. Li, J. Yin, L. Dong, and R. S. Lakes. Numerical analysis on mechanical behaviors of hierarchical cellular structures with negative poisson’s ratio. Smart Materials and Structures, 26(2):025014, 2016. [11] J. Hou, D. Li, and L. Dong. Mechanical behaviors of hierarchical cellular structures with negative poisson’s ratio. Journal of Materials Science, 53(14):10209–10216, 2018. [12] D. Li, J. Yin, L. Dong, and R. S. Lakes. Strong re-entrant cellular structures with negative poisson’s ratio. Journal of materials science, 53(5):3493–3499, 2018. [13] A. Alderson, K. L. Alderson, D. Attard, K. E. Evans, R. Gatt, J. N. Grima, W. Miller, N. Ravirala, C. W. Smith, and K. Zied. Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Composites Science and Technology, 70(7):1042–1048, 2010. Special issue on Chiral Smart Honeycombs. [14] Y. Bar-Sinai, G. Librandi, K. Bertoldi, and M. Moshe. Geometric charges and nonlinear elasticity of two-dimensional elastic metamaterials. Proceedings of the National Academy of Sciences, 117(19):10195–10202, 2020. [15] Y. L. Wei, Q. S. Yang, X. Liu, and R. Tao. A novel 3d anti-tetrachiral structure with negative poisson’s ratio. Smart Materials and Structures, 29(8):085003, jun 2020. [16] T. Frenzel, M. Kadic, and M.Wegener. Three-dimensional mechanical metamaterials with a twist. Science, 358(6366):1072–1074, 2017. [17] D. Mousanezhad, B. Haghpanah, R. Ghosh, A. M. Hamouda, H. Nayeb-Hashemi, and A. Vaziri. Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach. Theoretical and Applied Mechanics Letters, 6(2):81–96, 2016. [18] R. S. Lakes and R. L. Benedict. Noncentrosymmetry in micropolar elasticity. International Journal of Engineering Science, 20(10):1161–1167, 1982. [19] I. Fernandez-Corbaton, C. Rockstuhl, P. Ziemke, P. Gumbsch, A. Albiez, R. Schwaiger, T. Frenzel, M. Kadic, and M. Wegener. New twists of 3d chiral metamaterials. Advanced Materials, 31(26):1807742, 2019. [20] P. Ziemke, T. Frenzel, M. Wegener, and P. Gumbsch. Tailoring the characteristic length scale of 3d chiral mechanical metamaterials. Extreme Mechanics Letters, 32:100553, 2019. [21] R. J. Angel, J. M. Jackson, H. J. Reichmann, and S. Speziale. Elasticity measurements on minerals: a review. European Journal of Mineralogy, 21(3):525–550, 06 2009. [22] S. Bernard, G. Marrelec, P. Laugier, and Q. Grimal. Bayesian normal modes identification and estimation of elastic coefficients in resonant ultrasound spectroscopy. Inverse Problems, 31(6):065010, May 2015. [23] R. S. Lakes and W. J. Drugan. Dramatically stiffer elastic composite materials due to a negative stiffness phase. Journal of the Mechanics and Physics of Solids, 50(5):979–1009, 2002.
|