跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/30 22:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪國嵩
研究生(外文):Hung, Guo-Song
論文名稱:以第一原理計算探討鋰金屬負極表面之穩定固態電解質介面層特性
論文名稱(外文):The study of properties of stable SEI at Li-metal anode surface by first-principles calculation
指導教授:許文東許文東引用關係
指導教授(外文):Hsu, Wen-Dung
口試委員:林士剛方冠榮郭錦龍張家欽
口試委員(外文):Lin, Shih-KangFung, Kuan-ZongKuo, Chin-LungChang, Chia-Chin
口試日期:2021-07-20
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:68
中文關鍵詞:鋰金屬負極固態電解質介面層鋰枝晶第一原理
外文關鍵詞:Lithium metal anodeSEILithium dendriteFirst-principles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
電池產業愈加發達,需求愈加嚴苛,擁有更高能量密度、更高電容的電極材料備受矚目。鋰金屬電池為候選人之一,自1950 年代首次設計、1970 年代初次製作,至今仍有廣泛的研究,由於其高理論電容(3860 mAh/g)、低電化學勢能(-3.04 V vs.標準氫電極),被視為最理想的鋰基底電池(Lithium-based battery)的負極,但鋰金屬電池尚未成功開發的癥結點出在鋰金屬負極端,一直以來都有鋰金屬樹枝狀晶體生長、不受控的固態電解質介面層(SEI)等阻撓,嚴重影響電池壽命以及安全問題。科學家初步透過電解液系統調質來加強對SEI 的控制,乃至於事前在電極鍍層處理以增加想要的分子濃度,各家配方皆有抑制作用,但仍不足以做為商用產品,因為不夠長的循環壽命、無法承受過高電流密度、非均質的SEI,這些結果導致鋰金屬電池還遠不及商用開發。本研究利用第一原理計算各種塊材模型、表面模型、界面模型,透過態密度確認材料能隙大小、絕緣體特性。前緣分子軌域理論搭配功函數計算,判斷固態電解質介面層材料相對於鋰金屬負極能更好地抵抗來自電解液的氧化還原反應。從力學角度計算,足夠的機械性質才能抑制鋰枝晶生長,使得鋰能平穩的沉積。最後以熱力學角度計算鋰原子在於鋰金屬負極、界面、固態電解液介面層以及表面四個部分的勢能,判斷鋰原子在沉積的過程所需的能量變化,從接觸固態電解質,到界面,再到沉積於鋰金屬中,鋰原子之能量變化可視為固態電解質介面層對鋰原子導度的表現。
In this research, First-principles calculations are used to explore the properties of several kinds of solid-electrolyte interphase (SEI) molecules. According to the realistic experimental data, inhomogeneous lithium dendrite growth on the surface of lithium metal anode can be avoided by electrode premodification or specific electrolytes adjunction. The anode surface could be covered by the passivation layer which can not only prevent the further redox reactions between lithium metal and electrolytes, but also suppress the lithium dendrite growth. We calculate the properties of Li2O, Li2S, Li3N, LiNO3, Li2CO3, Li3PO4, and LiF which have been proved as the common effective dendrite-suppressd materials. LiOH model was also calculated to present the bad performance of SEI.
Density of states results show the clear bang gaps of these bulk SEI molecules, which agree with the experimental analysis. Insulation property can disturb the direct transferring of electrons to the electrolytes. But the electronic conductivity increases when the SEI slab surface model establishes for some SEI cases. That is why lithium dendrite can growth along SEI grain boundary easily. Work functions indicate the abilities of SEI to defend the attack from the electrolyte. Insoluble SEI can remain a less volume change, which is beneficial to the stability of the anode part. The results of shear modulus calculation give precise mechanical properties of SEI molecule. Though shear modulus is not the absolute factor for dendrite suppression, mechanical theory still recommends using the strong SEI for good performance.
To figure out the energy change during lithium deposition, we added a vacancy or an interstitial Li atom into the complete slab models in four different positions to understand the energy change which can indicate the approximate trend of SEI ion conductivity. In some cases, there is an energy barrier when the Li atom diffuses from SEI surface to the interface, which means the SEI molecule has relatively poor ion conductivity.
摘要 I
The study of properties of stable SEI at Li-metal anode surface by first-principles calculation II
致謝 XXXIX
目錄 XL
表目錄 XLIII
圖目錄 XLIII
第一章 緒論 1
1.1前言 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 鋰金屬負極文獻回顧 4
2.1.1非均勻鋰枝晶生長 4
2.2 固態電解質介面層文獻回顧 5
2.2.1 鋰枝晶抑制機制 6
第三章 模擬理論介紹 11
3.1第一原理 11
3.1.1密度泛函理論 11
3.1.2 Hohenberg-Kohn以及Kohn-Sham方法[37, 38] 12
3.1.3 交換關連能-廣義梯度近似 12
3.1.4 贗勢 12
3.1.5 週期性邊界 13
3.2分子動力學之基本假設與流程圖 14
3.2.1第一原理分子動力學模擬 15
第四章 模型設計與模擬計算 16
4.1鋰金屬負極材料模型 16
4.1.1鋰金屬塊材 17
4.1.2鋰金屬表面 17
4.2固態電解質介面層成分簡介 18
4.3固態電解質介面層與鋰金屬之界面模擬 18
4.3.1接面方式 18
4.3.2界面能計算 21
4.4固態電解質分子SEI slab model 23
4.5固態電解質介面層與鋰金屬之sandwich slab model 23
4.5.1 Sandwich slab model 23
4.5.2 鋰原子擴散條件趨勢計算 23
4.6常見固態電解質之介面鋰擴散 26
4.6.1 SEI termination 26
4.6.2介面凝聚能 26
4.6.3 Nudged Elastic Band 27
第五章 結果與討論 28
5.1鋰金屬負極 28
5.1.1鋰金屬塊材與表面模型 28
5.1.2功函數計算 30
5.1.3態密度 31
5.2固態電解質介面層 31
5.2.1固態電解質介面層分子塊材模型 31
5.2.2塊材態密度 35
5.2.3塊材機械性質 38
5.2.4 SEI slab model 39
5.2.5 SEI slab model之態密度 40
5.3固態電解質介面層與鋰金屬之界面模擬 43
5.3.1固態電解質與鋰金屬之界面能 43
5.4固態電解質介面層與鋰金屬之sandwich slab model 44
5.4.1 Sandwich slab model 44
5.4.2態密度 45
5.4.3功函數計算 49
5.4.4鋰原子擴散條件趨勢計算 52
5.5常見固態電解質之介面鋰擴散 56
5.5.1介面凝聚能 56
5.5.2功函數計算 57
5.5.3 NEB計算 61
第六章 結論 63
第七章 參考文獻 65
1.Cui, C., et al., A Highly Reversible, Dendrite-Free Lithium Metal Anode Enabled by a Lithium-Fluoride-Enriched Interphase. Adv Mater, 2020. 32(12): p. e1906427.
2.Wang, J., et al., Chemical bonding and Cu diffusion at the Cu/Ta2N interface: a DFT study. Phys Chem Chem Phys, 2018. 20(19): p. 13566-13573.
3.Monroe, C. and J. Newman, The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces. Journal of The Electrochemical Society, 2005. 152(2).
4.Marom, R., et al., A review of advanced and practical lithium battery materials. Journal of Materials Chemistry, 2011. 21(27).
5.Blomgren, G.E., The Development and Future of Lithium Ion Batteries. Journal of The Electrochemical Society, 2016. 164(1): p. A5019-A5025.
6.Miao, Y., et al., Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements. Energies, 2019. 12(6).
7.Lin, D., et al., Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon. Nano Lett, 2017. 17(6): p. 3731-3737.
8.Zhang, J.-G., Anode-less. Nature Energy, 2019. 4(8): p. 637-638.
9.Li, Z., et al., A review of lithium deposition in lithium-ion and lithium metal secondary batteries. Journal of Power Sources, 2014. 254: p. 168-182.
10.Shen, X., et al., Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Materials, 2018. 12: p. 161-175.
11.Wang, M., et al., Constructing ultrathin TiO2 protection layers via atomic layer deposition for stable lithium metal anode cycling. Journal of Alloys and Compounds, 2021. 865.
12.Lu, Y., Z. Tu, and L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat Mater, 2014. 13(10): p. 961-9.
13.Chen, L., et al., High-Energy Li Metal Battery with Lithiated Host. Joule, 2019. 3(3): p. 732-744.
14.Kang, H., et al., Lithium metal anode with lithium borate layer for enhanced cycling stability of lithium metal batteries. Journal of Power Sources, 2021. 485.
15.Wan, G., et al., Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase. ACS Appl Mater Interfaces, 2018. 10(1): p. 593-601.
16.Li, W., et al., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun, 2015. 6: p. 7436.
17.Kang, D., et al., Rearrange SEI with artificial organic layer for stable lithium metal anode. Energy Storage Materials, 2020. 24: p. 618-625.
18.Lu, P. and S.J. Harris, Lithium transport within the solid electrolyte interphase. Electrochemistry Communications, 2011. 13(10): p. 1035-1037.
19.Han, F., et al., High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nature Energy, 2019. 4(3): p. 187-196.
20.Wu, B., et al., The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy & Environmental Science, 2018. 11(7): p. 1803-1810.
21.Peled, E. and S. Menkin, Review—SEI: Past, Present and Future. Journal of The Electrochemical Society, 2017. 164(7): p. A1703-A1719.
22.Cheng, X.B., et al., A Review of Solid Electrolyte Interphases on Lithium Metal Anode. Adv Sci (Weinh), 2016. 3(3): p. 1500213.
23.Verma, P., P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 2010. 55(22): p. 6332-6341.
24.Wang, M., et al., Effect of LiFSI Concentrations To Form Thickness- and Modulus-Controlled SEI Layers on Lithium Metal Anodes. The Journal of Physical Chemistry C, 2018. 122(18): p. 9825-9834.
25.Ho, V.-C., et al., Effect of an organic additive in the electrolyte on suppressing the growth of Li dendrites in Li metal-based batteries. Electrochimica Acta, 2018. 279: p. 213-223.
26.Shadike, Z., et al., Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes. Nat Nanotechnol, 2021. 16(5): p. 549-554.
27.Arreaga-Salas, D.E., et al., Progression of Solid Electrolyte Interphase Formation on Hydrogenated Amorphous Silicon Anodes for Lithium-Ion Batteries. The Journal of Physical Chemistry C, 2012. 116(16): p. 9072-9077.
28.Zhao, C.-Z., et al., Li 2 S 5 -based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Materials, 2016. 3: p. 77-84.
29.Wu, M., et al., Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries. Journal of Power Sources, 2011. 196(19): p. 8091-8097.
30.Zhang, S.S., Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochimica Acta, 2012. 70: p. 344-348.
31.Giordani, V., et al., Synergistic Effect of Oxygen and LiNO3on the Interfacial Stability of Lithium Metal in a Li/O2Battery. Journal of The Electrochemical Society, 2013. 160(9): p. A1544-A1550.
32.Shi, S., et al., Direct calculation of Li-ion transport in the solid electrolyte interphase. J Am Chem Soc, 2012. 134(37): p. 15476-87.
33.Jurng, S., et al., Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy & Environmental Science, 2018. 11(9): p. 2600-2608.
34.Wang, M., et al., A Framework with Enriched Fluorinated Sites for Stable Li Metal Cycling. Acta Physico Chimica Sinica, 2020. 0(0): p. 2007016-0.
35.Tikekar, M.D., et al., Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nature Energy, 2016. 1(9).
36.Sholl, D. and J.A. Steckel, Density functional theory: a practical introduction. 2011: John Wiley & Sons.
37.Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133-A1138.
38.Hohenberg, P. and W. Kohn, Inhomogeneous electron gas. Physical review, 1964. 136(3B): p. B864.
39.Lee, I.H. and R.M. Martin, Applications of the generalized-gradient approximation to atoms, clusters, and solids. Physical Review B, 1997. 56(12): p. 7197-7205.
40.Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999. 59(3): p. 1758-1775.
41.Schlick, T., Molecular modeling and simulation: an interdisciplinary guide: an interdisciplinary guide. Springer Science & Business Media, 2010. 21.
42.Kresse, G. and J. Hafner, Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter, 1993. 47(1): p. 558-561.
43.Bird, G.A., Molecular gas dynamics and the direct simulation of gas flows. Molecular gas dynamics and the direct simulation of gas flows, 1994.
44.Car, R. and M. Parrinello, Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett, 1985. 55(22): p. 2471-2474.
45.Kokko, K., et al., First-principles calculations for work function and surface energy of thin lithium films. Surface science, 1996. 348(1-2): p. 168-174.
46.Du, Y.A. and N.A.W. Holzwarth, Li Ion Diffusion Mechanisms in the Crystalline Electrolyte γ-Li[sub 3]PO[sub 4]. Journal of The Electrochemical Society, 2007. 154(11).
47.Shi, S., et al., Defect Thermodynamics and Diffusion Mechanisms in Li2CO3 and Implications for the Solid Electrolyte Interphase in Li-Ion Batteries. The Journal of Physical Chemistry C, 2013. 117(17): p. 8579-8593.
48.Lin, Y.-X., et al., Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components. Journal of Power Sources, 2016. 309: p. 221-230.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top