跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/24 04:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳佳雅
研究生(外文):Rao, Jaya Venkat Spandana
論文名稱:空殼氮化鎵及氧化鋅/氮化鎵核殼奈米線陣列製備及其壓電暨光壓電奈米發電機之應用
論文名稱(外文):SYNTHESIS OF VERTICALLY ALIGNED HOLLOW GALLIUM NITRIDE AND ZINC OXIDE/GALLIUM NITRIDE CORE SHELL NANOWIRE ARRAY FOR PIEZOELECTRIC AND PIEZO- PHOTOELECTRIC NANOGENERATORS
指導教授:劉全璞
指導教授(外文):Liu, Chuan Pu
口試委員:呂國彰王瑞琪張高碩
口試委員(外文):Lu, Kuo-ChangWang, Ruey ChiChang, Kao-Shuo
口試日期:2021-07-23
學位類別:碩士
校院名稱:國立成功大學
系所名稱:尖端材料國際碩士學位學程
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:194
外文關鍵詞:Gallium NitrideZinc OxidePiezo potentialSurface Plasmon ResonancePiezoelectric Devices
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
In this work, we used Chemical Vapor Deposition to grow vertically aligned hollow Gallium Nitride and Zinc Oxide/ Gallium Nitride core shell structure using Zinc Oxide as a template in single and continuous step in CVD. The growth of both ZnO and GaN were carried out in CVD. We were able to successful grow the structure on various substrates like Silicon, Graphite sheet and Graphene/Sapphire substrate. We studied the dependence of various parameters like temperature, gas flow and pressure inside the CVD tube for growth of ZnO and GaN nanostructures. Furthermore, we were able to manipulate the diameter of the nanowires as a function of time. The thinnest nanowires achieved were 8 nm thick for GaN shell and 30 nm for ZnO core. The main purpose of the investigation was to grow vertically aligned nanowires without the use of hazardous gases used in MOCVD and/or use MBE to grow high quality GaN. This structure was used to study the piezoelectric effect and photo-piezoelectric effect of Hollow GaN and ZnO/GaN core-shell structure. Interesting phenomena of increasing piezoelectric effect under light illumination was observed in GaN for the first time. The mechanism of introduce polarization in wurtzite structure using Surface Plasmon Resonance has been proposed in this paper and how we can effectively combine polarization due to light + polarization due to piezoelectric effect to create nanogenerators with higher efficiency.
Abstract v
Acknowledgement vii
Table of Contents ix
Chapter 1 Introduction 2
1.1 Overview 2
1.2 Motivation 4
1.3 Objectives 8
Chapter 2 Theory 10
2.1 Properties of piezoelectric nanowires and piezogenerating devices based on 1D nanostructures: 10
2.2 Piezoelectric nanowires as energy harvesting 10
2.3 Size Effects 10
2.4 Shape effect 14
2.5 Nanowire synthesis techniques 16
2.6 Crystalline Materials 20
2.7 Semiconductors 24
2.7.1 Energy bands 24
2.7.2 Intrinsic and Extrinsic Semiconductors 28
2.8 Zinc Oxide and Gallium Nitride 32
2.8.1 Crystal structure 32
2.8.2 Electrical properties and defects of GaN 36
2.8.3 Electronic properties and defects of GaN 36
2.8.4 Intrinsic carrier concentration 38
2.8.5 Electronic properties and defects of ZnO 40
2.9 Modeling elastic and piezoelectric properties 46
2.9.1 Elastic properties 46
2.9.2 Piezoelectric properties 50
2.9.3 Piezoelectric response d 54
2.10 Piezo-phototronics 56
2.10.1 Overview 56
2.10.2 Basics of piezotronics and piezo-phototronics 58
2.10.3 Piezotronics and piezo-phototronics 60
2.11 Surface Plasmon Resonance 66
2.11.1 Theory: surface plasmons 66
2.11.2 Surface plasmons in metal films 72
2.11.3 Surface plasmon resonance in Gallium Nitride Nanowires 76
Chapter 3 Experimental Method 82
3.1 Chemical Vapor Deposition 82
3.1.1 CVD growth mechanism for GaN by template assist 84
3.1.2 Previous work: 84
3.2 Sputtering 87
3.3 Characterization Equipment 88
3.3.1 Ultrahigh Resolution Scanning Electron Microscope (UHR-SEM) 88
3.3.2 Energy Dispersive spectrometer (EDS) 92
3.3.3 h-GaN and ZnO/GaN Piezoelectric and Piezo-Photoelectric devices 94
Chapter 4 Results 96
4.1 Equipment used. 96
4.1.1 Magnetron Sputter 96
4.1.2 Chemical Vapor Deposition 96
4.1.3 PECS 96
4.1.4 SEM and EDS 96
4.1.5 Electrical characterization 96
4.1.6 Photoluminescence Spectroscopy 96
4.2 Synthesis of piezo-photoelectric Devices 98
4.2.1 Substrate cleaning: 98
4.2.2 Growth of ZnO buffer layer by sputter: 98
4.2.3 Single step ZnO template and GaN shell growth in CVD including ZnO template removal: 100
4.2.4 The gallium nitride growth as a function of pressure 102
4.3 Structural Characterization 104
4.3.1 Ultrahigh Resolution Scanning Electron Microscopy 104
4.3.2 Energy Dispersive Spectrometer 114
4.3.3 Fourier Transform Infrared Spectroscopy 118
4.3.4 Ultrahigh Resolution Scanning Electron Microscopy 122
4.3.5 X-ray photoelectron spectroscopy 128
4.3.6 Photo Luminescence Spectroscopy 130
4.3.7 UV-Visible SPECTROSCOPY 144
4.3.8 Piezoelectric and Photo-Piezoelectric Voltage and Current Measurement 148
4.3.9 Au-h-GaN-Si 148
4.3.10 h-GaN-Sapphire 154
ZnO/GaN/Si 160
4.3.11 ZnO/GaN/Sapp 166
4.3.12 Discussion 172
4.3.13 Green Illumination and IR Illumination in h-GaN/Si: 172
4.3.14 Green Illumination and IR Illumination in h-GaN /Graphene /Sapphire: 174
4.3.15 Green Illumination and IR Illumination in ZnO-GaN/Si: 176
4.3.16 Green Illumination and IR Illumination in ZnO-GaN/Sapp: 178
4.3.17 UV Illumination in h-GaN: 180
4.3.18 UV Illumination in ZnO-GaN: 182
Chapter 5 Conclusion 184
Chapter 6 Future Work 186
References 188
[1]Kueppers, H., Leuerer, T., Schnakenberg, U., Mokwa, W., Hoffmann, M., Schneller, T., & Waser, R. (2002). PZT thin films for piezoelectric microactuator applications. Sensors and Actuators A: Physical, 97, 680-684.
[2]Wang, Z. L., & Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771), 242-246.
[3]International Energy Agency, Technology Roadmap - Solar Photovoltaic Energy. International Energy Agency, 2014 ed., 2014.
[4]C. G. Van de Walle, “Defect analysis and engineering in ZnO,” Physica B: Condensed Matter, vol. 308-310, pp. 899 – 903, 2001. International Conference on Defects in Semi- conductors.
[5]C. G. Van de Walle, “Hydrogen as a Cause of Doping in Zinc Oxide,” Phys Rev Lett, vol. 85, pp. 1012–1015, Jul 2000.
[6]T. International Zinc Association, “Zinc... A Sustainable Material,” 2010.
[7]Jin Zhang, S.A. Meguid. "On the piezoelectric potential of gallium nitride nanotubes", Nano Energy, 2015
[8]B. G. Streetman and S. K. Banerjee, Solid State Electronic Devices. Pearson Prentice Hall, 6 ed., 2006.
[9]U. Müller, Inorganic Structural Chemistry. John Wiley & Sons, LTD, 2. ed., 2007.
[10]C. Kittel, Introduction to Solid State Physics. John Wiley & Sons, Inc., 7 ed., 1996.
[11]P. C. Hemmer, Faste Stoffers Fysikk. Tapir Forlag, 1987.
[12]D. J. Griffiths, Introduction to Quantum Mechanics. Pearson Prentice Hall, 2 ed., 2005.
[13]J. A. Venables, Introduction to Surface and Thin Film Processes. Cambridge University Press, 2003 ed., 2000.
[14]scholarworks.csun.edu. http://www.matprop.ru/GaN_bandstr S. A. Campbell, Fabrication Engineering at the micro- and nanoscale. Oxford University Press, 3 ed., 2008.
[15]R. B. Heller, J. McGannon, and A. H. Weber, “Precision determination of the lattice constants of zinc oxide,” J. Appl. Phys., vol. 21, no. 12, pp. 1283–1284, 1950.
[16]Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, 2005.
[17]K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volu- metric and morphology data,” J. Appl. Crystallogr., vol. 44, pp. 1272–1276, Dec 2011.
[18]A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B, vol. 61, pp. 15019–15027, Jun 2000.
[19]A. Janotti and C. G. Van de Walle, “Native point defect in ZnO,” Phys. Rev. B, vol. 76, October 2007.
[20]Sundararajan, Jency Pricilla, Pavel Bakharev, Ishwar Niraula, Blaise Alexis Fouetio Kengne, Quinn MacPherson, Meredith Sargent, Brian Hare, and David N. McIlroy. "Observation of Surface Plasmon Polariton Pumping of Optical Eigenmodes of Gold-Decorated Gallium Nitride Nanowires" , Nano Letters, 2012.
[21]Fei Chen, Xiaohong Ji, Shu Ping Lau. "Recent progress in group III-nitride nanostructures: From materials to applications", Materials Science and Engineering: R: Reports, 2020
[22]Tigran T Mnatsakanov, Michael E Levinshtein, Lubov I Pomortseva, S Sergey N Yurkov, GrigorySimin, M Asif Khan. "Carrier mobility model for GaN", Solid-State Electronics, 2003
[23]Ishwara Bhat. "Physical properties of gallium nitride and related III–V nitrides", Elsevier BV, 2019
[24]C. G. Van de Walle, “Hydrogen as a Cause of Doping in Zinc Oxide,” Phys Rev Lett, vol. 85, pp. 1012–1015, Jul 2000
[25]Encyclopedia of Nanotechnology", Springer Nature, 2016
[26]W. Walukiewicz, “Defect formation and diffusion in heavily doped semiconductors,” Phys. Rev. B, vol. 50, no. 8, 1994.
[27]J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, and K. V. Rao, “p-type ZnO materials: Theory, growth, properties and devices,” Progress in Materials Science, vol. 58, no. 6, pp. 874 – 985, 2013.
[28]E. C. Lee, Y. S. Kim, Y. G. Jin, and K. J. Chang, “Compensation mechanism for N acceptors in ZnO,” Phys. Rev. B, vol. 64, p. 085120, Aug 2001.
[29]W. Li, C. Kong, G. Qin, H. Ruan, and L. Fang, “p-Type conductivity and stability of Ag-N codoped ZnO thin films,” Journal of Alloys and Compounds, vol. 609, pp. 173 – 177, 2014.
[30]T. N. Xu, X. Li, Z. Lu, Y. Y. Chen, C. H. Sui, and H. Z. Wu, “Realization of Ag-S codoped p-type ZnO thin films,” Applied Surface Science, vol. 316, pp. 62 – 65, 2014.
[31]Bing Yin, Yu Qiu, Heqiu Zhang, Jixue Lei, Yue Chang, Jiuyu Jia, Yingmin Luo, Yu Zhao, Lizhong Hu, “Piezoelectric performance enhancement of ZnO flexible nanogenerator by a NiO–ZnO p–n junction formation”, Nano Energy 14, 95–101, 2015.
[32]Wei-Tsai Chang, Ying-Chung Chen, Re-Ching Lin, Chien-Chuan Cheng ,Kuo-Sheng Kao, Yu-Chang Huang, “Wind-power generators based on ZnO piezoelectric thin films on stainless steel substrates”, Current Applied Physics 11, S333-S338, 2011.
[33]K. Ellmer, “Magnetron sputtering of transparent conductive zinc oxide: Relation between the sputtering parameters and electronic properties,” J. Phys. D: Appl. Phys., vol. 33, pp. R17–R32, 2000.
[34]C. G. Van de Walle, “Defect analysis and engineering in ZnO,” Physica B: Condensed Matter, vol. 308-310, pp. 899 – 903, 2001. International Conference on Defects in Semi- conductors.
[35]B. Chapman, Glow discharge processes: Sputtering and plasma etching. John Wiley & Sons, Inc., 1980.
[36]Krasimira Shtereva, Sona Flickyngerova, Vladimir Tvarozek, Ivan Novotny, Jaroslav Kovac, Andrej Vincze. "Characterization of gallium–nitrogen co-doped zinc oxide thin films prepared by RF diode sputtering", Vacuum, 2012
[37]Christopher Tholander. "A Theoretical Study of Piezoelectricity, Phase Stability, and Surface Diffusion in Disordered Multicomponent Nitrides", Linkoping University Electronic Press, 2014
[38]Xingfu Wang, Wenbo Peng, Caofeng Pan, Zhong Lin Wang. " Piezotronics and piezophototronics based on -axis nano/microwires: fundamentals and applications ", Semiconductor Science and Technology, 2017
[39]Aída Serrano Rubio. "Modified Au-Based Nanomaterials Studied by Surface Plasmon Resonance Spectroscopy", Springer Science and Business Media LLC, 2015
[40]Jency Pricilla Sundararajan, Pavel Bakharev, Ishwar Niraula, Blaise Alexis Fouetio Kengne et al. "Observation of Surface Plasmon Polariton Pumping of Optical Eigenmodes of Gold-Decorated Gallium Nitride Nanowires" , Nano Letters, 2012
[41]Rupert F. Oulton, Volker J. Sorger, Thomas Zentgraf, Ren-Min Ma, Christopher Gladden, Lun Dai, Guy Bartal & Xiang Zhang “Plasmon lasers at deep subwavelength scale”, Nature, 2009
[42]Sudha Mokkapati, Dhruv Saxena, Nian Jiang, Patrick Parkinson, Jennifer Wong-Leung, Qiang Gao, Hark Hoe Tan, Chennupati Jagadish. "Polarization Tunable, Multicolor Emission from Core–Shell Photonic III–V Semiconductor Nanowires" , Nano Letters, 2012
[43]Koto, Makoto. "Thermodynamics and kinetics of the growth mechanism of vapor–liquid– solid grown nanowires" , Journal of Crystal Growth, 2015.
[44]Joshua Goldberger, Rongrui He, Yanfeng Zhang, Sangkwon Lee, Haoquan Yan,Heon-Jin Choi & Peidong Yang “Single-crystal gallium nitride nanotubes” Nature, 2003.
[45]Shuai Jiang, Juntao Zhang, Xiaoying Qi, Meng He and Jianye Li “Large-area synthesis of diameter-controllable porous single crystal gallium nitride micro/nanotube arrays” Royal Society of Engineering, 2013.
[46]K. Ellmer, “Magnetron sputtering of transparent conductive zinc oxide: Relation between the sputtering parameters and electronic properties,” J. Phys. D: Appl. Phys., vol. 33, pp. R17–R32, 2000.
[47]B. Chapman, Glow discharge processes: Sputtering and plasma etching. John Wiley & Sons, Inc., 1980.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊