跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/26 20:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張廷有
研究生(外文):Chang, Ting-You
論文名稱:氧化鈰/碳酸鹽複合電解質界面對高溫燃料電池性能提升之重要性
論文名稱(外文):Interface effects of doped Ceria-Carbonate composite electrolyte for High Performance Intermediate Temperature Fuel Cells
指導教授:方冠榮
指導教授(外文):Fung, Kuan-Zong
口試委員:陳嘉勻鍾昇恆張家欽
口試日期:2021-09-01
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:66
中文關鍵詞:固-液界面釤摻雜氧化鈰複合電解質中溫燃料電池
外文關鍵詞:solid-liquid interfacesamarium-doped cerium oxidecomposite electrolyteintermediate temperature fuel cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Chapter 1: Introduction 1
Chapter 2: Literature Review 3
2.1 Fuel cell 3
2.2 Basic principles, components and challenges for solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) 6
2.3 Composite electrolyte for intermediate temperature fuel cells 12
2.4 Ionic conduction mechanism for ceria-carbonate composite electrolyte 16
Chapter 3: Motivation and Objective 19
Chapter 4: Experiment Procedure 21
4.1. Powder synthesis 21
4.2. Fabrication of SDC/LNC composite electrolyte 21
4.3. Characterization 22
4.4. Interface analysis experiment 23
4.5. Single cell fabrication and testing device 24
Chapter 5: Effect of dual phases on SDC/LNC composite electrolytes through microstructure design 26
5.1 Characterization 26
5.1.1 Crystal structure and stability of synthesized powders 26
5.1.2 Microstructure of SDC/LNC composite electrolyte 28
5.2 Total ionic conductivity 31
5.2.1 Effects of different LNC content 31
5.2.2 Comparison of pure SDC, pure LNC and SDC/LNC 35
5.2.3 Comparison of SDC/LNC and LiAlO2/LNC 37
5.3 Performance testing of single cell with SDC/LNC and LiAlO2/LNC as electrolyte support material 42
Chapter 6: Analysis of solid-liquid interface in SDC/LNC composite electrolytes 45
6.1 Influence of interface on total ionic conductivity 45
6.2 Contribution of individual ionic conduction 50
6.3 Fast Fourier transform (FFT) analysis of the HRTEM 55
6.4 Effects of interface on performance testing of single cell 59
Chapter 7: Conclusions 60
Chapter 8: References 62
1.Fitzgibbons, K., 14. Future prospects and public policy implications for hydrogen and fuel-cell technologies in Canada. 2008.
2.Lovley, D.R., Microbial fuel cells: novel microbial physiologies and engineering approaches. Current opinion in biotechnology, 2006. 17(3): p. 327-332.
3.Yamamoto, O., Solid oxide fuel cells: fundamental aspects and prospects. Electrochimica Acta, 2000. 45(15-16): p. 2423-2435.
4.Yamahara, K., et al., Influence of powders on ionic conductivity of polycrystalline zirconias. ECS Proceedings Volumes, 2003. 2003(1): p. 187.
5.Handbook, F.C., EG&G Technical Services, Inc. US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory-Morgantown, West Virginia, 2004.
6.Kordesch, K. and G. Simader, Fuel cells and their applications. 1996.
7.Ormerod, R.M., Solid oxide fuel cells. Chemical Society Reviews, 2003. 32(1): p. 17-28.
8.Carrette, L., K. Friedrich, and U. Stimming, Fuel cells-fundamentals and applications. Fuel cells, 2001. 1.
9.Ma, Y., Ceria-based nanocomposite electrolyte for low-temperature solid oxide fuel cells. 2009, KTH.
10.Takahashi, T., T. Esaka, and H. Iwahara, Conduction in Bi 2 O 3-based oxide ion conductors under low oxygen pressure. I. Current blackening of the Bi 2 O 3-Y 2 O 3 electrolyte. Journal of Applied Electrochemistry, 1977. 7(4): p. 299-302.
11.Ishihara, T., H. Matsuda, and Y. Takita, Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. Journal of the American chemical society, 1994. 116(9): p. 3801-3803.
12.Nafees, A. and R.A. Rasid. Study of natural gas powered solid oxide fuel cell simulation and modeling. in IOP Conference Series: Materials Science and Engineering. 2019. IOP Publishing.
13.Salameh, Z., Renewable energy system design. 2014: Academic Press.
14.Morita, H., et al., Performance analysis of molten carbonate fuel cell using a Li/Na electrolyte. Journal of Power Sources, 2002. 112(2): p. 509-518.
15.Scaccia, S., Investigation on NiO solubility in binary and ternary molten alkali metal carbonates containing additives. Journal of molecular liquids, 2005. 116(2): p. 67-71.
16.Spedding, P., Electrical conductance of molten alkali carbonate binary mixtures. Journal of The Electrochemical Society, 1973. 120(8): p. 1049.
17.Kojima, T., et al., Electrical Conductivity of Molten Li2CO3–X2CO3 (X: Na, K, Rb, and Cs) and Na2CO3–Z2CO3 (Z: K, Rb, and Cs). Journal of The Electrochemical Society, 2007. 154(12): p. F222.
18.Janowitz, K., M. Kah, and H. Wendt, Molten carbonate fuel cell research: Part I. Comparing cathodic oxygen reduction in lithium/potassium and lithium/sodium carbonate melts. Electrochimica acta, 1999. 45(7): p. 1025-1037.
19.Shao, Z. and S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells, in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011, World Scientific. p. 255-258.
20.Zhu, K., et al., Enhanced performance of solid oxide fuel cells by introducing a transition layer between nanostructured cathode and electrolyte. international journal of hydrogen energy, 2015. 40(1): p. 501-508.
21.Esposito, V., et al., Solid-oxide fuel cells, in Epitaxial Growth of Complex Metal Oxides. 2015, Elsevier. p. 443-478.
22.Huang, P., A. Horky, and A. Petric, Interfacial reaction between nickel oxide and lanthanum gallate during sintering and its effect on conductivity. Journal of the American Ceramic Society, 1999. 82(9): p. 2402-2406.
23.Atkinson, A., Chemically-induced stresses in gadolinium-doped ceria solid oxide fuel cell electrolytes. Solid State Ionics, 1997. 95(3-4): p. 249-258.
24.Etsell, T. and S.N. Flengas, Electrical properties of solid oxide electrolytes. Chemical Reviews, 1970. 70(3): p. 339-376.
25.Haile, S.M., Fuel cell materials and components. Acta materialia, 2003. 51(19): p. 5981-6000.
26.Hui, S.R., et al., A brief review of the ionic conductivity enhancement for selected oxide electrolytes. Journal of Power Sources, 2007. 172(2): p. 493-502.
27.Mahato, N., A. Gupta, and K. Balani, Doped zirconia and ceria-based electrolytes for solid oxide fuel cells: a review. Nanomaterials and Energy, 2012. 1(1): p. 27-45.
28.Ferreira, A.S., et al., Intrinsic and extrinsic compositional effects in ceria/carbonate composite electrolytes for fuel cells. International journal of hydrogen energy, 2011. 36(5): p. 3704-3711.
29.Benamira, M., et al., Gadolinia-doped ceria mixed with alkali carbonates for solid oxide fuel cell applications: I. A thermal, structural and morphological insight. Journal of Power Sources, 2011. 196(13): p. 5546-5554.
30.Raza, R., et al., Electrochemical study on co-doped ceria–carbonate composite electrolyte. Journal of Power Sources, 2012. 201: p. 121-127.
31.Wang, X., Y. Ma, and B. Zhu, State of the art ceria-carbonate composites (3C) electrolyte for advanced low temperature ceramic fuel cells (LTCFCs). International journal of hydrogen energy, 2012. 37(24): p. 19417-19425.
32.Yang, B., et al., A carbon–air battery for high power generation. Angewandte Chemie International Edition, 2015. 54(12): p. 3722-3725.
33.Raza, R., et al., Improved ceria–carbonate composite electrolytes. International journal of hydrogen energy, 2010. 35(7): p. 2684-2688.
34.Zuo, N., et al., Fabrication and characterization of composite electrolyte for intermediate-temperature SOFC. Journal of the European Ceramic Society, 2011. 31(16): p. 3103-3107.
35.Xia, Y., et al., The competitive ionic conductivities in functional composite electrolytes based on the series of M-NLCO (M= Ce0. 8Sm0. 2O2-δ, Ce0. 8Gd0. 2O2-δ, Ce0. 8Y0. 2O2-δ; NLCO= 0.53 Li2CO3–0.47 Na2CO3). International journal of hydrogen energy, 2011. 36(11): p. 6840-6850.
36.Zhang, L., et al., High conductivity mixed oxide-ion and carbonate-ion conductors supported by a prefabricated porous solid-oxide matrix. Electrochemistry communications, 2011. 13(6): p. 554-557.
37.Khan, I., P.K. Tiwari, and S. Basu, Development of melt infiltrated gadolinium doped ceria-carbonate composite electrolytes for intermediate temperature solid oxide fuel cells. Electrochimica Acta, 2019. 294: p. 1-10.
38.Gao, J., et al., Screening possible solid electrolytes by calculating the conduction pathways using Bond Valence method. Science China Physics, Mechanics & Astronomy, 2014. 57(8): p. 1526-1536.
39.Wang, X., et al., Ceria-based nanocomposite with simultaneous proton and oxygen ion conductivity for low-temperature solid oxide fuel cells. Journal of Power Sources, 2011. 196(5): p. 2754-2758.
40.Huang, J., Z. Gao, and Z. Mao, Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs. International journal of hydrogen energy, 2010. 35(9): p. 4270-4275.
41.Zhu, B., S. Li, and B.-E. Mellander, Theoretical approach on ceria-based two-phase electrolytes for low temperature (300–600° C) solid oxide fuel cells. Electrochemistry Communications, 2008. 10(2): p. 302-305.
42.Maier, J., Ionic conduction in space charge regions. Progress in solid state chemistry, 1995. 23(3): p. 171-263.
43.Sata, N., et al., Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature, 2000. 408(6815): p. 946-949.
44.Shi, B., et al., Low tortuous, highly conductive, and high-areal-capacity battery electrodes enabled by through-thickness aligned carbon fiber framework. Nano letters, 2020. 20(7): p. 5504-5512.
45.Lu, L.L., et al., Wood‐inspired high‐performance ultrathick bulk battery electrodes. Advanced Materials, 2018. 30(20): p. 1706745.
46.Braun, P.V., et al., High power rechargeable batteries. Current Opinion in Solid State and Materials Science, 2012. 16(4): p. 186-198.
47.Bae, C.J., et al., Design of battery electrodes with dual‐scale porosity to minimize tortuosity and maximize performance. Advanced materials, 2013. 25(9): p. 1254-1258.
48.Li, Y., et al., Enabling high-areal-capacity lithium–sulfur batteries: designing anisotropic and low-tortuosity porous architectures. ACS nano, 2017. 11(5): p. 4801-4807.
49.Long, J.W., et al., Three-dimensional battery architectures. Chemical Reviews, 2004. 104(10): p. 4463-4492.
50.Zhang, H., X. Yu, and P.V. Braun, Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes. Nature nanotechnology, 2011. 6(5): p. 277-281.
51.Feng, Y. and B. Yu, Fractal dimension for tortuous streamtubes in porous media. Fractals, 2007. 15(04): p. 385-390.
52.Badwal, S., F. Ciacchi, and J. Drennan, Investigation of the stability of ceria-gadolinia electrolytes in solid oxide fuel cell environments. Solid state ionics, 1999. 121(1-4): p. 253-262.
53.Zhu, B. and B.-E. Mellander, Performance of intermediate temperature SOFCs with composite electrolytes. ECS Proceedings Volumes, 1999. 1999(1): p. 244.
54.Kjerulf-Jensen, N., R. Berg, and F. Poulsen. Proceedings of the Second European Solid Oxide Fuel Cell Forum. 1996. European Fuel Cell Forum.
55.Sillassen, M., et al., Low‐temperature superionic conductivity in strained yttria‐stabilized zirconia. Advanced Functional Materials, 2010. 20(13): p. 2071-2076.
56.Fluri, A., et al., In situ stress observation in oxide films and how tensile stress influences oxygen ion conduction. Nature communications, 2016. 7(1): p. 1-9.
57.Schweiger, S., et al., A microdot multilayer oxide device: let us tune the strain-ionic transport interaction. ACS nano, 2014. 8(5): p. 5032-5048.
58.Hirschfeld, J. and H. Lustfeld, First-principles study and modeling of strain-dependent ionic migration in ZrO 2. Physical Review B, 2011. 84(22): p. 224308.
59.Kushima, A. and B. Yildiz, Oxygen ion diffusivity in strained yttria stabilized zirconia: where is the fastest strain? Journal of Materials Chemistry, 2010. 20(23): p. 4809-4819.
60.Korte, C., et al., Coherency strain and its effect on ionic conductivity and diffusion in solid electrolytes–an improved model for nanocrystalline thin films and a review of experimental data. Physical Chemistry Chemical Physics, 2014. 16(44): p. 24575-24591.
61.Pergolesi, D., et al., Tensile lattice distortion does not affect oxygen transport in yttria-stabilized zirconia–CeO2 heterointerfaces. Acs Nano, 2012. 6(12): p. 10524-10534.
62.Kilner, J.A., Feel the strain. Nature Materials, 2008. 7(11): p. 838-839.
63.Aydin, H., et al., Oxygen tracer diffusion along interfaces of strained Y 2 O 3/YSZ multilayers. Physical Chemistry Chemical Physics, 2013. 15(6): p. 1944-1955.
64.Schichtel, N., et al., Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films—theoretical considerations and experimental studies. Physical Chemistry Chemical Physics, 2009. 11(17): p. 3043-3048.
65.Korte, C., et al., Influence of interface structure on mass transport in phase boundaries between different ionic materials. Monatshefte für Chemie-Chemical Monthly, 2009. 140(9): p. 1069-1080.
電子全文 電子全文(網際網路公開日期:20261008)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top