|
1.Siegel, R.L., et al., Cancer Statistics, 2021. CA Cancer J Clin, 2021. 71(1): p. 7-33. 2.Miyazaki, J. and H. Nishiyama, Epidemiology of urothelial carcinoma. Int J Urol, 2017. 24(10): p. 730-734. 3.Wu, X.R., Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer, 2005. 5(9): p. 713-25. 4.Flaig, T.W., et al., Bladder Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw, 2020. 18(3): p. 329-354. 5.Hong, M., et al., Biomarkers for Precision Urothelial Carcinoma Diagnosis: Current Approaches and the Application of Single-Cell Technologies. Cancers (Basel), 2021. 13(2). 6.Brown, T.A., et al., Adhesion or plasmin regulates tyrosine phosphorylation of a novel membrane glycoprotein p80/gp140/CUB domain-containing protein 1 in epithelia. J Biol Chem, 2004. 279(15): p. 14772-83. 7.Bhatt, A.S., et al., Adhesion signaling by a novel mitotic substrate of src kinases. Oncogene, 2005. 24(34): p. 5333-43. 8.Hooper, J.D., et al., Subtractive immunization using highly metastatic human tumor cells identifies SIMA135/CDCP1, a 135 kDa cell surface phosphorylated glycoprotein antigen. Oncogene, 2003. 22(12): p. 1783-94. 9.Khan, T., et al., The CDCP1 Signaling Hub: A Target for Cancer Detection and Therapeutic Intervention. Cancer Res, 2021. 81(9): p. 2259-2269. 10.Uekita, T. and R. Sakai, Roles of CUB domain-containing protein 1 signaling in cancer invasion and metastasis. Cancer Sci, 2011. 102(11): p. 1943-8. 11.Predes, D., et al., CUB domain-containing protein 1 (CDCP1) binds transforming growth factor beta family members and increase TGF-beta1 signaling pathway. Exp Cell Res, 2019. 383(1): p. 111499. 12.Kryza, T., et al., Substrate-biased activity-based probes identify proteases that cleave receptor CDCP1. Nat Chem Biol, 2021. 13.Casar, B., et al., In vivo cleaved CDCP1 promotes early tumor dissemination via complexing with activated beta1 integrin and induction of FAK/PI3K/Akt motility signaling. Oncogene, 2014. 33(2): p. 255-68. 14.He, Y., et al., Proteolysis-induced N-terminal ectodomain shedding of the integral membrane glycoprotein CUB domain-containing protein 1 (CDCP1) is accompanied by tyrosine phosphorylation of its C-terminal domain and recruitment of Src and PKCdelta. J Biol Chem, 2010. 285(34): p. 26162-73. 15.Wright, H.J., et al., CDCP1 drives triple-negative breast cancer metastasis through reduction of lipid-droplet abundance and stimulation of fatty acid oxidation. Proc Natl Acad Sci U S A, 2017. 114(32): p. E6556-E6565. 16.Uekita, T., et al., Oncogenic Ras/ERK signaling activates CDCP1 to promote tumor invasion and metastasis. Mol Cancer Res, 2014. 12(10): p. 1449-59. 17.Chen, Y., et al., Development of an enzyme-linked immunosorbent assay for detection of CDCP1 shed from the cell surface and present in colorectal cancer serum specimens. J Pharm Biomed Anal, 2017. 139: p. 65-72. 18.He, Y., et al., CDCP1 enhances Wnt signaling in colorectal cancer promoting nuclear localization of beta-catenin and E-cadherin. Oncogene, 2020. 39(1): p. 219-233. 19.Alajati, A., et al., CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo. J Clin Invest, 2020. 130(5): p. 2435-2450. 20.Wright, H.J., et al., CDCP1 cleavage is necessary for homodimerization-induced migration of triple-negative breast cancer. Oncogene, 2016. 35(36): p. 4762-72. 21.Spassov, D.S., et al., A tumor-suppressing function in the epithelial adhesion protein Trask. Oncogene, 2012. 31(4): p. 419-31. 22.Sawada, G., et al., Loss of CDCP1 expression promotes invasiveness and poor prognosis in esophageal squamous cell carcinoma. Ann Surg Oncol, 2014. 21 Suppl 4: p. S640-7. 23.Andreasen, P.A., PAI-1 - a potential therapeutic target in cancer. Curr Drug Targets, 2007. 8(9): p. 1030-41. 24.Kortlever, R.M. and R. Bernards, Senescence, wound healing and cancer: the PAI-1 connection. Cell Cycle, 2006. 5(23): p. 2697-703. 25.Uhl, B., et al., uPA-PAI-1 heteromerization promotes breast cancer progression by attracting tumorigenic neutrophils. EMBO Mol Med, 2021. 13(6): p. e13110. 26.Rossi Sebastiano, M., et al., ACSL3-PAI-1 signaling axis mediates tumor-stroma cross-talk promoting pancreatic cancer progression. Sci Adv, 2020. 6(44). 27.Sakamoto, H., et al., PAI-1 derived from cancer-associated fibroblasts in esophageal squamous cell carcinoma promotes the invasion of cancer cells and the migration of macrophages. Lab Invest, 2021. 101(3): p. 353-368. 28.Weiss, A. and L. Attisano, The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol, 2013. 2(1): p. 47-63. 29.Massague, J., TGFbeta in Cancer. Cell, 2008. 134(2): p. 215-30. 30.Guasch, G., et al., Loss of TGFbeta signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. Cancer Cell, 2007. 12(4): p. 313-27. 31.Abugomaa, A., et al., Emerging Roles of Cancer Stem Cells in Bladder Cancer Progression, Tumorigenesis, and Resistance to Chemotherapy: A Potential Therapeutic Target for Bladder Cancer. Cells, 2020. 9(1). 32.Liu, Y., et al., Interplay of retinal determination gene network with TGF-beta signaling pathway in epithelial-mesenchymal transition. Stem Cell Investig, 2015. 2: p. 12. 33.Yoshida, K., et al., Clinico-Pathological Importance of TGF-beta/Phospho-Smad Signaling during Human Hepatic Fibrocarcinogenesis. Cancers (Basel), 2018. 10(6). 34.何怡慧, 開發一種尿液診斷尿路上皮癌的新穎方法, in 醫學檢驗生物技術學系. 2016, 國立成功大學: 台南市. p. 66. 35.陳慧慈, CDCP1在具有Gemcitabine抗藥性的尿路上皮癌中所扮演的角色, in 醫學檢驗生物技術學系. 2020, 國立成功大學: 台南市. p. 47. 36.Yamagami, Y., et al., Role of plasminogen activator inhibitor-1 in methotrexate-induced epithelial-mesenchymal transition in alveolar epithelial A549 cells. Biochem Biophys Res Commun, 2020. 525(3): p. 543-548. 37.Tong, H., et al., Starvation-induced autophagy promotes the invasion and migration of human bladder cancer cells via TGF-beta1/Smad3-mediated epithelial-mesenchymal transition activation. J Cell Biochem, 2019. 120(4): p. 5118-5127. 38.Islam, S.S., et al., TGF-beta1 induces EMT reprogramming of porcine bladder urothelial cells into collagen producing fibroblasts-like cells in a Smad2/Smad3-dependent manner. J Cell Commun Signal, 2014. 8(1): p. 39-58. 39.He, Y., et al., Evidence that cell surface localization of serine protease activity facilitates cleavage of the protease activated receptor CDCP1. Biol Chem, 2018. 399(9): p. 1091-1097. 40.Klezovitch, O., et al., Hepsin promotes prostate cancer progression and metastasis. Cancer Cell, 2004. 6(2): p. 185-95. 41.Casar, B., et al., Blocking of CDCP1 cleavage in vivo prevents Akt-dependent survival and inhibits metastatic colonization through PARP1-mediated apoptosis of cancer cells. Oncogene, 2012. 31(35): p. 3924-38. 42.Wright, H.J., A.M. Police, and O.V. Razorenova, Targeting CDCP1 dimerization in triple-negative breast cancer. Cell Cycle, 2016. 15(18): p. 2385-6. 43.Kryza, T., et al., Effective targeting of intact and proteolysed CDCP1 for imaging and treatment of pancreatic ductal adenocarcinoma. Theranostics, 2020. 10(9): p. 4116-4133.
|