中文文獻
王舒民、林娟娟、簡子晴、鄒仁淳,2016年,由任務科技配適度觀點探討司法人員資訊系統使用與工作績效之影響因子,臺大管理論叢,第26卷第2期,第273-302頁。
白凢芸、葉子明、蕭鈺錦,2020年,第三方餐飲外送平台價值分析: 餐飲供應合作夥伴之觀點,電子商務學報,第22卷第2期,第213-238頁。
吳文雄(2002)。電腦技能學習者過去的績效、目標認同、電腦自我效能及電腦績效因果關係之驗證—社會認知理論與目標設定理論的整合,師大學報:科學教育類,第47卷第1期,第39-54頁。
張芳瑜、謝碧容,2020年,延伸任務科技配適理論以探討疾病分類人員對於ICD-10-CM/PCS 登錄系統之滿意度與績效,醫務管理期刊,第21卷第4期,第293-313頁。
賀靖雅(2019)。以任務科技配適度觀點探討顧客採用行動APP購物之行為–以蝦皮購物為例。國立成功大學企業管理學系暨研究所碩士論文,台南市。葉逸萱(2011)。企業採用資訊科技之配適-可行性延伸模式。國立中山大學資訊管理學系博士論文,高雄市。顏奕仁、周惠文、林裕勛,2009年,個人工作績效之探討—整合任務科技配適模式與社會認知理論,中原企管評論,第8卷第1期,第143-166頁。
羅仕順、陳棟樑、林建志、陳俐文,2020年,運用科技接受模式探討縣政府公文系統使用行為與使用滿意度之研究,管理資訊計算,第9卷,第112-126頁。
英文文獻
Abdullah, F., Ward, R., & Ahmed, E. (2016). Investigating the influence of the most commonly used external variables of TAM on students’ Perceived Ease of Use (PEOU) and Perceived Usefulness (PU) of e-portfolios. Computers in human behavior, 63, 75-90.
Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological bulletin, 103(3), 411.
Ball, D. M., & Levy, Y. (2008). Emerging educational technology: Assessing the factors that influence instructors’ acceptance in information systems and other classrooms. Journal of Information Systems Education, 19(4), 431.
Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs, NJ, 1986(23-28).
Chen, I. S. (2017). Computer self-efficacy, learning performance, and the mediating role of learning engagement. Computers in Human Behavior, 72, 362-370.
Cho, M., Bonn, M. A., & Li, J. J. (2019). Differences in perceptions about food delivery apps between single-person and multi-person households. International Journal of Hospitality Management, 77, 108-116.
Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS quarterly, 189-211.
Compeau, D., Higgins, C. A., & Huff, S. (1999). Social cognitive theory and individual reactions to computing technology: A longitudinal study. MIS quarterly, 145-158.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
Gebauer, J., & Shaw, M. J. (2004). Success factors and impacts of mobile business applications: results from a mobile e-procurement study. International Journal of Electronic Commerce, 8(3), 19-41.
Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS quarterly, 213-236.
Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1992). Multivariate Data Analysis with Readings, 3-rd edition.
Hasan, B. (2007). Examining the effects of computer self-efficacy and system complexity on technology acceptance. Information Resources Management Journal (IRMJ), 20(3), 76-88.
Hsia, J. W., Chang, C. C., & Tseng, A. H. (2014). Effects of individuals' locus of control and computer self-efficacy on their e-learning acceptance in high-tech companies. Behaviour & Information Technology, 33(1), 51-64.
Jia, D., Bhatti, A., & Nahavandi, S. (2014). The impact of self-efficacy and perceived system efficacy on effectiveness of virtual training systems. Behaviour & Information Technology, 33(1), 16-35.
John, S. P. (2013). Influence of computer self-efficacy on information technology adoption. International Journal of Information Technology, 19(1), 1-13.
Jöreskog, K. G., & Sörbom, D. (1989). LISREL 7: A guide to the program and applications. Spss.
Lee, C. C., Cheng, H. K., & Cheng, H. H. (2007). An empirical study of mobile commerce in insurance industry: Task–technology fit and individual differences. Decision support systems, 43(1), 95-110.
Lee, S. W., Sung, H. J., & Jeon, H. M. (2019). Determinants of continuous intention on food delivery apps: extending UTAUT2 with information quality. Sustainability, 11(11), 3141.
Liang, T. P., & Wei, C. P. (2004). Introduction to the special issue: Mobile commerce applications. International journal of electronic commerce, 8(3), 7-17.
Liang, T. P., Huang, C. W., Yeh, Y. H., & Lin, B. (2007). Adoption of mobile technology in business: a fit‐viability model. Industrial management & data systems.
Lin, T. C., & Huang, C. C. (2008). Understanding knowledge management system usage antecedents: An integration of social cognitive theory and task technology fit. Information & management, 45(6), 410-417.
Ma, Q., & Liu, L. (2005). The role of Internet self-efficacy in the acceptance of web-based electronic medical records. Journal of Organizational and End User Computing (JOEUC), 17(1), 38-57.
Nikou, S. A., & Economides, A. A. (2017). Mobile-based assessment: Investigating the factors that influence behavioral intention to use. Computers & Education, 109, 56-73.
Roh, M., & Park, K. (2019). Adoption of O2O food delivery services in South Korea: The moderating role of moral obligation in meal preparation. International Journal of Information Management, 47, 262-273.
Salloum, S. A., & Shaalan, K. (2018). Adoption of e-book for university students. In International Conference on Advanced Intelligent Systems and Informatics (pp. 481-494). Springer, Cham.
Sam, H. K., Othman, A. E. A., & Nordin, Z. S. (2005). Computer self-efficacy, computer anxiety, and attitudes toward the Internet: A study among undergraduates in Unimas. Journal of Educational Technology & Society, 8(4), 205-219.
Schlebusch, C. L. (2018). Computer anxiety, computer self-efficacy and attitudes towards the internet of first year students at a South African university of technology. Africa Education Review, 15(3), 72-90.
Shih, Y. Y. (2006). The effect of computer self-efficacy on enterprise resource planning usage. Behaviour & Information Technology, 25(5), 407-411.
Simpson, G. G., Gerard, R. W., Goodenough, W. H., & Inkeles, A. (1961). Comments on cultural evolution. Daedalus, 90(3), 514-533.
Tam, C., & Oliveira, T. (2016). Performance impact of mobile banking: using the task-technology fit (TTF) approach. International Journal of Bank Marketing.
Teo, T. S., & Yu, Y. (2005). Online buying behavior: a transaction cost economics perspective. Omega, 33(5), 451-465.
Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: Toward a conceptual model of utilization. MIS quarterly, 125-143.
Triandis, H. C. (1979). Values, attitudes, and interpersonal behavior. In Nebraska symposium on motivation. University of Nebraska Press.
Tshabalala, M., Ndeya-Ndereya, C., & Van der Merwe, T. (2013, June). Academic staff's challenges in adopting blended learning: reality at a developing university. In International Conference on e-Learning (p. 396). Academic Conferences International Limited.
Venkatesh, V., Brown, S. A., Maruping, L. M., & Bala, H. (2008). Predicting different conceptualizations of system use: the competing roles of behavioral intention, facilitating conditions, and behavioral expectation. MIS quarterly, 483-502.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
Williams, L. J., & Hazer, J. T. (1986). Antecedents and consequences of satisfaction and commitment in turnover models: A reanalysis using latent variable structural equation methods. Journal of applied psychology, 71(2), 219.
Williamson, O. E. (1975). Markets and hierarchies: analysis and antitrust implications: a study in the economics of internal organization. University of Illinois at Urbana-Champaign's Academy for Entrepreneurial Leadership Historical Research Reference in Entrepreneurship.
Williamson, O. E. (1985). The economic institutions of capitalism. New York: Free Press.
Wolverton, C. C., Hollier, B. N. G., & Lanier, P. A. (2020). The Impact of Computer Self Efficacy on Student Engagement and Group Satisfaction in Online Business Courses. Electronic Journal of e-Learning, 18(2), pp175-188.
Wu, B., & Chen, X. (2017). Continuance intention to use MOOCs: Integrating the technology acceptance model (TAM) and task technology fit (TTF) model. Computers in Human Behavior, 67, 221-232.
Yeo, V. C. S., Goh, S. K., & Rezaei, S. (2017). Consumer experiences, attitude and behavioral intention toward online food delivery (OFD) services. Journal of Retailing and Consumer Services, 35, 150-162.
Yuan, S., Liu, Y., Yao, R., & Liu, J. (2016). An investigation of users’ continuance intention towards mobile banking in China. Information Development, 32(1), 20-34.
Zhao, Y., & Bacao, F. (2020). What factors determining customer continuingly using food delivery apps during 2019 novel coronavirus pandemic period?. International journal of hospitality management, 91, 102683.
Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in human behavior, 26(4), 760-767.
Zmud, R. W. (1979). Individual differences and MIS success: A review of the empirical literature. Management science, 25(10), 966-979.