跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 14:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂孟謙
研究生(外文):Lu, Meng-Chien
論文名稱:尿路上皮癌中CDCP1和PAI-1在TGFβ1作用下的交互作用
論文名稱(外文):Crosstalk between CUB domain-containing protein 1 and plasminogen activator inhibitor-1 in response to TGFβ1 in urothelial carcinoma
指導教授:黃暉升
指導教授(外文):Huang, Huei-Sheng
口試委員:黃溫雅徐麗君陳百昇
口試委員(外文):Huang, Wen-YaHsu, Li-JinChen, Pai-Sheng
口試日期:2021-07-23
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學檢驗生物技術學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:54
中文關鍵詞:尿路上皮癌
外文關鍵詞:urothelial carcinomaCDCP1TGFβ1PAI-1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
尿路上皮癌 (Urothelial carcinoma, UC) 在美國男性癌症中排名第四,其發病率在全球不斷增加。由於尿路上皮癌的高復發率並且會進展到晚期,因此特定生物標誌的發現有利於尿路上皮癌的患者。CUB Domain-containing Protein 1 (CDCP1) 是一種細胞表面跨膜蛋白。越來越多的證據表明CDCP1 在各種人類癌症中過度表達。 CDCP1 可以在細胞表面以全長和/或裂解形式表達。在全長CDCP1的細胞膜外區域有胰蛋白酶和絲氨酸蛋白酶的切割位置。在被絲氨酸蛋白酶切割後,全長CDCP1失去了第一個CUB domain並變成裂解的CDCP1。纖溶酶原激活劑抑制劑 1 (PAI-1) 是一種絲氨酸蛋白酶抑制劑,可被腫瘤細胞分泌到胞外微環境中並在纖溶酶原激活劑系統中扮演重要的角色。 PAI-1 可與尿激酶纖溶酶原激活劑 (uPA) 結合,從而抑制 uPA 的裂解功能。然而,CDCP1 和 PAI-1 之間的交互作用尚不清楚。因此在我們的研究中,我們利用 TGFβ1 刺激尿路上皮癌細胞,發現全長的CDCP1增加,但裂解的CDCP1卻減少。這種現象在其他癌細胞中也觀察得到。此外,我們還發現PAI-1在 TGFβ1 刺激後有上升的現象。而且全長CDCP1過表達的尿路上皮癌細胞具有更高的 PAI-1 和上皮細胞間質轉化 (EMT)標誌物的表達,這些標誌物在 TGFβ1 刺激後會被誘導。另外,全長CDCP1過表達的尿路上皮癌細胞具有更好的轉移和傷口癒合能力。綜合上述結果,我們推測 PAI-1 參與了 TGFβ1 調節 CDCP1的裂解過程,並且在尿路上皮癌細胞中全長CDCP1相較於裂解的CDCP1具有更好的促進細胞移動和上皮細胞間質轉化的能力。
關鍵字:尿路上皮癌
Urothelial carcinoma (UC) ranks fourth in men among all cancers in the United States of America and its incidence increasing worldwide. Due to the high recurrence rate of UC and the progression to the advanced stage, findings of specific biomarkers are benefit to UC patients. CUB Domain-containing Protein 1 (CDCP1) is a cell surface transmembrane protein. Accumulating evidence showed that CDCP1 was overexpressed in various human cancers. CDCP1 can be expressed at the cell surface as a full-length (flCDCP1) and/or a cleaved form (clCDCP1). There are trypsin and serine protease cleavage sites at the extracellular domain of flCDCP1. After cleaving by serine proteases, flCDCP1 loses its domain 1 and leads to the formation of clCDCP1. Plasminogen activator inhibitor 1 (PAI-1) is a serine protease inhibitor which can be secreted into the extracellular microenvironment by tumor cells and plays an important role in plasminogen activator system. PAI-1 can interact with urokinase plasminogen activator (uPA) for inhibiting the proteolytic cleavage function of uPA. However, the crosstalk between CDCP1 and PAI-1 is not well known yet. In our results, we treated UC cells with TGFβ1 and found that flCDCP1 was increased, but the clCDCP1 was decreased. The pattern was also observed in other cancer cells. In addition, we also found that PAI-1 was upregulated after TGFβ1 treatment. Moreover, flCDCP1-overexpressed UC cells showed higher expression of PAI-1 as well as epithelial mesenchymal transition (EMT) markers, which were induced after TGFβ1 treatment. Besides, flCDCP1-overexpressed UC cells had a better ability of migration and wound healing. Taken together, we suggest that PAI-1 is involved in the TGFβ1-regulated CDCP1 cleavage in UC cells and flCDCP1 has a better ability to promote cell motility and EMT than clCDCP1 does.
Keywords:urothelial carcinoma, CDCP1, TGFβ1, PAI-1
Abstract I
摘要 II
致謝 III
Index IV
Contents V
Introduction 1
Hypothesis and Specific Aim 6
Materials and Methods 7
Results 22
Discussion 27
Figures 30
References 47
Appendix 50
List of Figures VI
List of Appendix VII
List of Abbreviations VIII
1.Siegel, R.L., et al., Cancer Statistics, 2021. CA Cancer J Clin, 2021. 71(1): p. 7-33.
2.Miyazaki, J. and H. Nishiyama, Epidemiology of urothelial carcinoma. Int J Urol, 2017. 24(10): p. 730-734.
3.Wu, X.R., Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer, 2005. 5(9): p. 713-25.
4.Flaig, T.W., et al., Bladder Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw, 2020. 18(3): p. 329-354.
5.Hong, M., et al., Biomarkers for Precision Urothelial Carcinoma Diagnosis: Current Approaches and the Application of Single-Cell Technologies. Cancers (Basel), 2021. 13(2).
6.Brown, T.A., et al., Adhesion or plasmin regulates tyrosine phosphorylation of a novel membrane glycoprotein p80/gp140/CUB domain-containing protein 1 in epithelia. J Biol Chem, 2004. 279(15): p. 14772-83.
7.Bhatt, A.S., et al., Adhesion signaling by a novel mitotic substrate of src kinases. Oncogene, 2005. 24(34): p. 5333-43.
8.Hooper, J.D., et al., Subtractive immunization using highly metastatic human tumor cells identifies SIMA135/CDCP1, a 135 kDa cell surface phosphorylated glycoprotein antigen. Oncogene, 2003. 22(12): p. 1783-94.
9.Khan, T., et al., The CDCP1 Signaling Hub: A Target for Cancer Detection and Therapeutic Intervention. Cancer Res, 2021. 81(9): p. 2259-2269.
10.Uekita, T. and R. Sakai, Roles of CUB domain-containing protein 1 signaling in cancer invasion and metastasis. Cancer Sci, 2011. 102(11): p. 1943-8.
11.Predes, D., et al., CUB domain-containing protein 1 (CDCP1) binds transforming growth factor beta family members and increase TGF-beta1 signaling pathway. Exp Cell Res, 2019. 383(1): p. 111499.
12.Kryza, T., et al., Substrate-biased activity-based probes identify proteases that cleave receptor CDCP1. Nat Chem Biol, 2021.
13.Casar, B., et al., In vivo cleaved CDCP1 promotes early tumor dissemination via complexing with activated beta1 integrin and induction of FAK/PI3K/Akt motility signaling. Oncogene, 2014. 33(2): p. 255-68.
14.He, Y., et al., Proteolysis-induced N-terminal ectodomain shedding of the integral membrane glycoprotein CUB domain-containing protein 1 (CDCP1) is accompanied by tyrosine phosphorylation of its C-terminal domain and recruitment of Src and PKCdelta. J Biol Chem, 2010. 285(34): p. 26162-73.
15.Wright, H.J., et al., CDCP1 drives triple-negative breast cancer metastasis through reduction of lipid-droplet abundance and stimulation of fatty acid oxidation. Proc Natl Acad Sci U S A, 2017. 114(32): p. E6556-E6565.
16.Uekita, T., et al., Oncogenic Ras/ERK signaling activates CDCP1 to promote tumor invasion and metastasis. Mol Cancer Res, 2014. 12(10): p. 1449-59.
17.Chen, Y., et al., Development of an enzyme-linked immunosorbent assay for detection of CDCP1 shed from the cell surface and present in colorectal cancer serum specimens. J Pharm Biomed Anal, 2017. 139: p. 65-72.
18.He, Y., et al., CDCP1 enhances Wnt signaling in colorectal cancer promoting nuclear localization of beta-catenin and E-cadherin. Oncogene, 2020. 39(1): p. 219-233.
19.Alajati, A., et al., CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo. J Clin Invest, 2020. 130(5): p. 2435-2450.
20.Wright, H.J., et al., CDCP1 cleavage is necessary for homodimerization-induced migration of triple-negative breast cancer. Oncogene, 2016. 35(36): p. 4762-72.
21.Spassov, D.S., et al., A tumor-suppressing function in the epithelial adhesion protein Trask. Oncogene, 2012. 31(4): p. 419-31.
22.Sawada, G., et al., Loss of CDCP1 expression promotes invasiveness and poor prognosis in esophageal squamous cell carcinoma. Ann Surg Oncol, 2014. 21 Suppl 4: p. S640-7.
23.Andreasen, P.A., PAI-1 - a potential therapeutic target in cancer. Curr Drug Targets, 2007. 8(9): p. 1030-41.
24.Kortlever, R.M. and R. Bernards, Senescence, wound healing and cancer: the PAI-1 connection. Cell Cycle, 2006. 5(23): p. 2697-703.
25.Uhl, B., et al., uPA-PAI-1 heteromerization promotes breast cancer progression by attracting tumorigenic neutrophils. EMBO Mol Med, 2021. 13(6): p. e13110.
26.Rossi Sebastiano, M., et al., ACSL3-PAI-1 signaling axis mediates tumor-stroma cross-talk promoting pancreatic cancer progression. Sci Adv, 2020. 6(44).
27.Sakamoto, H., et al., PAI-1 derived from cancer-associated fibroblasts in esophageal squamous cell carcinoma promotes the invasion of cancer cells and the migration of macrophages. Lab Invest, 2021. 101(3): p. 353-368.
28.Weiss, A. and L. Attisano, The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol, 2013. 2(1): p. 47-63.
29.Massague, J., TGFbeta in Cancer. Cell, 2008. 134(2): p. 215-30.
30.Guasch, G., et al., Loss of TGFbeta signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. Cancer Cell, 2007. 12(4): p. 313-27.
31.Abugomaa, A., et al., Emerging Roles of Cancer Stem Cells in Bladder Cancer Progression, Tumorigenesis, and Resistance to Chemotherapy: A Potential Therapeutic Target for Bladder Cancer. Cells, 2020. 9(1).
32.Liu, Y., et al., Interplay of retinal determination gene network with TGF-beta signaling pathway in epithelial-mesenchymal transition. Stem Cell Investig, 2015. 2: p. 12.
33.Yoshida, K., et al., Clinico-Pathological Importance of TGF-beta/Phospho-Smad Signaling during Human Hepatic Fibrocarcinogenesis. Cancers (Basel), 2018. 10(6).
34.何怡慧, 開發一種尿液診斷尿路上皮癌的新穎方法, in 醫學檢驗生物技術學系. 2016, 國立成功大學: 台南市. p. 66.
35.陳慧慈, CDCP1在具有Gemcitabine抗藥性的尿路上皮癌中所扮演的角色, in 醫學檢驗生物技術學系. 2020, 國立成功大學: 台南市. p. 47.
36.Yamagami, Y., et al., Role of plasminogen activator inhibitor-1 in methotrexate-induced epithelial-mesenchymal transition in alveolar epithelial A549 cells. Biochem Biophys Res Commun, 2020. 525(3): p. 543-548.
37.Tong, H., et al., Starvation-induced autophagy promotes the invasion and migration of human bladder cancer cells via TGF-beta1/Smad3-mediated epithelial-mesenchymal transition activation. J Cell Biochem, 2019. 120(4): p. 5118-5127.
38.Islam, S.S., et al., TGF-beta1 induces EMT reprogramming of porcine bladder urothelial cells into collagen producing fibroblasts-like cells in a Smad2/Smad3-dependent manner. J Cell Commun Signal, 2014. 8(1): p. 39-58.
39.He, Y., et al., Evidence that cell surface localization of serine protease activity facilitates cleavage of the protease activated receptor CDCP1. Biol Chem, 2018. 399(9): p. 1091-1097.
40.Klezovitch, O., et al., Hepsin promotes prostate cancer progression and metastasis. Cancer Cell, 2004. 6(2): p. 185-95.
41.Casar, B., et al., Blocking of CDCP1 cleavage in vivo prevents Akt-dependent survival and inhibits metastatic colonization through PARP1-mediated apoptosis of cancer cells. Oncogene, 2012. 31(35): p. 3924-38.
42.Wright, H.J., A.M. Police, and O.V. Razorenova, Targeting CDCP1 dimerization in triple-negative breast cancer. Cell Cycle, 2016. 15(18): p. 2385-6.
43.Kryza, T., et al., Effective targeting of intact and proteolysed CDCP1 for imaging and treatment of pancreatic ductal adenocarcinoma. Theranostics, 2020. 10(9): p. 4116-4133.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top