跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/02/05 21:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:藍三
研究生(外文):Ralph NicolaiNasara
論文名稱:高性能鋰離子電池負極材料鈦酸鋰(LTO)之表面性質研究
論文名稱(外文):Understanding the surface properties of Li4Ti5O12 (LTO) for high-performance anode material for lithium-ion batteries
指導教授:林士剛
指導教授(外文):Shih-Kang Lin
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:英文
論文頁數:250
外文關鍵詞:Li4Ti5O12Ab initio calculationDefect engineeringLithium-ion battery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The Li4Ti5O12 (LTO) defect spinel is known for its excellent durability of “10,000” cycle counts and a high level of safety as an anode material in lithium-ion batteries. However, it shows an intrinsic insulating property, low energy density, and prevalent gassing issues. Furthermore, the understanding of the surface structure and chemistry of LTO and its solid-electrolyte interphase (SEI) are not fully understood. The goal of this thesis is to systematically study the surface properties of LTO and propose approaches that reduce the internal resistances consisting of Li-ion and electron transport. This thesis starts with developing an understanding of the inherent bulk properties of LTO. Doping is a direct approach to reducing resistance within the electrode by manipulating the electronic conductivity of LTO. However, doping may induce multiple effects influencing the overall electrochemical kinetics, e.g., changing the size of particles and the ionic and electronic conductivities. Here we systematically investigated the phase stability, electronic conductivity, and electrochemical kinetics of M-doped LTO (M = Na, K, Mg, Ca, Sr, Al, Ga, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ta, and W). With both ab initio calculations and experiments, the mechanism of electron transport within LTO is elucidated, the desired type of dopants for improving the electronic conductivity of LTO is clarified, and the role of electronic conductivity in the electrochemical kinetics of LTO is revealed. These results provide an in-depth understanding of metal-doped LTO and would help the development of a variety of electrode materials. By also using a model Cr-doped thin-film electrode, we have related the understanding of the enhancements in the bulk property to its surface structure and chemistry, possibly revealing the true doping effect.
As previously mentioned, the electrochemical characteristics of LTO at low potentials and the property of the SEI on LTO are not well understood. Here, we investigate the charge-transfer kinetics of the SEI formed between the model LTO thin-film electrode and the organic electrolytes with distinct solvation ability by AC impedance spectroscopy and their stability by cyclic voltammetry of ferrocene. With the SEI film on LTO, the Li+ de-solvation was still a rate-determining step but with larger activation energies, which showed a strong dependence on the solvation ability of electrolyte. The activation energies of de-solvation for the fluoroethylene carbonate + dimethyl carbonate (FEC+DMC)- and ethylene carbonate + diethyl carbonate (EC+DEC)-based systems rose from 35 and 55 to 44 and 67 kJ·mol–1, respectively, and that for the propylene carbonate (PC)-based system did not noticeably change at around 67 kJ·mol–1. Also, the SEI passivation of LTO was much slower than graphite, and the rate strongly depended on the solvation ability of the electrolyte. Understanding the surface properties of LTO at low potentials opens the door for higher energy density LTO-based LIBs.
Surface modifications, e.g., coating and defect engineering, play an intriguing role in interfacial electrochemical processes. Herein, we report a novel synthesis of highly oxygen-deficient “defective-LTO” with a conformal carbon coating of 2-5 nm as an anode material with high-rate performance. Lastly, defect engineering with doping and carbon coating are practical approaches to improve surface structure and chemistry, but fine defect characterization and probing are almost impossible for dilute concentrations. In this thesis, we also proposed to re-visit the use of Raman spectroscopy as a complementary tool for defect probing and analysis for the metal-ion doped- and carbon-coated LTO.
Chapter I: INTRODUCTION 1
I.1 The importance of Lithium-ion batteries 1
Chapter II: LITERATURE REVIEW 4
II.1 The current landscape of anode materials 4
II.2 Building the initial host structure 12
II.3 Lithiated and overlithiated structures 24
II.4 Assessing the reliability of the structure 30
II.5 Thermodynamics and phase stability evaluation 37
II.6 Activation energy and Li-ion mobility in the LTO structure 40
II.7 Elucidating enhancements in electrochemical performance 45
II.8 Kinetics of Lithium-Ion Transfer at the interface 55
Chapter III: RESEARCH METHODOLOGIES 61
III.1 Materials design 61
III.2 Chemical potential diagram and phase stability analysis 64
III.3 Materials synthesis 72
III.4 Crystal structure identification 75
III.5 Porosity measurements 75
III.6 Particle morphology observation 78
III.7 Raman spectroscopy 78
III.8 Conductivity measurements 78
III.9 Battery assembly 79
III.10 Cyclic voltammetry 80
III.11 Electrochemical impedance spectroscopy 82
III.12 Electrochemical rate performance 84
Chapter IV: Overview of the thesis 85
Chapter V: RESULTS AND DISCUSSIONS 87
V.1 Ab initio Phase Stability and Electronic Conductivity of the Doped-Li4Ti5O12 Anode for Li-ion batteries 87
V.2 The Effect of Clustering of Dopants in the Li4Ti5O12 Electrode on Interfacial Lithium-ion Transfer Kinetics 127
V.3 One-step Synthesis of Highly Oxygen-deficient Lithium Titanate Oxide with Conformal Amorphous Carbon Coating as Anode Material for Lithium-ion batteries 145
V.4 Charge-Transfer Kinetics of The Solid-Electrolyte Interphase on Li4Ti5O12 Thin-Film Electrodes 162
V.5 Defects in Li4Ti5O12 Induced by Defect Engineering (metal-ion doping and carbon deposition): An Analysis of Unidentified Bands in Raman Spectra 185
Chapter VI: CONCLUSIONS AND RECOMMENDATIONS 205
VI.1 A method for increasing the experimental phase stability of M-doped LTO 205
VI.2 Applying phase stability studies to explore new defect spinel oxides Li4Me5O12 208
VI.3 Insights for ab initio aided materials design for LTO 213
Chapter VII: Supporting Information 216
References 229
[1] A. Energy, 2017.
[2]Altairnano company. Available: http://www.altairnano.com/
[3]Microvast company. Available: http://www.microvast.com/
[4]Saft batteries company. Available: https://www.saftbatteries.com/
[5]Toshiba company. Available: http://www.scib.jp/en/
[6]N. Takami, H. Inagaki, Y. Tatebayashi, H. Saruwatari, K. Honda, and S. Egusa, High-power and long-life lithium-ion batteries using lithium titanium oxide anode for automotive and stationary power applications, Journal of Power Sources, vol. 244, pp. 469-475, 2013.
[7]B. Zhao, R. Ran, M. Liu, and Z. Shao, A comprehensive review of Li 4 Ti 5 O 12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives, Materials Science and Engineering: R: Reports, vol. 98, pp. 1-71, 2015.
[8]J. Dahn, Phase diagram of Li x C 6, Physical Review B, vol. 44, p. 9170, 1991.
[9]J. Besenhard, J. Yang, and M. Winter, Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?, Journal of Power Sources, vol. 68, pp. 87-90, 1997.
[10]M. Obrovac and L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction, Electrochemical and Solid-State Letters, vol. 7, pp. A93-A96, 2004.
[11]M. Obrovac and L. Krause, Reversible cycling of crystalline silicon powder, Journal of The Electrochemical Society, vol. 154, pp. A103-A108, 2007.
[12]Y. Kamata, High-k/Ge MOSFETs for future nanoelectronics, Materials today, vol. 11, pp. 30-38, 2008.
[13]C. Fuller and J. Severiens, Mobility of impurity ions in germanium and silicon, Physical Review, vol. 96, p. 21, 1954.
[14]X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, Acs Nano, vol. 6, pp. 1522-1531, 2012.
[15]R. Teki, M. K. Datta, R. Krishnan, T. C. Parker, T. M. Lu, P. N. Kumta, et al., Nanostructured silicon anodes for lithium ion rechargeable batteries, Small, vol. 5, pp. 2236-2242, 2009.
[16]B. Boukamp, G. Lesh, and R. Huggins, All‐solid lithium electrodes with mixed‐conductor matrix, Journal of the Electrochemical Society, vol. 128, pp. 725-729, 1981.
[17]M. Thackeray, W. David, and J. Goodenough, Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0( x( 2), Materials Research Bulletin, vol. 17, pp. 785-793, 1982.
[18]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, vol. 407, p. 496, 2000.
[19]K. Zhao and Y. Cui, Understanding the role of mechanics in energy materials: a perspective, Extreme Mechanics Letters, vol. 9, pp. 347-352, 2016.
[20]T. Ohzuku, A. Ueda, and N. Yamamoto, Zero‐Strain Insertion Material of Li [Li1/3Ti5/3] O 4 for Rechargeable Lithium Cells, Journal of the Electrochemical Society, vol. 142, pp. 1431-1435, 1995.
[21]MTI corporation. Available: http://www.mtixtl.com/
[22]K. Xu, A. von Cresce, and U. Lee, Differentiating contributions to “ion transfer barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface, Langmuir, vol. 26, pp. 11538-11543, 2010.
[23]Y. Ishihara, K. Miyazaki, T. Fukutsuka, and T. Abe, Kinetics of lithium-ion transfer at the interface between Li4Ti5O12 thin films and organic electrolytes, ECS Electrochemistry Letters, vol. 3, pp. A83-A86, 2014.
[24]T.-F. Yi, Y. Xie, Y.-R. Zhu, R.-S. Zhu, and H. Shen, Structural and thermodynamic stability of Li 4 Ti 5 O 12 anode material for lithium-ion battery, Journal of Power Sources, vol. 222, pp. 448-454, 2013.
[25]D. Young, A. Ransil, R. Amin, Z. Li, and Y. M. Chiang, Electronic Conductivity in the Li4/3Ti5/3O4–Li7/3Ti5/3O4 System and Variation with State‐of‐Charge as a Li Battery Anode, Advanced Energy Materials, vol. 3, pp. 1125-1129, 2013.
[26]R. N. Nasara, P. c. Tsai, and S. k. Lin, One‐Step Synthesis of Highly Oxygen‐Deficient Lithium Titanate Oxide with Conformal Amorphous Carbon Coating as Anode Material for Lithium Ion Batteries, Advanced Materials Interfaces, vol. 4, no.15, p1700329, 2017.
[27]S. Huang, Z. Wen, X. Zhu, and Z. Lin, Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries, Journal of Power Sources, vol. 165, pp. 408-412, 2007/02/25/ 2007.
[28]D. Liu, C. Ouyang, J. Shu, J. Jiang, Z. Wang, and L. Chen, Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12, physica status solidi (b), vol. 243, pp. 1835-1841, 2006.
[29]C. Jiang, M. Ichihara, I. Honma, and H. Zhou, Effect of particle dispersion on high rate performance of nano-sized Li 4 Ti 5 O 12 anode, Electrochimica Acta, vol. 52, pp. 6470-6475, 2007.
[30]E. Kang, Y. S. Jung, G. H. Kim, J. Chun, U. Wiesner, A. C. Dillon, et al., Highly Improved Rate Capability for a Lithium‐Ion Battery Nano‐Li4Ti5O12 Negative Electrode via Carbon‐Coated Mesoporous Uniform Pores with a Simple Self‐Assembly Method, Advanced Functional Materials, vol. 21, pp. 4349-4357, 2011.
[31]G.-N. Zhu, H.-J. Liu, J.-H. Zhuang, C.-X. Wang, Y.-G. Wang, and Y.-Y. Xia, Carbon-coated nano-sized Li 4 Ti 5 O 12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries, Energy & Environmental Science, vol. 4, pp. 4016-4022, 2011.
[32]P. Tang and N. Holzwarth, Electronic structure of FePO 4, LiFePO 4, and related materials, Physical Review B, vol. 68, p. 165107, 2003.
[33]J. Osorio-Guillén, B. Holm, R. Ahuja, and B. Johansson, A theoretical study of olivine LiMPO 4 cathodes, Solid State Ionics, vol. 167, pp. 221-227, 2004.
[34]D. Sholl and J. A. Steckel, Density functional theory: a practical introduction: John Wiley & Sons, 2011.
[35]P.-E. Lippens, M. Womes, P. Kubiak, J.-C. Jumas, and J. Olivier-Fourcade, Electronic structure of the spinel Li4Ti5O12 studied by ab initio calculations and X-ray absorption spectroscopy, Solid State Sciences, vol. 6, pp. 161-166, 2004/02/01/ 2004.
[36]K. Kataoka, Y. Takahashi, N. Kijima, H. Hayakawa, J. Akimoto, and K.-i. Ohshima, A single-crystal study of the electrochemically Li-ion intercalated spinel-type Li4Ti5O12, Solid State Ionics, vol. 180, pp. 631-635, 2009/05/14/ 2009.
[37]K. Kataoka, Y. Takahashi, N. Kijima, H. Nagai, J. Akimoto, Y. Idemoto, et al., Crystal growth and structure refinement of monoclinic Li 2 TiO 3, Materials Research Bulletin, vol. 44, pp. 168-172, 2009.
[38]P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN 2k, Augmented plane wave+ local orbitals program for calculating crystal properties, Vienna, Austria, 2001, See also http://www. wien2k. at.
[39]B. Ziebarth, M. Klinsmann, T. Eckl, and C. Elsässer, Lithium diffusion in the spinel phase Li 4 Ti 5 O 12 and in the rocksalt phase Li 7 Ti 5 O 12 of lithium titanate from first principles, Physical Review B, vol. 89, p. 174301, 2014.
[40]C. Ouyang, Z. Zhong, and M. Lei, Ab initio studies of structural and electronic properties of Li 4 Ti 5 O 12 spinel, Electrochemistry communications, vol. 9, pp. 1107-1112, 2007.
[41]S. Tanaka, M. Kitta, T. Tamura, T. Akita, Y. Maeda, and M. Kohyama, First-principles calculations of OK ELNES/XANES of lithium titanate, Journal of Physics D: Applied Physics, vol. 45, p. 494004, 2012.
[42]Y. Chen, C. Ouyang, L. Song, and Z. Sun, Lithium ion diffusion in Li 4+ x Ti 5 O 12: From ab initio studies, Electrochimica Acta, vol. 56, pp. 6084-6088, 2011.
[43]Z. Zhi-Yong, N. Zheng-Xin, D. Yan-Lan, O. Chu-Ying, S. Si-Qi, and L. Min-Sheng, Ab initio studies on n-type and p-type Li4Ti5O12, Chinese Physics B, vol. 18, p. 2492, 2009.
[44]T.-F. Yi, Y. Xie, Y.-R. Zhu, J. Shu, A.-N. Zhou, and H.-B. Qiao, Stabilities and electronic properties of lithium titanium oxide anode material for lithium ion battery, Journal of Power Sources, vol. 198, pp. 318-321, 2012.
[45]V. r. Weber, T. Laino, A. Curioni, T. Eckl, C. Engel, J. Kasemchainan, et al., Computational Study of Lithium Titanate as a Possible Cathode Material for Solid-State Lithium–Sulfur Batteries, The Journal of Physical Chemistry C, vol. 119, pp. 9681-9691, 2015.
[46]P.-c. Tsai, W.-D. Hsu, and S.-k. Lin, Atomistic structure and ab initio electrochemical properties of Li4Ti5O12 defect spinel for Li ion batteries, Journal of The Electrochemical Society, vol. 161, pp. A439-A444, 2014.
[47]S. Zahn, J. Janek, and D. Mollenhauer, A simple ansatz to predict the structure of Li4Ti5O12, Journal of The Electrochemical Society, vol. 164, pp. A221-A225, 2017.
[48]S. Ganapathy, A. Vasileiadis, J. R. Heringa, and M. Wagemaker, The Fine Line between a Two‐Phase and Solid‐Solution Phase Transformation and Highly Mobile Phase Interfaces in Spinel Li4+ xTi5O12, Advanced Energy Materials, vol. 7, 2017.
[49]J. M. Sanchez, F. Ducastelle, and D. Gratias, Generalized cluster description of multicomponent systems, Physica A: Statistical Mechanics and its Applications, vol. 128, pp. 334-350, 1984.
[50]A. Van der Ven, C. Marianetti, D. Morgan, and G. Ceder, Phase transformations and volume changes in spinel LixMn2O4, Solid State Ionics, vol. 135, pp. 21-32, 2000.
[51]Q. Zhang, M. G. Verde, J. K. Seo, X. Li, and Y. S. Meng, Structural and electrochemical properties of Gd-doped Li 4 Ti 5 O 12 as anode material with improved rate capability for lithium-ion batteries, Journal of Power Sources, vol. 280, pp. 355-362, 2015.
[52]Y. S. Meng and M. E. Arroyo-de Dompablo, First principles computational materials design for energy storage materials in lithium ion batteries, Energy & Environmental Science, vol. 2, pp. 589-609, 2009.
[53]H. Ge, N. Li, D. Li, C. Dai, and D. Wang, Study on the theoretical capacity of spinel lithium titanate induced by low-potential intercalation, The Journal of Physical Chemistry C, vol. 113, pp. 6324-6326, 2009.
[54]J. Shu, Electrochemical behavior and stability of Li4Ti5O12 in a broad voltage window, Journal of Solid State Electrochemistry, vol. 13, pp. 1535-1539, 2009.
[55]Z. Zhong, C. Ouyang, S. Shi, and M. Lei, Ab initio Studies on Li4+ xTi5O12 Compounds as Anode Materials for Lithium‐Ion Batteries, ChemPhysChem, vol. 9, pp. 2104-2108, 2008.
[56]H. Ge, N. Li, D. Li, C. Dai, and D. Wang, Electrochemical characteristics of spinel Li4Ti5O12 discharged to 0.01 V, Electrochemistry communications, vol. 10, pp. 719-722, 2008.
[57]H. Liu, Z. Zhu, J. Huang, X. He, Y. Chen, R. Zhang, et al., Elucidating the Limit of Li Insertion into the Spinel Li4Ti5O12, ACS Materials Letters, vol. 1, pp. 96-102, 2019.
[58]C. Han, Y.-B. He, S. Wang, C. Wang, H. Du, X. Qin, et al., Large polarization of Li4Ti5O12 lithiated to 0 V at large charge/discharge rates, ACS applied materials & interfaces, vol. 8, pp. 18788-18796, 2016.
[59]R. N. Nasara and S.-k. Lin, Recent Developments in Using Computational Materials Design for High-Performance Li 4 Ti 5 O 12 Anode Material for Lithium-Ion Batteries, Multiscale Science and Engineering, vol. 1, no. 2, pp. 87-107, 2019.
[60]D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries, Journal of Power Sources, vol. 89, pp. 206-218, 2000.
[61]A. Jain, G. Hautier, C. J. Moore, S. P. Ong, C. C. Fischer, T. Mueller, et al., A high-throughput infrastructure for density functional theory calculations, Computational Materials Science, vol. 50, pp. 2295-2310, 2011.
[62]G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Physical Review B, vol. 47, p. 558, 1993.
[63]G. Kresse and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium, Physical Review B, vol. 49, p. 14251, 1994.
[64]G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational materials science, vol. 6, pp. 15-50, 1996.
[65]G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical review B, vol. 54, p. 11169, 1996.
[66]G. Kresse and J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements, Journal of Physics: Condensed Matter, vol. 6, p. 8245, 1994.
[67]K. Burke and L. O. Wagner, DFT in a nutshell, International Journal of Quantum Chemistry, vol. 113, pp. 96-101, 2013.
[68]W. Kohn, W. Kohn and LJ Sham, Phys. Rev. 140, A1133 (1965), Phys. Rev., vol. 140, p. A1133, 1965.
[69]J. P. Perdew, A. Ruzsinszky, J. Tao, V. N. Staroverov, G. E. Scuseria, and G. I. Csonka, Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits, The Journal of chemical physics, vol. 123, p. 062201, 2005.
[70]J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters, vol. 77, p. 3865, 1996.
[71]Z. Wu and R. E. Cohen, More accurate generalized gradient approximation for solids, Physical Review B, vol. 73, p. 235116, 2006.
[72]B. Hammer, L. B. Hansen, and J. K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Physical Review B, vol. 59, p. 7413, 1999.
[73]S. H. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of physics, vol. 58, pp. 1200-1211, 1980.
[74]M. Asadikiya, Y. Zhu, S. Gopalan, Y.-c. Chuang, P.-c. Tsai, R. N. Nasara, et al., Integrated investigation of the Li4Ti5O12 phase stability, Ionics, vol. 24, no. 3, pp707-713, 2018.
[75]P. Kichambare, N. Kijima, H. Honma, S. Ebisu, and S. Nagata, Suppression of superconductivity in Li (Ti1− xVx) 2O4, Journal of Physics and Chemistry of Solids, vol. 57, pp. 1615-1620, 1996.
[76]M. Chan and G. Ceder, Efficient band gap prediction for solids, Physical review letters, vol. 105, p. 196403, 2010.
[77]M. Raja, S. Mahanty, M. Kundu, and R. N. Basu, Synthesis of nanocrystalline Li 4 Ti 5 O 12 by a novel aqueous combustion technique, Journal of Alloys and Compounds, vol. 468, pp. 258-262, 2009.
[78]D. Kellerman, N. Mukhina, N. Zhuravlev, M. Valova, and V. Gorshkov, Optical absorption and nuclear magnetic resonance in lithium titanium spinel doped by chromium, Physics of the Solid State, vol. 52, pp. 459-464, 2010.
[79]Y.-R. Jhan and J.-G. Duh, Electrochemical performance and low discharge cut-off voltage behavior of ruthenium doped Li 4 Ti 5 O 12 with improved energy density, Electrochimica Acta, vol. 63, pp. 9-15, 2012.
[80]T. Kostlánová, J. Dědeček, and P. Krtil, The effect of the inner particle structure on the electronic structure of the nano-crystalline Li–Ti–O spinels, Electrochimica acta, vol. 52, pp. 1847-1856, 2007.
[81]Z. Ding, L. Zhao, L. Suo, Y. Jiao, S. Meng, Y.-S. Hu, et al., Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li 4 Ti 5 O 12 in lithium ion batteries: a combined experimental and theoretical study, Physical Chemistry Chemical Physics, vol. 13, pp. 15127-15133, 2011.
[82]Y. Shen, M. Søndergaard, M. Christensen, S. Birgisson, and B. B. Iversen, Solid state formation mechanism of Li4Ti5O12 from an anatase TiO2 source, Chemistry of Materials, vol. 26, pp. 3679-3686, 2014.
[83]H. Duan, J. Li, H. Du, S. W. Chiang, C. Xu, W. Duan, et al., Tailoring Native Defects and Zinc Impurities in Li4Ti5O12: Insights from First-Principles Study, The Journal of Physical Chemistry C, vol. 119, pp. 5238-5245, 2015.
[84]J. Ma, C. Wang, and S. Wroblewski, Kinetic characteristics of mixed conductive electrodes for lithium ion batteries, Journal of Power Sources, vol. 164, pp. 849-856, 2007.
[85]H. Jónsson, G. Mills, and K. W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, 1998.
[86]G. Henkelman, B. P. Uberuaga, and H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, The Journal of chemical physics, vol. 113, pp. 9901-9904, 2000.
[87]J. Bhattacharya and A. Van der Ven, Phase stability and nondilute Li diffusion in spinel Li 1+ x Ti 2 O 4, Physical Review B, vol. 81, p. 104304, 2010.
[88]H. H. H. Heenen, C. Scheurer, and K. Reuter, Implications of occupational disorder on ion mobility in Li4Ti5O12 battery materials, Nano Letters, vol. 17, no.6, pp3884-3888, 2017.
[89]M. G. Verde, L. Baggetto, N. Balke, G. M. Veith, J. K. Seo, Z. Wang, et al., Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale, ACS nano, vol. 10, pp. 4312-4321, 2016.
[90]M. Wilkening, W. Iwaniak, J. Heine, V. Epp, A. Kleinert, M. Behrens, et al., Microscopic Li self-diffusion parameters in the lithiated anode material Li 4+ x Ti 5 O 12 (0≤ x≤ 3) measured by 7 Li solid state NMR, Physical Chemistry Chemical Physics, vol. 9, pp. 6199-6202, 2007.
[91]M. Wagemaker, D. R. Simon, E. M. Kelder, J. Schoonman, C. Ringpfeil, U. Haake, et al., A Kinetic Two‐Phase and Equilibrium Solid Solution in Spinel Li4+ xTi5O12, Advanced Materials, vol. 18, pp. 3169-3173, 2006.
[92]H. Hain, M. Scheuermann, R. Heinzmann, L. Wünsche, H. Hahn, and S. Indris, Study of local structure and Li dynamics in Li4+ xTi5O12 (0≤ x≤ 5) using 6 Li and 7 Li NMR spectroscopy, Solid state nuclear magnetic resonance, vol. 42, pp. 9-16, 2012.
[93]A. Laumann, H. Boysen, M. Bremholm, K. T. Fehr, M. Hoelzel, and M. Holzapfel, Lithium migration at high temperatures in Li4Ti5O12 studied by neutron diffraction, Chemistry of Materials, vol. 23, pp. 2753-2759, 2011.
[94]W. Schmidt, P. Bottke, M. Sternad, P. Gollob, V. Hennige, and M. Wilkening, Small Change Great Effect: Steep Increase of Li Ion Dynamics in Li4Ti5O12 at the Early Stages of Chemical Li Insertion, Chemistry of Materials, vol. 27, pp. 1740-1750, 2015.
[95]T.-F. Yi, S.-Y. Yang, X.-Y. Li, J.-H. Yao, Y.-R. Zhu, and R.-S. Zhu, Sub-micrometric Li 4− x Na x Ti 5 O 12 (0≤ x≤ 0.2) spinel as anode material exhibiting high rate capability, Journal of power sources, vol. 246, pp. 505-511, 2014.
[96]C. Chen, J. Vaughey, A. Jansen, D. Dees, A. Kahaian, T. Goacher, et al., Studies of Mg-Substituted Li4− xMg x Ti5O12 Spinel Electrodes (0≤ x≤ 1) for Lithium Batteries, Journal of the Electrochemical Society, vol. 148, pp. A102-A104, 2001.
[97]Q. Zhang, C. Zhang, B. Li, S. Kang, X. Li, and Y. Wang, Preparation and electrochemical properties of Ca-doped Li 4 Ti 5 O 12 as anode materials in lithium-ion battery, Electrochimica Acta, vol. 98, pp. 146-152, 2013.
[98]H. Wu, S. Chang, X. Liu, L. Yu, G. Wang, D. Cao, et al., Sr-doped Li 4 Ti 5 O 12 as the anode material for lithium-ion batteries, Solid State Ionics, vol. 232, pp. 13-18, 2013.
[99]Z. Yu, X. Zhang, G. Yang, J. Liu, J. Wang, R. Wang, et al., High rate capability and long-term cyclability of Li 4 Ti 4.9 V 0.1 O 12 as anode material in lithium ion battery, Electrochimica Acta, vol. 56, pp. 8611-8617, 2011.
[100]Y.-J. Hao, Q.-Y. Lai, J.-Z. Lu, and X.-Y. Ji, Effects of dopant on the electrochemical properties of Li4Ti5O12 anode materials, Ionics, vol. 13, pp. 369-373, 2007.
[101]W. Long, X. Wang, S. Yang, H. Shu, Q. Wu, Y. Bai, et al., Electrochemical properties of Li 4 Ti 5− 2x Ni x Mn x O 12 compounds synthesized by sol–gel process, Materials Chemistry and Physics, vol. 131, pp. 431-435, 2011.
[102]X. Li, M. Qu, and Z. Yu, Structural and electrochemical performances of Li 4 Ti 5− x Zr x O 12 as anode material for lithium-ion batteries, Journal of Alloys and Compounds, vol. 487, pp. L12-L17, 2009.
[103]B. Tian, H. Xiang, L. Zhang, Z. Li, and H. Wang, Niobium doped lithium titanate as a high rate anode material for Li-ion batteries, Electrochimica Acta, vol. 55, pp. 5453-5458, 2010.
[104]Z. Zhong, Synthesis of Mo4+ Substituted Spinel Li4Ti5− x Mo x O12, Electrochemical and Solid-State Letters, vol. 10, pp. A267-A269, 2007.
[105]J. Gao, C. Jiang, and C. Wan, Synthesis and characterization of spherical La-doped nanocrystalline Li4Ti5O12/C compound for lithium-ion batteries, Journal of The Electrochemical Society, vol. 157, pp. K39-K42, 2010.
[106]Y.-R. Jhan, C.-Y. Lin, and J.-G. Duh, Preparation and characterization of ruthenium doped Li 4 Ti 5 O 12 anode material for the enhancement of rate capability and cyclic stability, Materials Letters, vol. 65, pp. 2502-2505, 2011.
[107]S. Huang, Z. Wen, Z. Gu, and X. Zhu, Preparation and cycling performance of Al 3+ and F− co-substituted compounds Li 4 Al x Ti 5− x F y O 12− y, Electrochimica Acta, vol. 50, pp. 4057-4062, 2005.
[108]G. Du, N. Sharma, V. K. Peterson, J. A. Kimpton, D. Jia, and Z. Guo, Br‐Doped Li4Ti5O12 and Composite TiO2 Anodes for Li‐ion Batteries: Synchrotron X‐Ray and in situ Neutron Diffraction Studies, Advanced Functional Materials, vol. 21, pp. 3990-3997, 2011.
[109]P. Lu, X. Huang, Y. Ren, J. Ding, H. Wang, S. Zhou, et al., Na+ and Zr 4+ co-doped Li 4 Ti 5 O 12 as anode materials with superior electrochemical performance for lithium ion batteries, Rsc Advances, vol. 6, pp. 90455-90461, 2016.
[110]F. Zhao, P. Xue, H. Ge, L. Li, and B. Wang, Na-Doped Li4Ti5O12 as an Anode Material for Sodium-Ion Battery with Superior Rate and Cycling Performance, Journal of The Electrochemical Society, vol. 163, pp. A690-A695, 2016.
[111]Z. Liu, L. Sun, W. Yang, J. Yang, S. Han, D. Chen, et al., The synergic effects of Na and K co-doping on the crystal structure and electrochemical properties of Li4Ti5O12 as anode material for lithium ion battery, Solid State Sciences, vol. 44, pp. 39-44, 2015.
[112]H. Cho, H. Son, D. Kim, M. Lee, S. Boateng, H. Han, et al., Impact of Mg-Doping Site Control in the Performance of Li4Ti5O12 Li-Ion Battery Anode: First-Principles Predictions and Experimental Verifications, The Journal of Physical Chemistry C, vol. 121, pp. 14994-15001, 2017.
[113]Z. Yang, J. Wang, Q. Zhang, D. Xiao, B. Xu, A. Zhang, et al., Doping the Li4Ti5O12 lattice with extra-large anions, Materials Express, vol. 5, pp. 457-462, 2015.
[114]Q. Zhang, H. Lu, H. Zhong, X. Yan, C. Ouyang, and L. Zhang, W 6+ & Br− codoped Li 4 Ti 5 O 12 anode with super rate performance for Li-ion batteries, Journal of Materials Chemistry A, vol. 3, pp. 13706-13716, 2015.
[115]K. Song, D.-H. Seo, M. R. Jo, Y.-I. Kim, K. Kang, and Y.-M. Kang, Tailored oxygen framework of Li4Ti5O12 nanorods for high-power Li ion battery, The journal of physical chemistry letters, vol. 5, pp. 1368-1373, 2014.
[116]J. Qiu, C. Lai, E. Gray, S. Li, S. Qiu, E. Strounina, et al., Blue hydrogenated lithium titanate as a high-rate anode material for lithium-ion batteries, Journal of Materials Chemistry A, vol. 2, pp. 6353-6358, 2014.
[117]Q. Zhang and X. Li, Recent developments in the doped-Li4Ti5O12 anode materials of lithium-ion batteries for improving the rate capability, Int J Electrochem Sci, vol. 8, pp. 6449-6456, 2013.
[118]S. Ji, J. Zhang, W. Wang, Y. Huang, Z. Feng, Z. Zhang, et al., Preparation and effects of Mg-doping on the electrochemical properties of spinel Li4Ti5O12 as anode material for lithium ion battery, Materials chemistry and physics, vol. 123, pp. 510-515, 2010.
[119]Q. Zhang, C. Zhang, B. Li, S. Kang, X. Li, and Y. Wang, Preparation and electrochemical properties of Ca-doped Li4Ti5O12 as anode materials in lithium-ion battery, Electrochimica Acta, vol. 98, pp. 146-152, 2013.
[120]H. Wu, S. Chang, X. Liu, L. Yu, G. Wang, D. Cao, et al., Sr-doped Li4Ti5O12 as the anode material for lithium-ion batteries, Solid State Ionics, vol. 232, pp. 13-18, 2013.
[121]B.-h. Choi, D.-j. Lee, M.-j. Ji, Y.-J. Kwon, and S.-T. Park, Study of the Electrochemical Properties of Li 4 Ti 5 O 12 Doped with Ba and Sr Anodes for Lithium-Ion Secondary Batteries, Journal of the Korean Ceramic Society, vol. 47, pp. 638-642, 2010.
[122]H. Zhao, Y. Li, Z. Zhu, J. Lin, Z. Tian, and R. Wang, Structural and electrochemical characteristics of Li4− xAlxTi5O12 as anode material for lithium-ion batteries, Electrochimica Acta, vol. 53, pp. 7079-7083, 2008.
[123]Y. Ma, B. Ding, G. Ji, and J. Y. Lee, Carbon-encapsulated F-doped Li4Ti5O12 as a high rate anode material for Li+ batteries, Acs Nano, vol. 7, pp. 10870-10878, 2013.
[124]L. Zhao, Y. S. Hu, H. Li, Z. Wang, and L. Chen, Porous Li4Ti5O12 coated with N‐doped carbon from ionic liquids for Li‐ion batteries, Advanced Materials, vol. 23, pp. 1385-1388, 2011.
[125]P.-C. Tsai, B. Wen, M. Wolfman, M.-J. Choe, M. S. Pan, L. Su, et al., Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries, Energy & Environmental Science, vol. 11, pp. 860-871, 2018.
[126]S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, et al., Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis, Computational Materials Science, vol. 68, pp. 314-319, 2013.
[127]P. Canepa, J. A. Dawson, G. Sai Gautam, J. M. Statham, S. C. Parker, and M. S. Islam, Particle morphology and lithium segregation to surfaces of the Li7La3Zr2O12 solid electrolyte, Chemistry of Materials, vol. 30, pp. 3019-3027, 2018.
[128]Z. Lu and F. Ciucci, Anti-perovskite cathodes for lithium batteries, Journal of Materials Chemistry A, vol. 6, pp. 5185-5192, 2018.
[129]S. P. Ong, L. Wang, B. Kang, and G. Ceder, Li− Fe− P− O2 phase diagram from first principles calculations, Chemistry of Materials, vol. 20, pp. 1798-1807, 2008.
[130]S. P. Ong, A. Jain, G. Hautier, B. Kang, and G. Ceder, Thermal stabilities of delithiated olivine MPO4 (M= Fe, Mn) cathodes investigated using first principles calculations, Electrochemistry Communications, vol. 12, pp. 427-430, 2010.
[131]K. S. Exner, Constrained Ab Initio Thermodynamics: Transferring the Concept of Surface Pourbaix Diagrams in Electrocatalysis to Electrode Materials in Lithium‐Ion Batteries, ChemElectroChem, vol. 4, pp. 3231-3237, 2017.
[132]M. Smart, B. Ratnakumar, and S. Surampudi, Electrolytes for Low‐Temperature Lithium Batteries Based on Ternary Mixtures of Aliphatic Carbonates, Journal of the Electrochemical Society, vol. 146, pp. 486-492, 1999.
[133]S. Herreyre, O. Huchet, S. Barusseau, F. Perton, J. Bodet, and P. Biensan, New Li-ion electrolytes for low temperature applications, Journal of power sources, vol. 97, pp. 576-580, 2001.
[134]K. Xu, Tailoring electrolyte composition for LiBOB, Journal of The Electrochemical Society, vol. 155, pp. A733-A738, 2008.
[135]T. Abe, F. Sagane, M. Ohtsuka, Y. Iriyama, and Z. Ogumi, Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte-A key to enhancing the rate capability of lithium-ion batteries, Journal of The Electrochemical Society, vol. 152, pp. A2151-A2154, 2005.
[136]T. Abe, H. Fukuda, Y. Iriyama, and Z. Ogumi, Solvated Li-ion transfer at interface between graphite and electrolyte, Journal of The Electrochemical Society, vol. 151, pp. A1120-A1123, 2004.
[137]E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications: John Wiley & Sons, 2018.
[138]J. Shu, Study of the interface between Li4Ti5O12 electrodes and standard electrolyte solutions in 0.0–5.0 V, Electrochemical and Solid-State Letters, vol. 11, pp. A238-A240, 2008.
[139]Y. H. Rho and K. Kanamura, Preparation of Li4/3Ti5/3 O 4 Thin Film Electrodes by a PVP Sol-Gel Coating Method and Their Electrochemical Properties, Journal of The Electrochemical Society, vol. 151, pp. A106-A110, 2004.
[140]P. E. Blöchl, Projector augmented-wave method, Physical Review B, vol. 50, p. 17953, 1994.
[141]M. Asadikiya, Y. Zhu, S. Gopalan, Y.-c. Chuang, P.-c. Tsai, R. N. Nasara, et al., Integrated investigation of the Li 4 Ti 5 O 12 phase stability, Ionics, vol. 24, pp. 707-713, 2018.
[142]K. Hoang and M. Johannes, Tailoring native defects in LiFePO4: insights from first-principles calculations, Chemistry of Materials, vol. 23, pp. 3003-3013, 2011.
[143]S. Yuan and U. Pal, Analytic Solution for Charge Transport and Chemical‐Potential Variation in Single‐Layer and Multilayer Devices of Different Mixed‐Conducting Oxides, Journal of the Electrochemical Society, vol. 143, pp. 3214-3222, 1996.
[144]W. Shao, N. Xie, L. Zhen, and L. Feng, Conductivity critical exponents lower than the universal value in continuum percolation systems, Journal of Physics: Condensed Matter, vol. 20, p. 395235, 2008.
[145]S. Scharner, W. Weppner, and P. Schmid‐Beurmann, Evidence of Two‐Phase Formation upon Lithium Insertion into the Li1. 33Ti1. 67 O 4 Spinel, Journal of the Electrochemical Society, vol. 146, pp. 857-861, 1999.
[146]L. Wang, T. Maxisch, and G. Ceder, Oxidation energies of transition metal oxides within the GGA+ U framework, Physical Review B, vol. 73, p. 195107, 2006.
[147]C. Xiao, Y. Ding, J. Zhang, X. Su, G. Li, X. Gao, et al., Li4− xNaxTi5O12 with low operation potential as anode for lithium ion batteries, Journal of Power Sources, vol. 248, pp. 323-329, 2014.
[148]C. Chen, J. Vaughey, A. N. Jansen, D. Dees, A. Kahaian, T. Goacher, et al., Studies of Mg-Substituted Li4− xMg x Ti5O12 Spinel Electrodes (0≤ x≤ 1) for Lithium Batteries, Journal of the Electrochemical Society, vol. 148, pp. A102-A104, 2001.
[149]S. Huang, Z. Wen, X. Zhu, and Z. Lin, Preparation and Electrochemical Performance of Spinel-Type Compounds Li4Al y Ti5− y O 12 (y= 0, 0.10, 0.15, 0.25), Journal of The Electrochemical Society, vol. 152, pp. A186-A190, 2005.
[150]Y. Liu, G. Liu, H. Xu, Y. Zheng, Y. Huang, S. Li, et al., Low-Temperature Synthesized Li4Mn5O12-Like Cathode with Hybrid Cation-and Anion-Redox Capacities, Chemical Communications, vol. 55, pp 8118-8121 2019.
[151]Y. Song, X. Zhao, C. Wang, H. Bi, J. Zhang, S. Li, et al., Insight into the atomic structure of Li 2 MnO 3 in Li-rich Mn-based cathode materials and the impact of its atomic arrangement on electrochemical performance, Journal of Materials Chemistry A, vol. 5, pp. 11214-11223, 2017.
[152]T.-F. Yi, S.-Y. Yang, and Y. Xie, Recent advances of Li 4 Ti 5 O 12 as a promising next generation anode material for high power lithium-ion batteries, Journal of Materials Chemistry A, vol. 3, pp. 5750-5777, 2015.
[153]F. Schipper, E. M. Erickson, C. Erk, J.-Y. Shin, F. F. Chesneau, and D. Aurbach, Recent advances and remaining challenges for lithium ion battery cathodes I. Nickel-Rich, LiNixCoyMnzO2, Journal of The Electrochemical Society, vol. 164, pp. A6220-A6228, 2017.
[154]P.-c. Tsai, R. N. Nasara, Y.-c. Shen, C.-c. Liang, Y.-w. Chang, W.-D. Hsu, et al., Ab initio phase stability and electronic conductivity of the doped-Li4Ti5O12 anode for Li-ion batteries, Acta Materialia, vol. 175, pp. 196-205, 2019.
[155]L. Shen, E. Uchaker, X. Zhang, and G. Cao, Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries, Advanced Materials, vol. 24, pp. 6502-6506, 2012.
[156]L. Yu, H. B. Wu, and X. W. Lou, Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability, Advanced materials, vol. 25, pp. 2296-2300, 2013.
[157]C. Jiang, M. Ichihara, I. Honma, and H. Zhou, Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode, Electrochimica Acta, vol. 52, pp. 6470-6475, 2007.
[158]H. Song, S.-W. Yun, H.-H. Chun, M.-G. Kim, K. Y. Chung, H. S. Kim, et al., Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li 4 Ti 5 O 12 negative-electrode materials for high-rate Li-ion batteries, Energy & Environmental Science, vol. 5, pp. 9903-9913, 2012.
[159]C.-W. Chang-Jian, B.-C. Ho, C.-K. Chung, J.-A. Chou, C.-L. Chung, J.-H. Huang, et al., Doping and surface modification enhance the applicability of Li4Ti5O12 microspheres as high-rate anode materials for lithium ion batteries, Ceramics International, vol. 44, pp. 23063-23072, 2018.
[160]M. Poirier and C. Sapundzhiev, Catalytic decomposition of natural gas to hydrogen for fuel cell applications, International journal of hydrogen energy, vol. 22, pp. 429-433, 1997.
[161]W. Wang, B. Jiang, W. Xiong, Z. Wang, and S. Jiao, A nanoparticle Mg-doped Li4Ti5O12 for high rate lithium-ion batteries, Electrochimica acta, vol. 114, pp. 198-204, 2013.
[162]Y. Ishihara, K. Miyazaki, T. Fukutsuka, and T. Abe, Lithium-ion transfer at the interface between high potential negative electrodes and ionic liquids, Journal of The Electrochemical Society, vol. 161, pp. A1939-A1942, 2014.
[163]T.-F. Yi, Y. Xie, Q. Wu, H. Liu, L. Jiang, M. Ye, et al., High rate cycling performance of lanthanum-modified Li4Ti5O12 anode materials for lithium-ion batteries, Journal of Power Sources, vol. 214, pp. 220-226, 2012.
[164]P. Bueno and E. Leite, Nanostructured Li ion insertion electrodes. 1. Discussion on fast transport and short path for ion diffusion, The Journal of Physical Chemistry B, vol. 107, pp. 8868-8877, 2003.
[165]Y. Yamada, F. Sagane, Y. Iriyama, T. Abe, and Z. Ogumi, Kinetics of lithium-ion transfer at the interface between Li0. 35La0. 55TiO3 and binary electrolytes, The Journal of Physical Chemistry C, vol. 113, pp. 14528-14532, 2009.
[166]Y. Yamada, Y. Iriyama, T. Abe, and Z. Ogumi, Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film, Langmuir, vol. 25, pp. 12766-12770, 2009.
[167]I. Yamada, Y. Iriyama, T. Abe, and Z. Ogumi, Lithium-ion transfer on a LixCoO2 thin film electrode prepared by pulsed laser deposition—Effect of orientation, Journal of Power Sources, vol. 172, pp. 933-937, 2007.
[168]M. Gaberšček, A method for fast estimation of the rate-limiting step in lithium-ion batteries, Acta Chimica Slovenica, vol. 61, pp. 480-487, 2014.
[169]Y. H. Rho and K. Kanamura, Li+ ion diffusion in Li4Ti5O12 thin film electrode prepared by PVP sol–gel method, Journal of Solid State Chemistry, vol. 177, pp. 2094-2100, 2004.
[170]R. Cabanel, G. Barral, J.-P. Diard, B. Le Gorrec, and C. Montella, Determination of the diffusion coefficient of an inserted species by impedance spectroscopy: application to the H/H x Nb 2 O 5 system, Journal of applied electrochemistry, vol. 23, pp. 93-97, 1993.
[171]D. V. Pelegov, R. N. Nasara, C.-h. Tu, and S.-k. Lin, Defects in Li 4 Ti 5 O 12 induced by carbon deposition: an analysis of unidentified bands in Raman spectra, Physical Chemistry Chemical Physics, vol. 21, pp. 20757-20763, 2019.
[172]A. Ferrari, S. Rodil, and J. Robertson, Interpretation of infrared and Raman spectra of amorphous carbon nitrides, Physical Review B, vol. 67, p. 155306, 2003.
[173]J.-W. Kim and H.-G. Lee, Thermal and carbothermic decomposition of Na 2 CO 3 and Li 2 CO 3, Metallurgical and materials transactions B, vol. 32, pp. 17-24, 2001.
[174]J. Liu, M. Shao, X. Chen, W. Yu, X. Liu, and Y. Qian, Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process, Journal of the American Chemical Society, vol. 125, pp. 8088-8089, 2003.
[175]S. C. Wang, Nanocomposites of Single-walled Carbon Nanotubes: ProQuest, 2007.
[176]B. Satishkumar, A. Govindaraj, R. Sen, and C. Rao, Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures, Chemical Physics Letters, vol. 293, pp. 47-52, 1998.
[177]H. Cheng, F. Li, G. Su, H. Pan, L. He, X. Sun, et al., Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons, Applied Physics Letters, vol. 72, pp. 3282-3284, 1998.
[178]B. Qiu, M. Zhang, L. Wu, J. Wang, Y. Xia, D. Qian, et al., Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries, Nature Communications, vol. 7, 2016.
[179]X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, et al., Hydrogenated TiO2 nanotube arrays for supercapacitors, Nano letters, vol. 12, pp. 1690-1696, 2012.
[180]A. Orliukas, K.-Z. Fung, V. Venckutė, V. Kazlauskienė, J. Miškinis, and M. Lelis, Structure, surface and broadband impedance spectroscopy of Li 4 Ti 5 O 12 based ceramics with Nb and Ta, Solid State Ionics, vol. 271, pp. 34-41, 2015.
[181]W. L. Hoffeditz, M. J. Katz, P. Deria, A. B. Martinson, M. J. Pellin, O. K. Farha, et al., High-Surface-Area Architectures for Improved Charge Transfer Kinetics at the Dark Electrode in Dye-Sensitized Solar Cells, ACS applied materials & interfaces, vol. 6, pp. 8646-8650, 2014.
[182]J. Wang, H. Zhao, Z. Li, Y. Wen, Q. Xia, Y. Zhang, et al., Revealing Rate Limitations in Nanocrystalline Li4Ti5O12 Anodes for High-Power Lithium Ion Batteries, Advanced Materials Interfaces, vol. 3, no. 13, 1600003, 2016.
[183]H. Song, T.-G. Jeong, Y. H. Moon, H.-H. Chun, K. Y. Chung, H. S. Kim, et al., Stabilization of Oxygen-deficient Structure for Conducting Li4Ti5O12-[dgr] by Molybdenum Doping in a Reducing Atmosphere, Scientific reports, vol. 4, 2014.
[184]S. H. Park, J. Winnick, and P. A. Kohl, Investigation of the lithium couple on Pt, Al, and Hg electrodes in lithium imide-ethyl methyl sulfone, Journal of The Electrochemical Society, vol. 149, pp. A1196-A1200, 2002.
[185]Q. Zhang, M. G. Verde, J. K. Seo, X. Li, and Y. S. Meng, Structural and electrochemical properties of Gd-doped Li4Ti5O12 as anode material with improved rate capability for lithium-ion batteries, Journal of Power Sources, vol. 280, pp. 355-362, 2015.
[186]S. Wang, K. Yang, F. Gao, D. Wang, and C. Shen, Direct visualization of solid electrolyte interphase on Li 4 Ti 5 O 12 by in situ AFM, RSC Advances, vol. 6, pp. 77105-77110, 2016.
[187]T. R. Jow, S. A. Delp, J. L. Allen, J.-P. Jones, and M. C. Smart, Factors Limiting Li+ Charge Transfer Kinetics in Li-Ion Batteries, Journal of The Electrochemical Society, vol. 165, pp. A361-A367, 2018.
[188]V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching, et al., Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes, Langmuir, vol. 28, pp. 965-976, 2011.
[189]K. Schroder, J. Alvarado, T. A. Yersak, J. Li, N. Dudney, L. J. Webb, et al., The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes, Chemistry of Materials, vol. 27, pp. 5531-5542, 2015.
[190]E. Markevich, G. Salitra, and D. Aurbach, Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries, ACS Energy Letters, vol. 2, pp. 1337-1345, 2017.
[191]T. R. Jow, M. B. Marx, and J. L. Allen, Distinguishing Li+ charge transfer kinetics at NCA/electrolyte and graphite/electrolyte interfaces, and NCA/electrolyte and LFP/electrolyte interfaces in Li-ion cells, Journal of The Electrochemical Society, vol. 159, pp. A604-A612, 2012.
[192]R. R. Gagne, C. A. Koval, and G. C. Lisensky, Ferrocene as an internal standard for electrochemical measurements, Inorganic Chemistry, vol. 19, pp. 2854-2855, 1980.
[193]J.-i. Inamoto, T. Fukutsuka, K. Miyazaki, and T. Abe, Investigation of the surface state of LiCoO2 thin-film electrodes using a redox reaction of ferrocene, Journal of The Electrochemical Society, vol. 164, pp. A555-A559, 2017.
[194]F. Möllers and R. Memming, Electrochemical studies of semiconducting SnO2‐electrodes, Berichte der Bunsengesellschaft für physikalische Chemie, vol. 76, pp. 469-475, 1972.
[195]M. Tang, K. Miyazaki, T. Abe, and J. Newman, Effect of graphite orientation and lithium salt on electronic passivation of highly oriented pyrolytic graphite, Journal of The Electrochemical Society, vol. 159, p. A634, 2012.
[196]J. Maier, Battery materials: why defect chemistry?, Journal of The Electrochemical Society, vol. 162, p. A2380, 2015.
[197]E. Uchaker and G. Cao, The Role of Intentionally Introduced Defects on Electrode Materials for Alkali‐Ion Batteries, Chemistry–An Asian Journal, vol. 10, pp. 1608-1617, 2015.
[198]R. N. Nasara and S.-k. Lin, Recent Developments in Using Computational Materials Design for High-Performance Li 4 Ti 5 O 12 Anode Material for Lithium-Ion Batteries, Multiscale Science and Engineering, vol. 1, pp. 87-107, 2019.
[199]F. Dogan, B. R. Long, J. R. Croy, K. G. Gallagher, H. Iddir, J. T. Russell, et al., Re-entrant lithium local environments and defect driven electrochemistry of Li-and Mn-rich Li-ion battery cathodes, Journal of the American Chemical Society, vol. 137, pp. 2328-2335, 2015.
[200]Y. Kim, Point defects in layer-structured cathode materials for lithium-ion batteries, The Journal of Physical Chemistry C, vol. 120, pp. 4173-4182, 2016.
[201]D. Xiong, L. Ellis, J. Li, H. Li, T. Hynes, J. Allen, et al., Measuring Oxygen Release from Delithiated LiNixMnyCo1-x-yO2 and Its Effects on the Performance of High Voltage Li-Ion Cells, Journal of The Electrochemical Society, vol. 164, p. A3025, 2017.
[202]S. Kuppan, A. K. Shukla, D. Membreno, D. Nordlund, and G. Chen, Revealing Anisotropic Spinel Formation on Pristine Li‐and Mn‐Rich Layered Oxide Surface and Its Impact on Cathode Performance, Advanced Energy Materials, vol. 7, p. 1602010, 2017.
[203]C. Julien, A. Mauger, A. Ait-Salah, M. Massot, F. Gendron, and K. Zaghib, Nanoscopic scale studies of LiFePO 4 as cathode material in lithium-ion batteries for HEV application, Ionics, vol. 13, pp. 395-411, 2007.
[204]J. Maier and R. Amin, Defect chemistry of LiFePO4, Journal of The Electrochemical Society, vol. 155, p. A339, 2008.
[205]B. Kang and G. Ceder, Battery materials for ultrafast charging and discharging, Nature, vol. 458, pp. 190-193, 2009.
[206]P. Axmann, C. Stinner, M. Wohlfahrt-Mehrens, A. Mauger, F. Gendron, and C. Julien, Nonstoichiometric LiFePO4: defects and related properties, Chemistry of Materials, vol. 21, pp. 1636-1644, 2009.
[207]J. Liu, R. Jiang, X. Wang, T. Huang, and A. Yu, The defect chemistry of LiFePO4 prepared by hydrothermal method at different pH values, Journal of Power Sources, vol. 194, pp. 536-540, 2009.
[208]Y. Liu, J. Wang, J. Liu, M. N. Banis, B. Xiao, A. Lushington, et al., Origin of phase inhomogeneity in lithium iron phosphate during carbon coating, Nano Energy, vol. 45, pp. 52-60, 2018.
[209]Y. Idemoto, H. Narai, and N. Koura, Crystal structure and cathode performance dependence on oxygen content of LiMn1. 5Ni0. 5O4 as a cathode material for secondary lithium batteries, Journal of power sources, vol. 119, pp. 125-129, 2003.
[210]P. Singh, A. Sil, M. Nath, and S. Ray, Phase Stability and Charge Capacity of Cubic Spinel in Li1+ δ Mn2− δ O4 and Consequence of Magnesium Doping, Journal of the Electrochemical Society, vol. 157, p. A259, 2010.
[211]R. Huang, Y. H. Ikuhara, T. Mizoguchi, S. D. Findlay, A. Kuwabara, C. A. Fisher, et al., Oxygen‐Vacancy Ordering at Surfaces of Lithium Manganese (III, IV) Oxide Spinel Nanoparticles, Angewandte Chemie, vol. 123, pp. 3109-3113, 2011.
[212]J. Song, D. W. Shin, Y. Lu, C. D. Amos, A. Manthiram, and J. B. Goodenough, Role of Oxygen Vacancies on the Performance of Li [Ni0. 5–x Mn1. 5+ x] O4 (x= 0, 0.05, and 0.08) Spinel Cathodes for Lithium-Ion Batteries, Chemistry of Materials, vol. 24, pp. 3101-3109, 2012.
[213]K. Hoang, Understanding the electronic and ionic conduction and lithium over-stoichiometry in LiMn 2 O 4 spinel, Journal of Materials Chemistry A, vol. 2, pp. 18271-18280, 2014.
[214]X. Hao, X. Lin, W. Lu, and B. M. Bartlett, Oxygen vacancies lead to loss of domain order, particle fracture, and rapid capacity fade in lithium manganospinel (LiMn2O4) batteries, ACS applied materials & interfaces, vol. 6, pp. 10849-10857, 2014.
[215]R. A. Rodríguez, E. L. Pérez-Cappe, Y. M. Laffita, A. C. Ardanza, J. S. Salazar, M. Á. Santos, et al., Structural defects in LiMn2O4 induced by gamma radiation and its influence on the Jahn-Teller effect, Solid State Ionics, vol. 324, pp. 77-86, 2018.
[216]J. Wolfenstine, U. Lee, and J. Allen, Electrical conductivity and rate-capability of Li 4 Ti 5 O 12 as a function of heat-treatment atmosphere, Journal of Power Sources, vol. 154, pp. 287-289, 2006.
[217]D. Yoshikawa, Y. Kadoma, J.-M. Kim, K. Ui, N. Kumagai, N. Kitamura, et al., Spray-drying synthesized lithium-excess Li4+ xTi5− xO12− δ and its electrochemical property as negative electrode material for Li-ion batteries, Electrochimica acta, vol. 55, pp. 1872-1879, 2010.
[218]Y.-M. Jiang, K.-X. Wang, H.-J. Zhang, J.-F. Wang, and J.-S. Chen, Hierarchical Li 4 Ti 5 O 12/TiO 2 composite tubes with regular structural imperfection for lithium ion storage, Scientific reports, vol. 3, pp. 1-5, 2013.
[219]Y. Liu, R. Xiao, Y. Fang, and P. Zhang, Three-dimensional oxygen-deficient Li4Ti5O12 nanospheres as high-performance anode for lithium ion batteries, Electrochimica Acta, vol. 211, pp. 1041-1047, 2016.
[220]Q. Guo, X. Cheng, Y. Shi, Z. Sheng, and C. Chang, Bluish Li4Ti5O12 with enhanced rate performance, Journal of Alloys and Compounds, vol. 710, pp. 383-392, 2017.
[221]Maradudin, A. A. Theoretical and experimental aspects of the effects of point defects and disorder on the vibrations of crystals—1. Solid state physics, vol. 18, pp 273-420, 1966
[222]M. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. Cancado, A. Jorio, and R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Physical chemistry chemical physics, vol. 9, pp. 1276-1290, 2007.
[223]I. Leonidov, O. Leonidova, L. Perelyaeva, R. Samigullina, S. Kovyazina, and M. Patrakeev, Structure, ionic conduction, and phase transformations in lithium titanate Li 4 Ti 5 O 12, Physics of the Solid State, vol. 45, pp. 2183-2188, 2003.
[224]L. Aldon, P. Kubiak, M. Womes, J. Jumas, J. Olivier-Fourcade, J. Tirado, et al., Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel, Chemistry of materials, vol. 16, pp. 5721-5725, 2004.
[225]C. Julien and K. Zaghib, Electrochemistry and local structure of nano-sized Li4/3Me5/3O4 (MeMn, Ti) spinels, Electrochimica acta, vol. 50, pp. 411-416, 2004.
[226]C. M. Burba, J. M. Palmer, and B. S. Holinsworth, Laser‐induced phase changes in olivine FePO4: a warning on characterizing LiFePO4‐based cathodes with Raman spectroscopy, Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, vol. 40, pp. 225-228, 2009.
[227]P. Galinetto, M. C. Mozzati, M. S. Grandi, M. Bini, D. Capsoni, S. Ferrari, et al., Phase stability and homogeneity in undoped and Mn‐doped LiFePO4 under laser heating, Journal of Raman Spectroscopy, vol. 41, pp. 1276-1282, 2010.
[228]Y. Bai, Y. Yin, J. Yang, C. Qing, and W. Zhang, Raman study of pure, C‐coated and Co‐doped LiFePO4: thermal effect and phase stability upon laser heating, Journal of Raman Spectroscopy, vol. 42, pp. 831-838, 2011.
[229]D. V. Pelegov, B. N. Slautin, V. S. Gorshkov, P. S. Zelenovskiy, E. A. Kiselev, A. L. Kholkin, et al., Raman spectroscopy,“big data, and local heterogeneity of solid state synthesized lithium titanate, Journal of Power Sources, vol. 346, pp. 143-150, 2017.
[230]X. Zhou, T. Pu, G. Yang, W. Ma, B. Yang, and Y. Dai, Origin and Effect of Oxygen Defect in Li4Ti5O12 Prepared with Carbon Source, Journal of The Electrochemical Society, vol. 166, p. A448, 2019.
[231]D. V. Pelegov, A. A. Koshkina, B. N. Slautin, and V. S. Gorshkov, Statistical Raman spectroscopy characterization of carbon additive in low‐C composites: Toward industrial quality control, Journal of Raman Spectroscopy, vol. 50, pp. 1015-1026, 2019.
[232]H.-G. Jung, S.-T. Myung, C. S. Yoon, S.-B. Son, K. H. Oh, K. Amine, et al., Microscale spherical carbon-coated Li 4 Ti 5 O 12 as ultra high power anode material for lithium batteries, Energy & Environmental Science, vol. 4, pp. 1345-1351, 2011.
[233]S. Dong, X. Wang, L. Shen, H. Li, J. Wang, P. Nie, et al., Trivalent Ti self-doped Li4Ti5O12: a high performance anode material for lithium-ion capacitors, Journal of Electroanalytical Chemistry, vol. 757, pp. 1-7, 2015.
[234]D. V. Pelegov, A. A. Koshkina, V. I. Pryakhina, and V. S. Gorshkov, Efficiency threshold of carbon layer growth in Li4Ti5O12/C composites, Journal of The Electrochemical Society, vol. 166, p. A5019, 2018.
[235]L. Liu, Z. Chen, J. Wang, D. Zhang, Y. Zhu, S. Ling, et al., Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution, Nature chemistry, vol. 11, pp. 622-628, 2019.
[236]A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima, Direct evidence for atomic defects in graphene layers, Nature, vol. 430, pp. 870-873, 2004.
[237]C. Julien, M. Massot, and K. Zaghib, Structural studies of Li4/3Me5/3O4 (Me= Ti, Mn) electrode materials: local structure and electrochemical aspects, Journal of power sources, vol. 136, pp. 72-79, 2004.
[238]Y.-R. Zhu, J. Yuan, M. Zhu, G. Hao, T.-F. Yi, and Y. Xie, Improved electrochemical properties of Li4Ti5O12–Li0. 33La0. 56TiO3 composite anodes prepared by a solid-state synthesis, Journal of alloys and compounds, vol. 646, pp. 612-619, 2015.
[239]K. Mukai and Y. Kato, Role of oxide ions in thermally activated lithium diffusion of Li [Li1/3Ti5/3] O4: X-ray diffraction measurements and raman spectroscopy, The Journal of Physical Chemistry C, vol. 119, pp. 10273-10281, 2015.
[240]H. Zou, X. Liang, X. Feng, and H. Xiang, Chromium-modified Li4Ti5O12 with a synergistic effect of bulk doping, surface coating, and size reducing, ACS applied materials & interfaces, vol. 8, pp. 21407-21416, 2016.
[241]K. Mukai, Y. Kato, and H. Nakano, Understanding the zero-strain lithium insertion scheme of Li [Li1/3Ti5/3] O4: structural changes at atomic scale clarified by Raman spectroscopy, The Journal of Physical Chemistry C, vol. 118, pp. 2992-2999, 2014.
[242]D. V. Pelegov, B. N. Slautin, P. S. Zelenovskiy, D. K. Kuznetsov, E. A. Kiselev, D. O. Alikin, et al., Single particle structure characterization of solid‐state synthesized Li4Ti5O12, Journal of Raman Spectroscopy, vol. 48, pp. 278-283, 2017.
[243]D. Kellerman, V. Gorshkov, E. Shalaeva, B. Tsaryev, and E. Vovkotrub, Structure peculiarities of carbon-coated lithium titanate: Raman spectroscopy and electron microscopic study, Solid state sciences, vol. 14, pp. 72-79, 2012.
[244]M. Michalska, M. Krajewski, D. Ziolkowska, B. Hamankiewicz, M. Andrzejczuk, L. Lipinska, et al., Influence of milling time in solid-state synthesis on structure, morphology and electrochemical properties of Li4Ti5O12 of spinel structure, Powder technology, vol. 266, pp. 372-377, 2014.
[245]M. Zukalová, B. P. Lásková, M. Klementová, and L. Kavan, Na insertion into nanocrystalline Li4Ti5O12 spinel: An electrochemical study, Electrochimica Acta, vol. 245, pp. 505-511, 2017.
[246]A. Knyazev, N. Smirnova, M. Mączka, S. Knyazeva, and I. Letyanina, Thermodynamic and spectroscopic properties of spinel with the formula Li4/3Ti5/3O4, Thermochimica Acta, vol. 559, pp. 40-45, 2013.
[247]E. Proskuryakova, O. Kondratov, N. Porotnikov, and K. Petrov, Vibrational-spectra of lithium titanate with a spindle structure, Zhurnal Neorganicheskoi Khimii, vol. 28, pp. 1402-1406, 1983.
[248]J. Li, W. Li, H. Dong, N. Li, X. Guo, and L. Wang, Enhanced performance in hybrid perovskite solar cell by modification with spinel lithium titanate, Journal of Materials Chemistry A, vol. 3, pp. 8882-8889, 2015.
[249]J. Yue, C. Suchomski, T. Brezesinski, and B. M. Smarsly, Polymer‐Templated Mesoporous Li4Ti5O12 as a High‐Rate and Long‐Life Anode Material for Rechargeable Li‐Ion Batteries, ChemNanoMat, vol. 1, pp. 415-421, 2015.
[250]K. Mukai, Y. Kato, and H. Nakano, Determination of cation distribution in the Fe [Li1/2Fe3/2] O4− LiFeTiO4− Li [Li1/3Ti5/3] O4 system: Mixed nature of solid solution and superlattice, Journal of Solid State Chemistry, vol. 247, pp. 67-76, 2017.
[251]H. Zou, H. Xiang, X. Liang, X. Feng, S. Cheng, Y. Jin, et al., Electrospun Li3. 9Cr0. 3Ti4. 8O12 nanofibers as anode material for high-rate and low-temperature lithium-ion batteries, Journal of Alloys and Compounds, vol. 701, pp. 99-106, 2017.
[252]L.-L. Xing, K.-J. Huang, S.-X. Cao, and H. Pang, Chestnut shell-like Li4Ti5O12 hollow spheres for high-performance aqueous asymmetric supercapacitors, Chemical Engineering Journal, vol. 332, pp. 253-259, 2018.
[253]R. Cai, S. Jiang, X. Yu, B. Zhao, H. Wang, and Z. Shao, A novel method to enhance rate performance of an Al-doped Li 4 Ti 5 O 12 electrode by post-synthesis treatment in liquid formaldehyde at room temperature, Journal of Materials Chemistry, vol. 22, pp. 8013-8021, 2012.
[254]T. Ohsaka, F. Izumi, and Y. Fujiki, Raman spectrum of anatase, TiO2, Journal of Raman spectroscopy, vol. 7, pp. 321-324, 1978.
[255]W. Zhang, Y. He, M. Zhang, Z. Yin, and Q. Chen, Raman scattering study on anatase TiO2 nanocrystals, Journal of Physics D: Applied Physics, vol. 33, p. 912, 2000.
[256]W. Liu, J. Zhang, Q. Wang, X. Xie, Y. Lou, X. Han, et al., Microsized TiO2 activated by high-energy ball milling as starting material for the preparation of Li4Ti5O12 anode material, Powder technology, vol. 247, pp. 204-210, 2013.
[257]X. Li, H.-c. Lin, W.-j. Cui, Q. Xiao, and J.-b. Zhao, Fast solution-combustion synthesis of nitrogen-modified Li4Ti5O12 nanomaterials with improved electrochemical performance, ACS applied materials & interfaces, vol. 6, pp. 7895-7901, 2014.
[258]T.-F. Yi, L.-J. Jiang, J. Liu, M.-F. Ye, H.-B. Fang, A.-N. Zhou, et al., Structure and physical properties of Li 4 Ti 5 O 12 synthesized at deoxidization atmosphere, Ionics, vol. 17, pp. 799-803, 2011.
[259]X. Zhao, Q. Zhou, H. Ming, J. Adkins, M. Liu, L. Su, et al., Surface nitridation induced high electrochemical performance of Li 4 Ti 5 O 12 using urea as a nitrogen source, Ionics, vol. 19, pp. 1843-1848, 2013.
[260]J. Zhang and R. Zuo, Effect of ordering on the microwave dielectric properties of spinel‐structured (Zn1− x (Li2/3Ti1/3) x) 2TiO4 ceramics, Journal of the American Ceramic Society, vol. 99, pp. 3343-3349, 2016.
[261]D. Georgescu, L. Baia, O. Ersen, M. Baia, and S. Simon, Experimental assessment of the phonon confinement in TiO2 anatase nanocrystallites by Raman spectroscopy, Journal of Raman Spectroscopy, vol. 43, pp. 876-883, 2012.
[262]B. J. Morgan, J. Carrasco, and G. Teobaldi, Variation in surface energy and reduction drive of a metal oxide lithium-ion anode with stoichiometry: a DFT study of lithium titanate spinel surfaces, Journal of Materials Chemistry A, vol. 4, pp. 17180-17192, 2016.
[263]I. Belharouak, G. M. Koenig, T. Tan, H. Yumoto, N. Ota, and K. Amine, Performance Degradation and gassing of Li4Ti5O12/LiMn2O4 lithium-ion cells, Journal of The Electrochemical Society, vol. 159, pp. A1165-A1170, 2012.
[264]Y.-B. He, B. Li, M. Liu, C. Zhang, W. Lv, C. Yang, et al., Gassing in Li4Ti5O12-based batteries and its remedy, Scientific reports, vol. 2, 913, 2012.
[265]M. Doyle and J. Newman, The use of mathematical modeling in the design of lithium/polymer battery systems, Electrochimica Acta, vol. 40, pp. 2191-2196, 1995.
[266]J. Newman and W. Tiedemann, Porous‐electrode theory with battery applications, AIChE Journal, vol. 21, pp. 25-41, 1975.
[267]A. G. Kashkooli, G. Lui, S. Farhad, D. U. Lee, K. Feng, A. Yu, et al., Nano-particle size effect on the performance of Li4Ti5O12 spinel, Electrochimica Acta, vol. 196, pp. 33-40, 2016.
[268]D. A. Cogswell and M. Z. Bazant, Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles, ACS nano, vol. 6, pp. 2215-2225, 2012.
[269]P. Bai, D. A. Cogswell, and M. Z. Bazant, Suppression of phase separation in LiFePO4 nanoparticles during battery discharge, Nano letters, vol. 11, pp. 4890-4896, 2011.
[270]A. Vasileiadis, N. J. de Klerk, R. B. Smith, S. Ganapathy, P. P. R. Harks, M. Z. Bazant, et al., Toward Optimal Performance and In‐Depth Understanding of Spinel Li4Ti5O12 Electrodes through Phase Field Modeling, Advanced Functional Materials, vol. 28, p. 1705992, 2018.
[271]M. Ebner, D. W. Chung, R. E. García, and V. Wood, Tortuosity Anisotropy in Lithium‐Ion Battery Electrodes, Advanced Energy Materials, vol. 4, p. 1301278, 2014.
[272]K. Yoshima, Y. Harada, and N. Takami, Thin hybrid electrolyte based on garnet-type lithium-ion conductor Li7La3Zr2O12 for 12 V-class bipolar batteries, Journal of Power Sources, vol. 302, pp. 283-290, 2016.
[273]N. Takami, H. Inagaki, T. Kishi, Y. Harada, Y. Fujita, and K. Hoshina, Electrochemical kinetics and safety of 2-volt class Li-ion battery system using lithium titanium oxide anode, Journal of the electrochemical society, vol. 156, pp. A128-A132, 2009.
[274]A. Jain, G. Hautier, S. P. Ong, C. J. Moore, C. C. Fischer, K. A. Persson, et al., Formation enthalpies by mixing GGA and GGA+ U calculations, Physical Review B, vol. 84, p. 045115, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top